M E M O R I A C A L C U L O

Tamaño: px
Comenzar la demostración a partir de la página:

Download "M E M O R I A C A L C U L O"

Transcripción

1 M E M O R I A C A L C U L O I. LASTRES I.I DESCRIPCIÓN El emisor submarino cuenta con una longitud de 1, m hasta llegar a una profundidad de 12 m, se construirá con tubería de polietileno de alta densidad DR-19 Clase 111 de 24 pulgadas. A operación normal el caudal nominal que pasara por esta tubería es de l/s y en situaciones extraordinarias el caudal máximo de agua de rechazo será de l/s. Para poder hundir el emisor submarino y que permanezca en el fondo del mar se necesita vencer la fuerza de empuje que ejerce el mar, contra el peso de la tubería. Como el empuje que ejerce la tubería es mucho menor a la del mar es necesario agregar peso, esto se da mediante bloques de concreto conocidos como lastres. La suma del peso volumétrico de la tubería con agua y de los lastres debe ser igual o mayor a la del mar, para garantizar que se pueda sumergir. Los lastres se dimensionaron para que aparte de sumergir la tubería, se ejerza una presión al suelo marino, de esta manera se evitara que la tubería se esté moviendo debido a la fuerza de los movimientos del mar. Ilustración 1. Esquema de localización del emisor submarino 1

2 I.II DISEÑO DE LASTRES PARA EMISOR SUBMARINO Para el dimensionamiento de los lastres de concreto se necesitaron datos de las propiedades de la tubería de polietileno de alta densidad a utilizar, el peso volumétrico del concreto y la densidad del mar. En la siguiente tabla de muestran los datos utilizados, se anexa la piezométrica al inicio del emisor submarino y el caudal máximo de agua de rechazo. Tabla 1. Datos utilizados para el calculo de lastres Ø Nominal plg Ø Interior plg Ø Exterior plg Peso Tubo lb/ft kg/m Q l/s Piezométrica msnm Densidad Mar 1, kg/m³ Módulo Flexión 110,000 PSI 7, kg/cm² Densidad g/cm³ Peso Volumétrico Concreto 2,200.0 kg/m³ Primeramente, se calculó el peso que tiene la tubería llena al 50% por cada metro lineal, en donde se tomó el diámetro interior para calcular el área y posteriormente el volumen, este resultado se multiplico por la densidad del agua de mar. Se consideró la tubería llena al 50% para que no exista problemas si se llegara a tener burbujas de aire, cabe resaltar que el flujo dentro de la tubería será a tubo lleno, pero para efectos de cálculo solo se tomó la mitad. Tabla 2. Peso de la tuberia por metro lineal considerando tubo lleno al 50% Ø Int. Área Int. Volumen Peso Agua Peso Tubo + 50% Agua m m² m³ kg kg

3 Para calcular el volumen de agua marina que será desalojada, se determinó el volumen del tubo por cada metro lineal, considerándolo sellado. Para este cálculo se utilizó el diámetro exterior. El volumen de agua desalojada es igual al volumen que ocupa la tubería al sumergirse. Tabla 1. Volumen de agua marina que sera desalojada por cada metro lineas de tuberia sumergida Ø Ext. Área Ext. Volumen m m² m³ El empuje que ejerce el agua marina hacia la superficie es igual al peso de agua desalojada, por lo que se tiene que el volumen de agua desalojada multiplicada por su densidad es igual a la fuerza de empuje. Tabla 4. Empuje del mar hacia la superficie por metro lineal Volumen Agua Desalojada Empuje m³ kg Teniendo el peso de la tubería con agua de rechazo al 50% y el empuje ejercido por el agua marina, se realizó una resta entre estos dos factores, obteniendo el peso requerido para el lastre por cada metro lineal. Tabla 5. Peso minimo del lastre por metro lineal Peso kg Se propuso ubicar los lastres a cada 5 metros, así que los resultados obtenidos anteriormente se multiplicaran por la distancia que hay entre cada lastre. El peso requerido de lastre por cada metro lineal también se multiplica por los 5 metros de separación entre cada uno de estos, con este valor se propuso dimensiones para un lastre trapezoidal. Una vez propuestas las dimensiones, se calculó el volumen y se multiplico por el peso volumétrico del concreto (material con el que se construirán estos bloques). También se consideró la fuerza que ejerce el agua al ser desalojada por el lastre, obteniendo un bloque capaz de vencer la fuerza de empuje del agua debido a los 5 metros de tubería y a volumen propio. 3

4 Tabla 6. Dimensionamiento de lastres Proyecto de Descarga de Aguas Residuales Peso Requerido Altura Base Menor Base Mayor Ancho kg m m m m Esfuerzo Agua Por El Lastre Peso Requerido Total Volumen Tubo en Lastre Área Volumen Volumen Total Lastre Peso Total Lastre m² m³ m³ kg Se consideró un factor de seguridad del 30% para el peso del lastre. Tabla 7. Factor de seguridad para el peso y dimensionamiento del lastres Requerido FS = 1.3 Propuesto < Relación 1.30 Ok Ilustración 2. Diagrama de emisor de agua de rechazo 4

5 I.III REVISION DE LASTRES Al momento de colocar los lastres a la tubería (sin agua), tienen un peso volumétrico menor al del agua de mar, provocando que exista una flotación necesaria para poder ser arrastrados mar adentro hasta su localización final. Tabla 8. Fuerza de empuje del mar hacia la tuberia Volumen Lastre Peso Lastre Peso Tubería m³ kg kg Empuje Lastre Empuje Tubería Empuje Total kg kg kg Cuando se necesite sumergir la tubería, se le quitará la tapa que impide la entrada de agua, conforme se vaya llenando, la tubería se estará sumergiendo ya que el peso volumétrico será mayor que el de agua de mar. Una vez que la tubería llegue al fondo del mar y se encuentre llena a un 50%, cada lastre ejercerá una fuerza de kg sobre el suelo marino. Cuando la tubería se llene completamente la carga que ejercerá cada lastre será de 1, kg. Con esto se evitará el movimiento de los lastres en el mar en donde no existen corrientes con grades velocidades, las mayores fluctúan en 0.27 m/s. Existe un factor de hundimiento el cual se obtiene de la siguiente manera: Para el correcto diseño de los lastres el valor apropiado para este factor debe de estar entre 1.1 y 1.5 Tabla 9. Factor de hundimiento para tuberia llena y al 50% Peso Tubería + Contenido + Peso Lastre kg Peso Agua Remplazada Por La Tubería + Peso Agua Remplazada Por Lastres Tubo Lleno a 50% kg k Tubo Lleno a 100%

6 Se calculó la flecha producida en la tubería entre cada uno de los lastres, se consideró una carga uniformemente distribuida de 346 kg/m, provocando una flecha de 1.07 cm. El polietileno de alta densidad cuenta con propiedades elásticas muy eficientes las cuales absorben esta flexión sin ningún problema. Tabla 10. Propiedades mecanicas de la tuberia de polietileno de alta densidad PROPIEDADES MECANICAS MODULO ELASTICO E (N/mm²) 1000 COEFICIENTE DE FRICCION 0.29 MODULO DE TRACCION (Gpa) RELACION DE POISSON 0.46 RESISTENCIA A TRACCION (Mpa) ESFUERZO DE ROTUR (N/mm²) ELONGACION A RUPTURA (%) 12 La flecha máxima es de 1.07 cm, la cual se encuentra al centro de la distancia entre dos lastres. El Angulo que se forma en esta deflexión es de grados. Tabla 11. Calculo de la deflexion maxima en la tuberia Modulo Elasticidad 110, PSI 7, kg/cm² R cm r cm M Inercia 341, cm4 W kg/cm Distancia Entre Lastres cm Deflexión máxima (Y max) cm Pendiente Entrada Pendiente Salida Angulo Deflexion Grados R: Radio exterior tubería. r: Radio interior tubería. M Inercia: Momento de inercia. W: Carga uniformemente distribuida. 6

7 Con la siguiente grafica se da por confirmado que la distancia entre los lastres es óptima para evitar deflexiones y deformaciones más de lo permitido. Los datos necesarios para utilizar la gráfica, son los siguientes: Diámetro externo de la tubería: 66 cm DR: 19 Grafica 1. Tramo máximo entre los lastres de concreto para las tuberías submarinas de HDPE Como se puede observar, estamos por debajo de las deflexiones y deformaciones permitidas. Con este análisis realizado se concluye que el dimensionamiento de los lastres y la separación entre cada uno de ellos es factible para su correcto funcionamiento. 7

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson.

Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson. Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson. 3.2 Una viga rectangular reforzada a tensión debe diseñarse para soportar una carga muerta

Más detalles

PRESIÓN Y ESTÁTICA DE FLUIDOS

PRESIÓN Y ESTÁTICA DE FLUIDOS La presión se define como una fuerza normal ejercida por un fluido por unidad de área. Se habla de presión sólo cuando se trata de un gas o un líquido. Puesto que la presión se define como fuerza por unidad

Más detalles

Tubería interior. Tubería interior

Tubería interior. Tubería interior TUBERÍA PREAISLADA ALB CON POLIETILENO (PE) 1. Descripción Tubería Preaislada ALB flexible, para transporte de calor y frío en redes de distribución, tanto locales como de distrito, formada por una o dos

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción Problemas de Practica: Fluidos AP Física B de PSI Nombre Preguntas de Multiopción 1. Dos sustancias; mercurio con una densidad de 13600 kg/m 3 y alcohol con una densidad de 0,8kg/m 3 son seleccionados

Más detalles

Calculo de Elongación n de la Sarta de Cabilla en el Sistema de Levantamiento Artificial Bomba de Cavidad Progresiva

Calculo de Elongación n de la Sarta de Cabilla en el Sistema de Levantamiento Artificial Bomba de Cavidad Progresiva Calculo de Elongación n de la Sarta de Cabilla en el Sistema de Levantamiento Artificial Bomba de Cavidad Progresiva Preparado por: Benigno Montilla Abril 2008 Para realizar el Calculo de Elongación n

Más detalles

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa?

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa? Slide 1 / 20 1 Dos sustancias, A tiene una densidad de 2000 kg/m 3 y la B tiene una densidad de 3000 kg/m 3 son seleccionadas para realizar un experimento. Si el experimento necesita de igual masa de cada

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

Sólo cuerdas dinámicas

Sólo cuerdas dinámicas Efectos de una caída Al caernos desde una cierta altura estando amarrados con una se producen varios sucesos simultáneos. Toda la energía potencial que habíamos ganado con la altura se convierte en cinética

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

Medidas de caudal de agua como instrumento para la gestión del manejo del riego. El Junco Salto Febrero 2007

Medidas de caudal de agua como instrumento para la gestión del manejo del riego. El Junco Salto Febrero 2007 Medidas de caudal de agua como instrumento para la gestión del manejo del riego. El Junco Salto Febrero 2007 Objetivo Gestión del agua de riego Estrategia Desarrollar una estrategia de medidas de agua.

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1 UNIDAD 1 I. INTRODUCCIÓN 1. Investiga y resume los siguientes conceptos: a. HIDRODINÁMICA: b. HIDROSTÁTICA: c. HIDRÁULICA 2. Investiga y resume en qué consiste cada una de las características de los fluidos

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

Tuberías Corrugadas HDPE CDP-DELTA / CSP-DELTA

Tuberías Corrugadas HDPE CDP-DELTA / CSP-DELTA T u b e r í a s Tuberías Corrugadas HDPE CDP-DELTA / CSP-DELTA CDPDELTA es una tubería fabricada de resina de Polietileno de Alta Densidad (HDPE) que combina un exterior corrugado anular para mayor resistencia

Más detalles

TUBERIAS CORRUGADAS HDPE CDP-DELTA / CSP-DELTA

TUBERIAS CORRUGADAS HDPE CDP-DELTA / CSP-DELTA TUBERIAS CORRUGADAS HDPE CDP-DELTA / CSP-DELTA TUBERÍAS CORRUGADAS DE HDPE Son tuberías fabricadas de resina de Polietileno de Alta Densidad (HDPE) que combina un exterior corrugado anular para mayor resistencia

Más detalles

Superficie del interior del tubo para el cálculo de su volumen:

Superficie del interior del tubo para el cálculo de su volumen: Respuesta examen: Nota el área de un círculo se calcula: π x r 2 Perímetro del círculo se calcula con: π x diámetro Volumen del cilindro se calcula área del círculo de base por su altura Anillo superior

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama.

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. TRABAJO PRÁCTICO N 7 Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. CONSIDERACIONES TEÓRICAS GENERALES Se denomina tracción axial al caso de solicitación de un cuerpo donde

Más detalles

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN Clasificación de Sistemas de Ventilación de Túneles Sistema de Ventilación n Longitudinal

Más detalles

Guía de Ejercicios de Estática de Fluidos

Guía de Ejercicios de Estática de Fluidos Universidad Nacional Experimental Politécnica de la Fuerza Armada Ciclo básico de ingeniería Sede Palmira Física II Secciones: III03M y III04M Guía de Ejercicios de Estática de Fluidos 1. La máxima presión

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

PRÁCTICA 2: MEDIDORES DE FLUJO

PRÁCTICA 2: MEDIDORES DE FLUJO Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO

Más detalles

1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3.

1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3. EJERCICIOS DE DENSIDAD 1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3. 2.- Qué VOLUMEN OCUPAN 300 gr DE MERCURIO? SI LA

Más detalles

HIDRAULICA Y CIVIL S.A.S

HIDRAULICA Y CIVIL S.A.S I. MEMORIAS DE CÁLCULO Para el diseño de las instalaciones hidráulicas y sanitarias se adoptó el Reglamento Técnico del sector de Agua Potable y Saneamiento Básico Ambiental RAS, y la Norma Técnica Icontec

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

Manual de Sistemas de Módulos de Peso de METTLER TOLEDO

Manual de Sistemas de Módulos de Peso de METTLER TOLEDO Diseño de la tubería En cualquier momento en que una tubería es conectada a una báscula de tanque (conexión de vivo a muerto), hay posibilidades de que ocurra una restricción mecánica. Si la tubería no

Más detalles

Electrica AURE. Acero Inoxidable

Electrica AURE. Acero Inoxidable Electrica AURE S.A. DE C.V. A U R E Acero Inoxidable ACEROS AUSTENITICOS (SERIE 300) HOJA ESPESOR PESO PESO POR HOJA CALIBRE Pulgadas mm kg/m2 3'x8' 3'x10' 4'x8' 4'x10' 10 0.1350 3.430 27.783 61.910 77.400

Más detalles

Flujo de Fluidos: Interacción Sólido-Fluido

Flujo de Fluidos: Interacción Sólido-Fluido Flujo de Fluidos: Interacción Sólido-Fluido Existen operaciones básicas de separación sólido-fluido que tienen gran aplicación y se presentan en muchos de los procesos industriales: filtración, sedimentación,

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9555 M85 MECÁNICA DE FLUIDOS NIVEL 03 EXPERIENCIA E-6 PÉRDIDA DE CARGA EN SINGULARIDADES HORARIO:

Más detalles

Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ NOMBRE APELLIDO PATERNO APELLIDO MATERNO

Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ NOMBRE APELLIDO PATERNO APELLIDO MATERNO TEMARIO-GUÍA SEMESTRAL FISICA N L: Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ 2016. NOMBRE APELLIDO PATERNO APELLIDO MATERNO A.- TEMARIO Fecha asignatura Contenido 22/06 Física

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO 1 Aplicaciones de la integral 3.6 uerza y presión de un fluido Cuando en un fluido contenido por un recipiente se encuentra un cuerpo sumergido, este experimenta una fuerza, perpendicular a cualquiera

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I)

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) Soluciones DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) 1. Demuestre que 1 mol de cualquier gas a presión atmosférica de 101 kpa y temperatura de 0ºC ocupa un volumen de 22,4 L. n =

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt INGENIERIA CIVIL EN MECANICA 15030 LABORATORIO GENERAL II NIVEL 11 GUIA DE LABORATORIO EXPERIENCIA C224 CURVAS CARACTERÍSTICA DE UNA TURBINA PELTON LABORATORIO DE TURBINA PELTON 1. OBJETIVO GENERAL Observar

Más detalles

DOCUMENTO 1: ANEXO B: CÁLCULO DE LA RED DE DISTRIBUCION DE BIE S ÍNDICE 1. INTRODUCCIÓN CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA...

DOCUMENTO 1: ANEXO B: CÁLCULO DE LA RED DE DISTRIBUCION DE BIE S ÍNDICE 1. INTRODUCCIÓN CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA... DOCUMENTO : ÍNDICE. INTRODUCCIÓN... 2 2. CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA... 3 3. CÁLCULO DE LA PÉRDIDA DE CARGA... 5 4. SELECCIÓN DEL GRUPO DE PRESIÓN... 8 5. CALCULO DEL ALJIBE... 9 Protección

Más detalles

i) V Dado que el hule tiene un coeficiente de expansión térmica negativo, al calentarse este material reduce su tamaño.

i) V Dado que el hule tiene un coeficiente de expansión térmica negativo, al calentarse este material reduce su tamaño. PROBLEMA 1 Responda verdadero (V) o falso (F) justificando las falsas. Sea breve en su respuesta (no más de 4 líneas). En caso que corresponda puede apoyarse también haciendo breves cálculos para responder

Más detalles

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Sección 901. Nombre: Cuenta: Nombre: Cuenta: Instrucciones: Contesta lo que se te pide clara y ordenadamente, si necesitas

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones.

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones. Ejemplo 11b. Se pide: Calcular el entrepiso del ejemplo anterior utilizando la simbología del Cirsoc 2005; el que se encuentra en vigencia. En el ejemplo anterior se resolvió el mismo entrepiso mediante

Más detalles

SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C

SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C MSc. Ing. Pedro Bertín Flores Larico UNSA-cer-ee-unas XXII Simposio Peruano de Energía Solar, 2015 Arequipa TIPOS DE

Más detalles

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica PRÁCTICA 1 PRESIÓN Laboratorio de Termodinámica M del Carmen Maldonado Susano Enero 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular carece de forma propia y adopta

Más detalles

APARATO DE VENTURI. Esta relación es conocida como la ecuación de continuidad, y es expresada como: (1) ν ν

APARATO DE VENTURI. Esta relación es conocida como la ecuación de continuidad, y es expresada como: (1) ν ν APARATO DE VENTURI Objetivo Estudiar cualitativamente y cuantitativamente para verificar la ecuación de continuidad, el principio de Bernoulli y el efecto Venturi. Introducción En el aparato de Venturi,

Más detalles

CURSO DE ESTRUCTURAS METALICAS Y CONEXIONES.

CURSO DE ESTRUCTURAS METALICAS Y CONEXIONES. TEMARIO: 1.- ESFUERZOS ACTUANTES. 1.1 DETERMINACIÓN DE INERCIAS TOTALES. 1.2 DETERMINACIÓN DE CENTROIDES. 1.3 DETERMINACIÓN DEL MODULO DE SECCIÓN ELÁSTICO Y PLÁSTICO DE SECCIONES CUADRADAS Y SECCIONES

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

Prof. Jorge Rojo Carrascosa

Prof. Jorge Rojo Carrascosa Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Martes, 8 de marzo de 2011 Nombre y Apellidos JRC 1 Un submarino se encuentra a una profundidad de 400 metros. Cuál

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS 6.- Principio de Arquímedes.

Más detalles

SECCIÓN 3: DIMENSIONAMIENTO CON LLENADO PARCIAL

SECCIÓN 3: DIMENSIONAMIENTO CON LLENADO PARCIAL SECCIÓN 3: DIMENSIONAMIENTO CON LLENADO PARCIAL Para el dimensionamiento con llenado parcial, se establece la relación entre el caudal circulante llenado parcial y el caudal a sección llena. Para cada

Más detalles

MANUAL DE INSTRUCCIONES

MANUAL DE INSTRUCCIONES bomba mini orange MANUAL DE INSTRUCCIONES La Bomba Mini Orange ha sido diseñada para ser instalada sobre falso techo, donde sea posible, o detrás de evaporadores montados en pared o bien en una canaleta

Más detalles

INSTALACIÓN DE TUBERÍAS Y ACCESORIOS STELTUB ELEMENTOS DE FIJACIÓN PARA LA COLOCACIÓN DE TUBERÍAS SIN ENTERRAR GENERAL

INSTALACIÓN DE TUBERÍAS Y ACCESORIOS STELTUB ELEMENTOS DE FIJACIÓN PARA LA COLOCACIÓN DE TUBERÍAS SIN ENTERRAR GENERAL INFORMACIÓN TÉCNICA INSTALACIÓN DE TUBERÍAS Y ACCESORIOS STELTUB ELEMENTOS DE FIJACIÓN PARA LA COLOCACIÓN DE TUBERÍAS SIN ENTERRAR GENERAL Debido a la baja rigidez y a las grandes expansiones (causadas

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

ASI SE VAN A MEJORAR LAS VIAS DE CHOCONTA, QUETAME Y CHOACHI ESPECIFICACION SISTEMA CONSTRUCTIVO DE PLACA HUELLA

ASI SE VAN A MEJORAR LAS VIAS DE CHOCONTA, QUETAME Y CHOACHI ESPECIFICACION SISTEMA CONSTRUCTIVO DE PLACA HUELLA ASI SE VAN A MEJORAR LAS VIAS DE CHOCONTA, QUETAME Y CHOACHI ESPECIFICACION SISTEMA CONSTRUCTIVO DE PLACA HUELLA 1. DESCRIPCION Una placa huella es un elemento estructural utilizado en las vías terciarias,

Más detalles

7. RESULTADOS. Tabla N 01 : Pérdidas de Carga y Altura Dinámica Total DN 250 mm. Tabla N 02 : Pérdidas de Carga Local por Accesorios DN 250 mm.

7. RESULTADOS. Tabla N 01 : Pérdidas de Carga y Altura Dinámica Total DN 250 mm. Tabla N 02 : Pérdidas de Carga Local por Accesorios DN 250 mm. Diseño de una nueva línea de impulsión y selección del equipo de bombeo para la extracción del agua subterránea planes de expansión de mínimo costo de agua potable y alcantarillado EPS Chimbote. Choy Bejar,

Más detalles

FUERZAS EN LOS FLUIDOS

FUERZAS EN LOS FLUIDOS FUERZAS EN LOS FLUIDOS 1.- Calcula la presión ejercida sobre la mesa por un bloque de 10 kg que apoya sobre una superficie de 60cm 2. 2.- Una botella cilíndrica de 18 cm de altura y 4 cm de radio está

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009 00 CONVOCATORIA: JUNIO MATERIA: TECNOLOGÍA INDUSTRIAL II OPCIÓN A EJERCICIO a) Calcule el esfuerzo (σ) en GPa y la deformación

Más detalles

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Panasonic Electric Works España Motion Control Agenda Definición de inercia y ejemplos

Más detalles

PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales

PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales Sistemas neumáticos y oleohidráulicos. Consulta de catálogos. 1 PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales En primer término la práctica consiste simplemente en observar con

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

DESCRIPCIÓN DEL EQUIPO

DESCRIPCIÓN DEL EQUIPO RIEGO POR PIVOTS DESCRIPCIÓN DEL EQUIPO Centro Pivot - alimentación de energía y agua - cuadro de maniobra Lateral -Tubería con salidas para emisores Torres automotrices - Separación entre torres (38

Más detalles

contadores 20 3/ G 1 G , ,6 0, / G 3/4 G 3/4 78 0, ,6 0, ,5 2,5 0,20 0,45 < 10 < 8

contadores 20 3/ G 1 G , ,6 0, / G 3/4 G 3/4 78 0, ,6 0, ,5 2,5 0,20 0,45 < 10 < 8 Contadores Cuando usted adquiere un Contador Hidroconta no sólo tiene un contador. Tiene una solución a medida para resolver un problema hidráulico de una forma sencilla, eficaz y adaptada a las necesidades

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

Hidrostática Área Física

Hidrostática Área Física Hidrostática Área Física Resultados de aprendizaje Al final de esta guía, el alumno deberá ser capaz de familiarizarse con todo lo relacionado a Hidrostática, teniendo claro cada concepto y de cómo aplicar

Más detalles

ELECTRODOS DE GRAFITO

ELECTRODOS DE GRAFITO ELECTRODOS DE GRAFITO Gestión de Compras suministra electrodos de grafito para el mercado nacional e internacional. Los electrodos de grafito se utilizan principalmente en la producción secundaria de acero,

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

Válvulas automáticas de control serie plástica PAZ

Válvulas automáticas de control serie plástica PAZ Válvulas automáticas de control serie plástica PAZ Aplicaciones Principales Válvulas Plásticas Válvulas Manuales Apertura y cierre manual por medio de un selector de tres vías. Válvulas de Control Eléctrico

Más detalles

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS 1 PRACTICA # 1 PROPIEDADE FIICA DE LO FLUIDO 1.1 DENIDAD Es una propiedad intensiva que se define como la masa (m) por unidad de volumen (V), y es denotada con la letra "ρ", donde: masa de la sustancia

Más detalles

GUÍA DE LABORATORIO PARA LA COMPROBACIÓN DEL PRINCIPIO DE ARQUIMEDES 1. INTRODUCCIÓN

GUÍA DE LABORATORIO PARA LA COMPROBACIÓN DEL PRINCIPIO DE ARQUIMEDES 1. INTRODUCCIÓN Designación GUÍA DE LABORATORIO PARA LA COMPROBACIÓN DEL PRINCIPIO DE ARQUIMEDES Resumen: En esta guía de laboratorio se encuentra el proceso para comprobar el principio de flotabilidad planteado por Arquímedes

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 10.- SOLUCIONES CONSTRUCTIVAS EN CONSTRUCCIONES METALICAS Esta unidad de trabajo la vamos a desarrollar desde un punto de vista

Más detalles

SISTEMAS DE ENCOFRADO DE POLÍMERO PARA HORMIGÓN

SISTEMAS DE ENCOFRADO DE POLÍMERO PARA HORMIGÓN SISTEMAS DE ENCOFRADO DE POLÍMERO PARA HORMIGÓN SISTEMAS DE ENCOFRADO DE POLÍMERO PARA HORMIGÓN revolución en el encofrado de hormigón QUÉ ES PLADECK? ÁREAS DE APLICACIÓN Pladeck es un producto polímero

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

SOLUCIONARIO GUÍA ELECTIVO Fluidos I: el principio de Pascal y el principio de Arquímedes

SOLUCIONARIO GUÍA ELECTIVO Fluidos I: el principio de Pascal y el principio de Arquímedes SOLUCIONARIO GUÍA ELECTIVO Fluidos I: el principio de Pascal y el principio de Arquímedes SGUICEL014FS11-A16V1 Solucionario guía Fluidos I: el principio de Pascal y el principio de Arquímedes Ítem Alternativa

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo PRÁCTICA 3 PRESIÓN Laboratorio de Principios de Termodinámica y Electromagnetismo M del Carmen Maldonado Susano 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular

Más detalles

Revestimiento para Protección Anticorrosiva en tuberías.

Revestimiento para Protección Anticorrosiva en tuberías. Revestimiento para Protección Anticorrosiva en tuberías. Revestimiento para Protección Anticorrosiva en tuberías. Características POLYCOAT 108 es una cinta autoadhesiva especialmente formulada para aislar

Más detalles

1. Calcula el área y volumen de los siguientes cuerpos geométricos:

1. Calcula el área y volumen de los siguientes cuerpos geométricos: 1. Calcula el área y volumen de los siguientes cuerpos geométricos: 2.- Dibuja los siguientes cuerpos geométricos y calcula su área. a) Prisma de altura 24 cm y cuya base es un rombo de diagonales 18 y

Más detalles

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así: Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto

Más detalles

Importancia de las Bombas Hidráulicas

Importancia de las Bombas Hidráulicas BOMBAS HIDRÁULICAS Importancia de las Bombas Hidráulicas Para muchas necesidades de la vida diaria tanto en la vida doméstica como en la industria, es preciso impulsar sustancias a través de conductos,

Más detalles

Este tipo de tubería es fabricada bajo las especificaciones

Este tipo de tubería es fabricada bajo las especificaciones La tubería de concreto sin refuerzo TITAN, es utilizada para la conducción de aguas lluvias, negras, residuos líquidos industriales, para drenajes en vías y en general como conductos NO sometidos a presión

Más detalles

Anejo. Cálculos estructurales de un depósito de aguas residuales.

Anejo. Cálculos estructurales de un depósito de aguas residuales. Anejo. Cálculos estructurales de un depósito de aguas residuales. 1. CARACTERÍSTICAS GENERALES DEL PROYECTO 1.1. COEFICIENTES DE SEGURIDAD: Nivel control de ejecución: Normal Situación del proyecto: Persistente

Más detalles

ANÁLISIS ESTRUCTURAL DE POLEA TENSORA DM800x

ANÁLISIS ESTRUCTURAL DE POLEA TENSORA DM800x Maestranza Valle Verde EIRL Mantenimientos Especiales Antecedentes: Fabricó y Diseñó: Maestranza Valle Verde EIRL. Calculó: René Callejas Ingeniero Civil Mecánico Rut: 13.012.752-5 INFORME DE INGENIERÍA

Más detalles

REDONDOS CORRUGADOS. Propiedades Mecánicas. Dimensiones Nominales y Tolerancias máximas de las barras corrugadas

REDONDOS CORRUGADOS. Propiedades Mecánicas. Dimensiones Nominales y Tolerancias máximas de las barras corrugadas y x x Diámetro y REDONDOS CORRUGADOS Propiedades Mecánicas Límite de fluencia: Mínimo 400 MPA 60.000 P.S.I. 24 KgF/mm2 Máximo 540 MPA 78.000 P.S.I. 55 KgF/mm2 Resistencia a la tracción Mínimo 550 M.P.A.

Más detalles

MECANICA DE FLUIDOS [ ] kg m

MECANICA DE FLUIDOS [ ] kg m MECANICA DE FLUIDOS DEFINICIÓN.- Es parte de la física clásica que tiene por objeto el estudio de los fluidos, sus principios y las leyes que lo establecen; la materia se clasifica en sólidos y fluidos,

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un mecánico empuja un auto de 2500 kg desde el reposo hasta alcanzar una rapidez v, realizando 5000 J de trabajo en el proceso. Durante este tiempo,

Más detalles

PROPIEDADES DE LA MATERIA

PROPIEDADES DE LA MATERIA PROPIEDADES DE LA MATERIA FLUIDOS Las tres fases de la materia. Presión. Propiedades 1 y 2 de los fluidos. Efecto de la gravedad sobre los fluidos. Densidad. Propiedad 3 de los fluidos. Presión atmosférica.

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM05 - MONTAJE Y MANTENIMIENTO: BOMBA DE DIAFRAGMA (pag. N - 9)

MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM05 - MONTAJE Y MANTENIMIENTO: BOMBA DE DIAFRAGMA (pag. N - 9) MM01 - KIT DE MONTAJE: GRIFO DE BOLA Y VÁLVULA DE CIERRE (pag. N - 1) MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM03 - MONTAJE Y MANTENIMIENTO: BOMBA CENTRÍFUGA MULTIETAPA (pag. N - 5) MM04

Más detalles

L=1,85. a) Suponemos que la viga tiene sólo una masa puntual para asimilarlo al comportamiento de un muelle de constante elástica:

L=1,85. a) Suponemos que la viga tiene sólo una masa puntual para asimilarlo al comportamiento de un muelle de constante elástica: IIND 4º CURSO. ESTRUCTURAS PROBLEMAS PROPUESTOS DE DINÁMICA NOTA: Cuando proceda considerar el factor de amortiguamiento, tómese: ζ= 0,02. D 1. Una viga simplemente apoyada de 1,85 m de luz está formada

Más detalles