4.- Aproximación Funcional e Interpolación

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4.- Aproximación Funcional e Interpolación"

Transcripción

1 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y maipulació Las fucioes de aproximació se obtiee por combiacioes lieales de elemetos de familias de fucioes deomiadas elemetales E geeral tedrá la forma: a g ( x + a g ( x + + a g ( x e dode a i, i, so costates por determiar y g i (x, i fucioes de ua familia particular Los moomios e x (x, x, x, costituye la familia o grupo más empleado; sus combiacioes geera aproximacioes del tipo poliomial a + a x + a x + + a x El grupo coocido como fucioes de Fourier, se x, cos x, se x, cos x,, Al combiarse liealmete, geera aproximacioes del tipo a + ai cosix + i i b seix i El grupo de fucioes expoeciales,e x,e x, Tambié puede usarse del modo siguiete i a i e ix De estos tres tipos de aproximacioes fucioales, las más comues por su facilidad de maejo e evaluacioes, itegracioes, derivacioes, etc, so las aproximacioes poliomiales Sea ua fució f(x dada e forma tabular Putos X x x x x f(x f(x f(x f(x f(x Tabla 4

2 Para aproximar a f(x por medio de u poliomio de tipo 4, se aplica alguo de los criterios siguietes: el del ajuste exacto o el de míimos cuadrados La técica del ajuste exacto cosiste e ecotrar ua fució poliomial que pase por los putos dados e la tabla El método de míimos cuadrados cosiste e hallar u poliomio que pase etre los putos y que satisfaga la codició de miimizar la suma de las desviacioes (di elevadas al cuadrado; es decir, que se cumpla: ( i d i míimo Cuado la iformació tabular de que se dispoe es aproximada hasta cierto úmero de cifras sigificativas, por ejemplo las tablas de logaritmos o de fucioes de Bessel, se recomieda usar ajuste exacto E cambio si la iformació tiee errores cosiderables, como e el caso de datos experimetales, o tiee setido ecotrar u poliomio que pase por esos putos sio más bie que pase etre ellos; etoces, el método de míimos cuadrados es aplicable Ua vez que se obtiee el poliomio de aproximació, éste puede usarse para obteer putos adicioales a los existetes e la tabla, mediate su evaluació, lo que se cooce como iterpolació Tambié puede derivarse o itegrarse a fi de obteer iformació adicioal de la fució tabular A cotiuació se describe distitas formas de aproximar co poliomios obteidos por ajuste exacto y su uso e la iterpolació 4 Aproximació poliomial simple Supógase que se tiee las siguietes tablas Putos T( C P(atm Tabla 4 Temperatura de ebullició de la acetoa a diferetes presioes Putos 3 T( C P(atm 5 4 Tabla 43 Temperatura de ebullició de la acetoa a diferetes presioes Supógase que sólo se tiee la seguda tabla (43 y se desea calcular la temperatura de ebullició de la acetoa a atm de presió Ua forma muy comú de resolver este problema es sustituir los putos ( y ( e la ecuació de la líea recta: p(x a + a x, de tal modo que resulta dos ecuacioes co dos icógitas que so a y a Co la solució del sistema se cosigue ua aproximació de primer grado, lo que permite efectuar iterpolacioes lieales; es decir se sustituye el puto ( e la ecuació de la líea recta y se obtiee 565 a + *a y al sustituir el puto (

3 3 a + 5*a Sistema que al resolverse da a 4375 y a 45 Por lo tato, estos valores geera la ecuació p(x x La ecuació resultate puede emplearse para aproximar la temperatura cuado la presió es coocida Al sustituir la presió x atm se obtiee ua temperatura de 76 C A este proceso se le cooce como iterpolació Gráficamete la tabla 43 puede verse como ua serie de putos (, (, ( y (3 e u plao P vs T, e dode si se ue co ua líea los putos ( y (, por búsqueda gráfica se obtiee T 76 C, para P atm E realidad, esta iterpolació sólo ha cosistido e aproximar ua fució aalítica descoocida [Tf(P dada e forma tabular por medio de ua líea recta que pasa por los putos ( y ( Si se quisiera ua aproximació mejor al valor verdadero de la temperatura buscada, podría uierse más putos de la tabla co ua curva suave (si picos, por ejemplo tres (, ( y ( y gráficamete obteer T correspodiete a P atm Aalíticamete el problema se resuelve al aproximar la fució descoocida [Tf(P co u poliomio que pase por los tres putos (, ( y ( Este poliomio es ua parábola y tiee la forma geeral ( x a + a x a p + x Dode los parámetros a, a y a se determia sustituyedo cada uo de los tres putos e la ecuació aterior es decir 565 a + a + a 3 a 8 a + a 5 + a 5 + a + a Al resolver el sistema se obtiee A 3985, a75, a-548 De tal modo que la ecuació poliomial queda ( x x x p 548 Y puede emplearse para aproximar algú valor de la temperatura correspodiete a u valor de presió Por ejemplo si x atm, etoces ( ( 548( 7 C T p

4 La aproximació a la temperatura correcta es obviamete mejor e este caso Obsérvese que ahora se ha aproximado la fució descoocida [Tf(P co u poliomio de segudo grado (parábola que pasa por los tres putos más cercaos al valor buscado E geeral, si se desea aproximar ua fució co u poliomio de grado, se ecesita + putos, sustituidos e la ecuació poliomial de grado : p ( x a + ax + ax + + ax Geera u sistema de + ecuacioes lieales e las icogitas ai, i,,, Ua vez resuelto el sistema se sustituye los valores de ai e la ecuació co lo cual se obtiee el poliomio de aproximació poliomial simple Por otro lado, como se dijo al pricipio de este capítulo, puede teerse ua fució coocida pero muy complicad, por ejemplo f o f ( x kxl x + x m x ( x si x c x m m La cual coviee, para propósitos prácticos, aproximar co otra fució más secilla, como poliomio El procedimieto es geerar ua tabla de valores mediate la fució origial y a partir de dicha tabla aplicar el método descrito arriba 43 Poliomios de Lagrage El método de aproximació poliomial requiere la solució de u sistema de ecuacioes algebraicas lieales que, cuado el grado del poliomio es alto, puede presetar icoveietes Existe otros métodos de aproximació poliomial e que o se requiere resolver u sistema de ecuacioes lieales y los cálculos se realiza directamete, etre éstos se ecuetra el de aproximació poliomial de Lagrage Se parte uevamete de ua fució descoocida f(x dada e forma tabular y se asume que u poliomio de primer grado puede escribirse: pxa x x a x x dode x y x so los argumetos de los putos coocidos [x,f(x, [x,f(x y a y a so dos coeficietes por determiar Para ecotrar el valor de a, se hace x x e la ecuació aterior que al despejar da : a px x x f x x x y para hallar el valor de a, se sustituye el valor de x co el de x, co lo que resulta

5 a px x x f x x x de tal modo que al sustituir las ecuacioes os queda px f x x x x x f x x x x x o e forma más compacta p xl x f x L x f x e dode L x x x x x y L x x x x x de igual maera, u poliomio de segudo grado puede escribirse p xa x x x x a x x x x a x x x x de dode x, x y x so los argumetos correspodietes a los tres putos coocidos [x,f(x, [x,f(x y [x,f(x ; los valores de a, a y a se ecuetra sustituyedo x x, x x y x x respectivamete, e la ecuació aterior para obteer: f x a x x x x, a f x x x x x y a f x x x x x Cuyo remplazo e dicha ecuació geera el siguiete poliomio p xl x f x L x f x L x f x dode: L ( ( x x ( x x x, ( ( x x ( x x L x y L ( x ( x x ( x x ( x x ( x x ( x x ( x x ( x x ( x x Por iducció el lector puede obteer poliomios de tercer, cuatro o -ésimo grado; este último queda como se idica a cotiuació ( x L ( x f ( x + L ( x f ( x + L ( x f ( x p + Dode ( ( x x ( x x ( x x L x x x x x x x ( ( (

6 L L ( x ( x ( x x ( x x ( x x ( x x ( x x ( x x ( x x ( x x ( x x ( x x ( x x ( x x que e forma más compacta y útil para programarse quedaría p ( x L ( x f ( x dode i x x L i x j j, j x i x j i i Al combiarse liealmete co f(x, los poliomios L i (x, deomiados poliomios de Lagrage, geera ua aproximació poliomial de Lagrage a la iformació dada e forma tabular 44 Diferecias Divididas Por defiició de derivada e el puto x de ua fució aalítica f(x se tiee f ' xlim x x o f x f x x x Si embargo cuado la fució es defiida de forma tabular la ecuació 4x o se puede aplicar E este caso la derivada solo puede obteerse de maera aproximada Por ejemplo si se desea la derivada e el puto x, tal que x < x < x, etoces esta se puede obteer a traves de la siguiete ecuació: f ' x f x f x x x, x < x < x El lado derecho de 4x se cooce como la primera diferecia dividida de f(x respecto a los argumetos x y x, y se deota geeralmete por: f [ x, x f x f x x x La relació etre la primera diferecia dividida y la primera derivada queda establecida por el teorema del valor medio f x f x x x f ', ξ (x, x Siempre y cuado f(x satisfaga las codicioes de aplicabilidad de dicho teorema

7 Para obteer aproximacioes a derivadas de orde más alto, se usa uevamete el cocepto de diferecias divididas Así la seguda diferecia dividida quedaria como: f [ x, x, x f [ x x f [ x x,, x x La tercera diferecia dividad como: f [ x, x, x, x 3 f [ x x x f [ x x x,, 3,, x 3 x De esta maera la diferecia dividida de orde i es: f [ x, x, x,, x i f [ x, x,, x i f [ x, x,, x i x i x De aquí se puede observar que: a Se requiere i + putos b El umerador es la resta de dos diferecias de orde i - y el deomiador es la resta de los argumetos o comues e el umerador 45 Aproximació poliomial de Newto Sea f(x ua fució dada e forma tabular: Putos X x x x x f(x f[x f[x f[x f[x Se desea aproximar a f(x por medio de u poliomio de grado uo que pase por los putos ( y ( Dicho poliomio puede ser represetado por: pxa a x x ev dode x es la abscisa de puto ( y a y a so costates por determiar Para ecotrar el valor de a se hace x x de dode a p(x f[x y a fi de ecotrar el valor de a se hace x x, de dode a (f[x f[x /(x x o sea la primera diferecia dividida f[x, x Al sustituir los valores co estas costates e la ecuació aterior queda: p x f [ x x x f [ x, x O sea u poliomio de primer grado e térmios de diferecias divididas Si se desea aproximar f(x por u poliomio de grado, etoces se requiere tre putos (, ( y (, y p(x tiee la forma: p xa a x x a x x x x

8 De dode x y x vuelve a ser las abscisas de los putos ( y ( y a, a y a so costates por determiar Procediedo como e el caso aterior se tiee: si x x, si x x, a p x f [ x a f [ x f [ x x x f [ x, x si x x, a f [ x f [ x x x f [ x f [ x x x x x x x Al desarrollar algebraicamete el umerado y el deomiador de a se llega a a f [ x f [ x x x f [ x f [ x x x x x f [ x, x, x Que es la seguda diferecia dividida respecto a x, x y x Co la sustitució de estos coeficietes e la ecuació aterior se obtiee p x f [ x x x f [ x, x x x x x f [ x, x, x Que es u poliomio de segudo grado e térmios de diferecias divididas Por iducció se establece que e geeral para u poliomio de grado e la forma p xa a x x a x x x x a x x x x x x Y que pasa por los putos (, (, (,, (; los coeficietes a, a,, a está dados por: a f [ x a f [ x, x a f [ x, x, x a f [ x, x, x,, x Esta arpoximació poliomial se cooce como aproximació poliomial de Newto, la cual se puede esprexar siteticamete como

9 p x k k a k x x i i

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Métodos Numéricos/ Calculo Numérico/ Análisis Numérico. Raíces de ecuaciones Teoría General de la iteración

Métodos Numéricos/ Calculo Numérico/ Análisis Numérico. Raíces de ecuaciones Teoría General de la iteración Métodos Numéricos/ Calculo Numérico/ Aálisis Numérico. Raíces de ecuacioes Teoría Geeral de la iteració Bibliografía: Métodos Numéricos G. Pacce Editorial EUDENE -1997. Problemas resueltos de Métodos Numéricos.

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN

Más detalles

Acá surge una duda cuántos valores de cada variable debemos medir? La respuesta no es obvia. Supongamos que decidimos tomar 3 medidas

Acá surge una duda cuántos valores de cada variable debemos medir? La respuesta no es obvia. Supongamos que decidimos tomar 3 medidas CARACTERIZACION DE UN SISTEMA FISICO. Obteció de la relació fucioal etre dos variables Para poder eteder los feómeo o procesos que tiee lugar e u dado sistema ecesitamos ecotrar las variables que le produce

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

UNIVERSIDAD ANTONIO NARIÑO GUIA 1

UNIVERSIDAD ANTONIO NARIÑO GUIA 1 UNIVERSIDAD ANTONIO NARIÑO GUIA ANTIDERIVADAS OBJETIVO: Apreder el cocepto de atiderivada e itegral idefiida y resolver itegrales usado las formulas básicas. ocepto: Dada ua fució, sabemos como hallar

Más detalles

INTERPOLACIÓN POLINOMIAL.

INTERPOLACIÓN POLINOMIAL. INTERPOLACIÓN POLINOMIAL. co OOoBasic Y OOoCalc (VERSIÓN 1.0 - AGOSTO 16, 2011.) Walter Mora F., Escuela de Matemática Istituto Tecológico de Costa Rica. Textos Uiversitarios Revista digital Matemática,

Más detalles

UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE.

UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE. Curso de Acústica Istituto de Física de la Facultad de Igeiería Uiversidad de la República. Motevideo - Uruguay UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE.

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

TEMA 2: RESOLUCIÓN DE ECUACIONES NO LINEALES

TEMA 2: RESOLUCIÓN DE ECUACIONES NO LINEALES Tema : Resolució de ecuacioes o lieales. TMA : RSOLUCIÓN D CUACIONS NO LINALS.1.- Itroducció La resolució de ecuacioes e ua variable es uo de los problemas clásicos de la aproximació umérica. Se trata

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

4 Métodos de Colocación

4 Métodos de Colocación 4 4. Clasificació Como ya se mecioó e el capítulo aterior, el método de colocació es ampliamete coocido por ser u procedimieto altamete eficiete y preciso para la solució umérica de ecuacioes difereciales

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos.

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos. Números Complejos El cojuto de los úmeros complejos La supremacía de los úmeros reales como cojuto umérico máximo duró poco; o existe u úmero real a que satisfaga la ecuació x 2 + a = 0. Para ello, es

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global . Jueves, de abril Teoría sobre la programació o lieal Programació separable Dificultades de los modelos PNL PL: Etregas: material de clase PNL: Aálisis gráfico de la programació o lieal e dos dimesioes:

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

13. FACTORIZACIÓN GAUSSIANA Y CUERPOS CUADRÁTICOS

13. FACTORIZACIÓN GAUSSIANA Y CUERPOS CUADRÁTICOS .. Teoría de los úmeros algebraicos. Teoría de los úmeros algebraicos. La teoría algebraica de los úmeros es la rama de la teoría de los úmeros e la cual el cocepto de úmero se expade a los úmeros algebraicos,

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

CRIPTO II UT I N 01 BASES TEORICAS I

CRIPTO II UT I N 01 BASES TEORICAS I CRIPTO II UT I N 0 BASES TEORICAS I TEORIA DE NUMEROS cripto-scolik-hecht UT- UNIDAD TEMÁTICA N : Bases Teóricas. Teoría de Números: Aritmética Modular, Logaritmos Discretos. Geeració de úmeros primos.

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

Teorema del Muestreo

Teorema del Muestreo Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

Teoría de la conmutación. Álgebra de Boole

Teoría de la conmutación. Álgebra de Boole Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

CAPITULO 2. Aritmética Natural

CAPITULO 2. Aritmética Natural CAPITULO Aritmética Natural Itroducció 1 Sumatorias Iducció Matemática Progresioes Teorema del Biomio 1. Coteidos. Itroducció 1) Asumiremos que el cojuto de úmeros reales R, +,, ) es u cuerpo ordeado completo.

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

CAPÍTULO 2. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE

CAPÍTULO 2. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE CAPÍTULO. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE INTRODUCCIÓN El objetivo de este capítulo es estudiar alguos métodos uméricos para hallar raíces reales de ua ecuació o-lieal e ua

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

Escena 5 Planificación contra stock

Escena 5 Planificación contra stock Método de Plaificació propuesto 67 Escea 5 Plaificació cotra stock Ua vez coocidos los protagoistas la escea busca ordear los pedidos de la forma más eficiete, respetado los requisitos del cliete. Es e

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles