PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES"

Transcripción

1 PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES 1 de 14

2 CAPILARIDAD OBJETIVO Comprender el fundamento de la capilaridad. Aplicar la fórmula de Jurin para calcular la altura de un capilar. Contrastar el valor medido físicamente y el obtenido mediante la fórmula. FUNDAMENTO TEÓRICO Cuando un líquido entra en contacto con un sólido: si la adhesión del líquido con el sólido es mayor que la cohesión en el líquido, el líquido ascenderá por el sólido (figura izquierda). si la adhesión del líquido con el sólido es menor que la cohesión en el líquido, el líquido descenderá y el menisco es curvado hacia abajo (figura derecha). Sólo es apreciable para pequeños diámetros. La curvatura con el sólido la medimos mediante el ángulo θ. Cálculo de la altura h de ascensión o descenso: Para el caso de un tubo de vidrio tenemos, tal y como se observa en la figura, que la fuerza debida a la tensión superficial es: σ. π.. cosθ. Esta fuerza será igual al peso del líquido elevado W, con lo que tenemos que: σ. π..cosθ σ: tensión superficial del agua (N/m) θ: ángulo del menisco entre el líquido y el sólido. = W π. = ρ. g σ.cosθ. h h = ρ. g. 2 de 14

3 ACTIVIDADES A REALIZAR 1. Observar la diferente altura que tiene el agua en cada tubo: a menor diámetro, mayor altura. 2. Medir la altura alcanzada por el agua en el tubo más estrecho. 3. Aplicar la fórmula teórica y contrastar el resultado con la altura medida. Datos: Diámetro del tubo más estrecho: 2mm. Ángulo del menisco entre agua y vidrio: 50º. 3 de 14

4 VISCOSIDAD OBJETIVO Comprender el concepto de viscosidad. Medir la viscosidad de la glicerina. Contrastar el valor obtenido de forma experimental con el valor de las tablas. FUNDAMENTO TEÓRICO Propiedad de los fluidos que caracteriza su resistencia a fluir, debida al rozamiento entre sus moléculas. La unidad empleada para medir la viscosidad dinámica µ en el Sistema Internacional es el Poiseuille (Pl): Pl = y en el sistema cgs es el Poise (P): P = La viscosidad cinemática es el cociente entre la viscosidad dinámica y la densidad υ = y se mide en [m2/s] en el Sistema Internacional y en Stoke (St) N s 2 m dina 2 cm µ ρ cm St = s 2 en el sistema cgs:. s 4 de 14

5 MEDIDA DE LA VISCOSIDAD La viscosidad se medirá de forma experimental por medio de un viscosímetro de Brookfield. Los pasos a seguir se detallan a continuación: 1. Mediremos la viscosidad de la glicerina dos veces, utilizando en cada ocasión dos cilindros diferentes: LV2 y LV3. 2. Levantar el viscosímetro mediante la rueda de la derecha. 3. Enroscar el cilindro seleccionado en el sentido de las agujas del reloj. 4. Sumergir el cilindro en el líquido hasta la muesca, utilizando la rueda de la derecha. 5. Encender el motor y ajustar la velocidad de giro con el selector de velocidad para obtener una lectura adecuada. Se debe mantener el giro constante durante cierto tiempo para permitir que la lectura se estabilice. 6. Con el embrague presionado apagar el motor para obtener la lectura de la viscosidad en el dial. 7. Seleccionar el factor adecuado atendiendo a la gama de cilindro y a la velocidad de giro empleada. 8. La viscosidad del fluido se obtiene directamente en cp (centipoise) como resultado del producto de la lectura obtenida y el factor correspondiente. Tened cuidado con las unidades. Se recomienda utilizar el Sistema Internacional. 5 de 14

6 OBJETIVO TENSIÓN SUPERFICIAL Determinación de la tensión superficial a partir de la fuerza de tracción medida. Comparar dicho valor con el de tablas. FUNDAMENTO TEÓRICO La tensión superficial se debe a que cada molécula de la superficie de un líquido sólo puede sentir el efecto de las fuerzas de atracción de las moléculas vecinas de un único lado (ver figura). La fuerza resultante sobre la molécula observada tiene una dirección vertical a la superficie y sentido hacia el interior del líquido. Se puede medir la tensión superficial con, por ejemplo, un anillo de metal con filo agudo que se sumerge en el líquido y queda totalmente cubierto por él. Si se retira el anillo lentamente del líquido, se alza una delgada membrana de superficie del líquido que tira del anillo. La longitud de superficie en contacto será la de la cara interior más la de la cara exterior. σ = F l F F F = = = 2πR + 2πR 4πR 2πd Siendo d el diámetro del anillo. 6 de 14

7 MEDIDA DE LA TENSIÓN SUPERFICIAL 1. Fijarse en el dinamómetro la posición del manguito (no empieza desde el cero). 2. Ascender la plataforma hasta que el anillo quede sumergido en el agua. 3. Hacer descender con cuidado la plataforma leyendo siempre sobre el dinamómetro la fuerza de tracción. Cuando la fuerza de tracción deja de aumentar a pesar de que la plataforma sigue bajando, se está cerca de la ruptura de la membrana. 4. Leer y anotar la fuerza de tracción inmediatamente antes de la ruptura de la membrana. Dato: diámetro del anillo 60 mm 7 de 14

8 MEDIDA DE PRESIONES FUNDAMENTO TEÓRICO 1. Presión absoluta y relativa Presión absoluta: el nivel de referencia para el establecimiento de la presión es el vacío, por lo que será siempre positiva. Presión relativa o manométrica: el nivel de referencia es la presión del medio ambiente, pudiendo adoptar valores positivos o negativos. Los medidores de presión que miden la diferencia de presiones entre la presión medida y el medio ambiente se llaman manómetros. Normalmente la presión del medio ambiente va a ser la presión atmosférica. Para medir la presión atmosférica utilizamos un barómetro. 2. Dos puntos del mismo fluido que están a la misma altura tienen la misma presión. 3. La presión de un punto es igual a la presión de un punto que está por encima, más el producto del peso específico del fluido y la altura existente entre los dos puntos. p 4. La ley de Pascal indica que la presión ejercida en un punto de un fluido en equilibrio se transmite íntegramente en todos los sentidos. 5. Las alturas de columna de líquido se pueden convertir en unidades de presión sin más que multiplicar dicha altura por el peso específico del líquido: B p = = p + γ h F A A p h = p = γ h γ ; 8 de 14

9 OBJETIVO Parte 1: MANÓMETROS DIFERENCIALES DE MERCURIO Medir la misma presión manométrica en dos unidades diferentes y comprobar que efectivamente es la misma presión. Manejar con soltura las diferentes unidades de presión y saber convertir unidades de presión en altura de columna de líquido. Parte 2: Medir la presión absoluta ejercida por la atmósfera mediante un barómetro de mercurio. En este caso debemos tomar como nivel de referencia el vacío para obtener dicha lectura absoluta. Es necesario por lo tanto que en uno de los dos ramales esté hecho el vacío. MÉTODO PARTE 1 1. Abrimos las llaves de los dos manómetros. 2. Utilizando la bomba de aire, introducimos presión en el manómetro 1 (a la izquierda) y en el manómetro 2 (a la derecha). 3. En el manómetro 1 leemos la diferencia de altura entre las dos superficies libres del mercurio, la del tubo y la del depósito (metro de columna de mercurio). 4. En el manómetro 2 leemos directamente en milibar la presión ejercida. 5. Comprobar que es la misma presión poniendo, por ejemplo, las dos medidas en Pascal (Pa) y en metro de columna de agua (mca). 9 de 14

10 MÉTODO PARTE 2 1. Cerramos la llave de entrada de aire al manómetro 2 situada en la parte trasera (llave roja). 2. Utilizando la bomba de aire, introducimos presión en el manómetro 1. Observamos cómo el mercurio asciende. Con cuidado para que el mercurio no desborde, cuando éste alcance el depósito de la parte superior, cerramos la válvula superior. 3. Cerramos la llave de entrada al manómetro 1. Esta llave especial cierra la entrada de aire proveniente de la bomba pero deja entrar, a través de su pequeño agujero, aire de la atmósfera. 4. El mercurio desciende hasta indicar una diferencia de altura entre el depósito y el tubo. Si nos fijamos, el depósito de mercurio está en contacto con la presión atmosférica y en la parte superior del tubo hay vacío. 5. Por tanto, dicha diferencia de altura entre las superficies del mercurio (la del depósito y la del tubo) debería ser la presión absoluta ejercida por la atmósfera, esto es, la presión atmosférica. Hemos construido un barómetro. 10 de 14

11 MANÓMETROS BOURDON. PRINCIPIO DE PASCAL OBJETIVO Comprobar la ley de Pascal. Aprender a tarar los manómetro tipo Bourdon. Manejar sin dificultades las unidades de presión. FUNDAMENTO Se dispone de dos manómetros tipo Bourdon conectados a un mismo sistema de calibración de manómetros. El sistema consta de un cilindro hueco en el que se aloja un pistón de sección conocida. En la parte superior del pistón se pueden colocar diferentes pesas de masa conocida. Por la parte inferior del pistón se introducirá aire a presión, de forma que el propio pistón junto con las masas colocadas sobre el mismo queden en equilibrio. La presión introducida se mide simultáneamente en dos manómetros colocados a tal efecto. MÉTODO 1. Se selecciona una masa determinada y se coloca sobre el pistón. 2. Utilizando la bomba de aire, se introduce con suavidad presión en el sistema. El pistón ascenderá elevando la masa colocada sobre el mismo. 3. Se hacen girar las masas y se anotan las medidas obtenidas en ambos manómetros, verificando su exactitud teniendo en cuenta el área de aplicación y la masa elevada. 4. Se repite el procedimiento para diferentes masas. Dato: sección del pistón: 300 mm2. Nota.- No se debe tirar del pistón hacia arriba, pues generaría una presión negativa que puede dañar los manómetros. 11 de 14

12 TUBO CON LÍQUIDOS INMISCIBLES OBJETIVO Comprender que dos puntos del mismo líquido que están a la misma profundidad tienen la misma presión. Obtener la densidad del líquido rojo. 12 de 14

13 MANÓMETRO DIFERENCIAL DE LÍQUIDO AZUL OBJETIVO Medir presión en depósito a través de un manómetro diferencial. FUNDAMENTO Podemos medir la presión de un depósito de una manera sencilla y barata. Para ello se puede utilizar un manómetro con un líquido intermedio inmiscible. Estos manómetros sirven también para medir las diferencias de presiones entre dos depósitos. Se dispone de un tubo doblado en forma de U que contiene un líquido manométrico azul de densidad relativa 1,114. Las dos ramas del tubo se ponen en contacto a través de aire con dos probetas o depósitos. Para simular presión en los depósitos, la probeta de la derecha tiene una pistola de vacío y la de la derecha un tubo sumergido en agua. MÉTODO 1. Ponemos los dos depósitos o probetas a presión atmosférica. Para ello la válvula de la probeta derecha debe estar abierta y el tubo de la probeta izquierda debe estar fuera del agua. El líquido azul alcanza el mismo nivel en las dos ramas del tubo. 2. Mediante la pistola variamos la presión del conducto de la probeta derecha cerrando a continuación la válvula, estableciendo así una diferencia de cotas en la propia probeta y en el tubo. 3. Medimos la diferencia de cotas en la propia probeta. Calculamos la depresión generada en la probeta derecha. 4. Medimos la diferencia de cotas del líquido azul en el manómetro diferencial. Comprobamos que ambos valores coinciden en las unidades adecuadas. Hemos construido un manómetro. 5. Podríamos continuar introduciendo la toma izquierda en su probeta. Entonces podríamos medir en el manómetro la diferencia de presiones entre los dos depósitos. 13 de 14

14 14 de 14

Facultad de Ingeniería y Arquitectura PROPIEDADES HIDRÁULICAS DE LOS SUELOS

Facultad de Ingeniería y Arquitectura PROPIEDADES HIDRÁULICAS DE LOS SUELOS PROPIEDADES HIDRÁULICAS DE LOS SUELOS Capilaridad El proceso de capilaridad es el ascenso que tiene el agua cuando se introduce verticalmente un tubo de vidrio de diámetro pequeño (desde unos milímetros

Más detalles

TEMA II.3. Tensión superficial. Dr. Juan Pablo Torres-Papaqui

TEMA II.3. Tensión superficial. Dr. Juan Pablo Torres-Papaqui TEMA II.3 Tensión superficial Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

PÉRDIDAS DE CARGAS POR FRICCIÓN

PÉRDIDAS DE CARGAS POR FRICCIÓN PÉRDIDAS DE CARGAS POR FRICCIÓN Objetivos Estudio de pérdidas de energía por fricción, tanto en tramos rectos de tuberías (pérdidas de carga lineales), como en diferentes s característicos de las instalaciones

Más detalles

TEMA 2. MAGNITUDES FÍSICAS. DEFINICIÓN Y PROPIEDADES DE LOS FLUIDOS

TEMA 2. MAGNITUDES FÍSICAS. DEFINICIÓN Y PROPIEDADES DE LOS FLUIDOS Ingeniería Fluidomecánica TEMA 2. MAGNITUDES FÍSICAS. DEFINICIÓN Y PROPIEDADES DE LOS FLUIDOS 2.1. Magnitudes físicas en Fluidomecánica. Sistema Internacional BLOQUE TEMÁTICO 1 FUNDAMENTOS DE MECÁNICA

Más detalles

Calibración de un manómetro

Calibración de un manómetro Calibración de un manómetro Práctica de laboratorio de Ingeniería Fluidomecánica DEPARTAMENTO DE INGENIERÍA ENERGÉTICA Y FLUIDOMECÁNICA INGENIERÍA FLUIDOMECÁNICA Abril de 2012 Calibración de un manómetro

Más detalles

Laboratorio orio de Operaciones Unitarias I

Laboratorio orio de Operaciones Unitarias I Laboratorio orio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio

Más detalles

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN . ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN CONDUCCIONES A PRESIÓN.1. Introducción.. Descripción de la instalación fluidomecánica.3. Descripción de la actividad práctica.4. Conceptos

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Tema 1. Hidráulica. Generalidades 1. Definición. Propiedades fundamentales de los líquidos 3. Conceptos previos: Peso, Densidad, Peso específico, Presión 4. Compresibilidad de un líquido 5. Tensión superficial

Más detalles

1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES

1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES 1. ACTIVIDAD ACADÉMICA MEDIDA DE CAUDALES Y DE PRESIONES 1.1. Introducción 1.2. Descripción de la instalación fluidomecánica 1.3. Descripción de la actividad práctica propuesta Profesor: Inmaculada Pulido

Más detalles

PRÁCTICA No 1 MANOMETRÍA

PRÁCTICA No 1 MANOMETRÍA República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio de Procesos Químicos Operaciones Unitarias I PRÁCTICA

Más detalles

Actividad: Qué es capilaridad?

Actividad: Qué es capilaridad? Qué es capilaridad? Nivel: 3º medio Subsector: Ciencias físicas Unidad temática: Ver video Capilaridad Actividad: Qué es capilaridad? Los fluidos son un conjunto de moléculas distribuidas al azar que se

Más detalles

PRÁCTICA: TUNEL DE VIENTO

PRÁCTICA: TUNEL DE VIENTO PRÁCTICA: TUNEL DE VIENTO htttp://www.uco.es/moodle Descripción de los equipos y esquema de la instalación El equipo utilizado en esta práctica es un túnel de aerodinámico subsónico HM 70 con un tramo

Más detalles

b) Determinar la densidad de un líquido, aplicando el principio de igualdad de presiones en puntos a igual profundidad en un fluido en reposo.

b) Determinar la densidad de un líquido, aplicando el principio de igualdad de presiones en puntos a igual profundidad en un fluido en reposo. 1 Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física. PRESIÓN MANOMÉTRICA Objetivos específicos a) Medir las diferentes alturas y presión que se indique. b) Determinar la densidad

Más detalles

Bolilla 7: Propiedades de los Líquidos

Bolilla 7: Propiedades de los Líquidos Bolilla 7: Propiedades de los Líquidos 1 Bolilla 7: Propiedades de los Líquidos Estudiaremos propiedades de los líquidos, derivadas de las fuerzas de cohesión entre las moléculas que lo componen. Además

Más detalles

PROBLEMAS DE FLUIDOS. CURSO 2012-2013

PROBLEMAS DE FLUIDOS. CURSO 2012-2013 PROBEMAS DE FUIDOS. CURSO 0-03 PROBEMA. Principio de Arquímedes. Un bloque metálico de densidad relativa 7.86 se cuelga de un dinamómetro y se mide su peso. Después se introduce en un recipiente lleno

Más detalles

FLUIDOS IDEALES EN MOVIMIENTO

FLUIDOS IDEALES EN MOVIMIENTO FLUIDOS IDEALES EN MOVIMIENTO PREGUNTAS 1. En que principio esta basado la ecuación de Bernoulli. 2. La velocidad del agua en una tubería horizontal es de 6 cm. de diámetro, es de 4 m/s y la presión de

Más detalles

HRE 01.1 GRUPO HIDRAULICO

HRE 01.1 GRUPO HIDRAULICO HRE 01.1 GRUPO HIDRAULICO Características de la bomba: Altura manométrica máxima 23 m.c.a. Caudal 20 / 160 l/min. H 21 / 10 m.c.a. H max. 23 m.c.a. H min. 10 m.c.a. Potencia consumida 750 W (1 HP). Potencia

Más detalles

TEMA II.2. Medición de Presiones. Dr. Juan Pablo Torres-Papaqui

TEMA II.2. Medición de Presiones. Dr. Juan Pablo Torres-Papaqui TEMA II.2 Medición de Presiones Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A. Tópico Generativo: La presión en vasos comunicantes. Aprendizajes Esperados: 1.-Aplicar la definir conceptual de presión y aplicarla a vasos comunicante. 2.- Caracterizar la presión en función de la fuerza

Más detalles

EFECTO JOULE-THOMSON

EFECTO JOULE-THOMSON PRACTICA nº 4 EFECTO JOULE-THOMSON Fundamentos teóricos El proceso de Joule-Thomson consiste en el paso de un gas desde un contenedor a presión constante a otro a presión también constante y menor (Pf

Más detalles

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html PRACTICA NO. 1 CALIBRACION DE TRASNMISORES http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html Transductor de presión de silicio difundido Cuando no hay presión,

Más detalles

República Bolivariana De Venezuela. Ministerio De Poder Popular Para La Educación Superior. Aldea Universitaria. Gran Mariscal De Ayacucho

República Bolivariana De Venezuela. Ministerio De Poder Popular Para La Educación Superior. Aldea Universitaria. Gran Mariscal De Ayacucho República Bolivariana De Venezuela Ministerio De Poder Popular Para La Educación Superior Aldea Universitaria Gran Mariscal De Ayacucho Cagua-Edo-Aragua. Construcción Civil Profesor: José Nicolás Ramírez

Más detalles

MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE

MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE OBJETIVOS: Observar un cambio de fase líquido-vapor del etanol, y un cambio de fase vapor-líquido del etanol. Comprender experimentalmente el

Más detalles

GUÍA DE EXPERIENCIAS MECÁNICA DE FLUÍDOS

GUÍA DE EXPERIENCIAS MECÁNICA DE FLUÍDOS GUÍA DE EXPERIENCIAS MECÁNICA DE FLUÍDOS 1. DENSIDAD Materiales: Cilindro de Arquímedes Dinamómetro La densidad de un cuerpo se define como la cantidad de materia por unidad de volumen, sus unidades son

Más detalles

Sistema de inyección de combustible: reparar Comienzo del suministro de la bomba de inyección: verificar y ajustar

Sistema de inyección de combustible: reparar Comienzo del suministro de la bomba de inyección: verificar y ajustar Page 1 of 5 Sistema de inyección de combustible: reparar Comienzo del suministro de la bomba de inyección: verificar y ajustar Herramientas especiales, verificadores y medios auxiliares necesarios Llave

Más detalles

CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA

CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA Los fluidos son sustancias que se pueden escurrir o fluir, mediante una aplicación apropiada de fuerzas. En términos generales podemos clasificar los fluidos

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 04. Dinámica de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

HIDROSTÁTICA-TENSIÓN SUPERFICIAL

HIDROSTÁTICA-TENSIÓN SUPERFICIAL HIDROSTÁTICA-TENSIÓN SUPERFICIAL Los líquidos son sistemas materiales caracterizados por: Su tendencia a fluir si se les aplica un impulso externo. Los movimientos de translación de las moléculas que lo

Más detalles

Capítulo 6. Fluidos reales

Capítulo 6. Fluidos reales Capítulo 6 Fluidos reales 1 Viscosidad El rozamiento en el movimiento de los fluidos se cuantifica a través del concepto de viscosidad, η, que se define como: F A = η v d El coeficiente de viscosidad tiene

Más detalles

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff Fisica III -10 - APENDICES - APENDICE 1 -Conductores -El generador de Van de Graaff - APENDICE 2 - Conductores, dirección y modulo del campo en las proximidades a la superficie. - Conductor esférico. -

Más detalles

VISCOSIDAD DEL ASFALTO CON EL METODO DEL VISCOSIMETRO CAPILAR DE VACIO MTC E 308-2000

VISCOSIDAD DEL ASFALTO CON EL METODO DEL VISCOSIMETRO CAPILAR DE VACIO MTC E 308-2000 VISCOSIDAD DEL ASFALTO CON EL METODO DEL VISCOSIMETRO CAPILAR DE VACIO MTC E 308-2000 Este Modo Operativo está basado en las Normas ASTM D 2171 y AASHTO T 202, las mismas que se han adaptado al nivel de

Más detalles

Saturación. Conceptos básicosb

Saturación. Conceptos básicosb Saturación Conceptos básicosb Fuerzas intermoleculares Las fuerzas intermoleculares o Cohesión n intermolecular son fuerzas electromagnéticas ticas las cuales actúan an entre moléculas o entre regiones

Más detalles

Hidráulica básica. 3er semestre. Manual de prácticas

Hidráulica básica. 3er semestre. Manual de prácticas Laboratorio de Hidráulica Ing. David Hernández Huéramo Manual de prácticas Hidráulica básica 3er semestre Autores: Guillermo Benjamín Pérez Morales Jesús Alberto Rodríguez Castro Jesús Martín Caballero

Más detalles

Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS

Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS CAMPUS TECNOLÓGICO DE LA UNIVERSIDAD DE NAVARRA. NAFARROAKO UNIBERTSITATEKO

Más detalles

Capítulo 5 FENÓMENOS DE SUPERFICIE: TENSIÓN SUPERFICIAL Y CAPILARIDAD

Capítulo 5 FENÓMENOS DE SUPERFICIE: TENSIÓN SUPERFICIAL Y CAPILARIDAD Capítulo 5 FENÓMENOS DE SUPERFICIE: TENSIÓN SUPERFICIAL Y CAPILARIDAD 5.1 Tensión superficial y ley de Laplace 5. Ejemplos biológicos 5.3 Ángulo de contacto y capilaridad 5.4 Ejemplos biológicos Cap. 5/1

Más detalles

Hidrostática. agua Hg

Hidrostática. agua Hg Hidrostática 1. Aspirando a fondo, la presión manométrica en los pulmones puede reducirse a 80 mm Hg. Cuál es la altura máxima a la que puede ser sorbida el agua en una pajita? [Solución: 1,09 m ] 2. Un

Más detalles

Salida didáctica: ESTACIÓN METEOROLÓGICA DE SUPERFICIE VILLA DOLORES AERO

Salida didáctica: ESTACIÓN METEOROLÓGICA DE SUPERFICIE VILLA DOLORES AERO Salida didáctica: ESTACIÓN METEOROLÓGICA DE SUPERFICIE VILLA DOLORES AERO Asignatura: GEOGRAFÍA FÍSICA II. Profesora: Mónica Peretti Alumnas: Sarmiento, Alejandra Sarmiento, Noelia 2 Año, Profesorado de

Más detalles

PROFESOR: ING. EUMAR LEAL

PROFESOR: ING. EUMAR LEAL UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA COMPLEJO ACADEMICO EL SABINO ASIGNATURA: INSTRUMENTACION Y CONTROL DE PROCESOS INDUSTRIALES SENSORES DE PRESIÓN PROFESOR: ING.

Más detalles

Analizando el comportamiento de los fluidos podrás dar explicación a muchos hechos que puedes ver en tu entorno.

Analizando el comportamiento de los fluidos podrás dar explicación a muchos hechos que puedes ver en tu entorno. Hasta ahora has trabajado solamente con sólidos, pero sabes que la materia se puede encontrar también en otros estados de agregación: líquido y gas, que reciben el nombre de fluidos, precisamente por su

Más detalles

EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O.

EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema. Para ello seguiremos

Más detalles

ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO

ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO ANEJO 6 CALCULOS DEL EQUIPO DE BOMBEO INDICE 1. CALCULOS HIDRAULICOS... 3 1.1 DIÁMETRO DE LA TUBERÍA DE IMPULSIÓN DENTRO DEL POZO... 3 1.2 ALTURA MANOMÉTRICA... 4 2. CALCULOS ELÉCTRICOS - BAJA TENSION...

Más detalles

(Fig. 43a). La presión en el fondo de la columna izquierda es p + ρgy 1. p + ρgy 1. + ρgy 2. = ρg (y 2. p - p atm. - y 1. = ρgy

(Fig. 43a). La presión en el fondo de la columna izquierda es p + ρgy 1. p + ρgy 1. + ρgy 2. = ρg (y 2. p - p atm. - y 1. = ρgy 3. El medidor de presión más simple es el manómetro de tubo abierto y consiste en lo siguiente: un tubo en forma de U contiene un líquido, comúnmente mercurio o agua; un extremo del tubo se conecta a un

Más detalles

Presión absoluta = Presión relativa + Presión atmosférica. Caudal

Presión absoluta = Presión relativa + Presión atmosférica. Caudal En busca de soluciones prácticas y económicas a las distintas situaciones a las que nos enfrentamos a diario, el ser humano ha ido desarrollando artilugios, a veces sencillos y en ocasiones sofisticados,

Más detalles

DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE FISICOQUIMICA TRABAJO PRACTICO DE LABORATORIO N 2

DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE FISICOQUIMICA TRABAJO PRACTICO DE LABORATORIO N 2 Universidad Tecnológica Nacional Facultad Regional La Plata DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE FISICOQUIMICA TRABAJO PRACTICO DE LABORATORIO N 2 TENSION SUPERFICIAL Objeto de la experiencia:

Más detalles

Calibración del termómetro

Calibración del termómetro Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas

Más detalles

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica

Más detalles

Cuadernos de taller Operación de vacío. Efrén Andrés Díaz

Cuadernos de taller Operación de vacío. Efrén Andrés Díaz Cuadernos de taller Operación de vacío Efrén Andrés Díaz 0 Índice Página Introducción 2 Operación de vacío 3 1. Vacío. Unidades y medición 3 2. Presión absoluta y presión relativa 6 3. Útiles y herramientas

Más detalles

1.2 MEDIDA DE MAGNITUDES.

1.2 MEDIDA DE MAGNITUDES. 1.2 MEDIDA DE MAGNITUDES. 1.2.1 MAGNITUDES. Para describir al compañero que se sienta a tu lado empleas propiedades, así dices su altura, su peso, el color de sus ojos y cabellos, su simpatía o su inteligencia.

Más detalles

Comportamiento de fluidos acelerados Estudio experimental y modelo teórico

Comportamiento de fluidos acelerados Estudio experimental y modelo teórico Comportamiento de fluidos acelerados Estudio eperimental y modelo teórico Alejandra Barnfather (a), Matías Benitez (b) y Victoria Crawley (c) aboratorio de Física III (Curso ), Facultad de Ingeniería y

Más detalles

P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta

P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta Pág. 1 16 Ejercemos una fuerza de 10 N sobre un clavo. Si la superficie de su cabeza es de 5 mm y la de la punta 0,1 mm, qué presión se ejercerá al aplicar la fuerza sobre uno u otro de sus extremos? La

Más detalles

SILLAS SUBE ESCALERAS ALPHA

SILLAS SUBE ESCALERAS ALPHA SILLAS SUBE ESCALERAS ALPHA Manual de Instalación CONTENIDOS OBSERVAR LOS SIGUIENTES PUNTOS ANTES DE LA INSTALACIÓN!... 3 INSTALACIÓN DE LOS RAÍLES... 3 INSTALACIÓN DEL LA UNIDAD DE TRACCIÓN AL RAÍL...

Más detalles

P = F /A. Los sensores de presión pueden agruparse en:

P = F /A. Los sensores de presión pueden agruparse en: MEDICIÓN DE PRESIÓN La presión queda determinada por el cociente entre una fuerza y el área sobre la que actúa esa fuerza. Así, si una fuerza F actúa sobre una superficie A, la presión P queda estrictamente

Más detalles

PRINCIPIO DE ARQUIMEDES

PRINCIPIO DE ARQUIMEDES Física: 3 Medio Unidad 7: Principio de Arquímedes Profesor: Juan Pedraza Guía de Estudio F3_7 PRINCIPIO DE ARQUIMEDES Cómo lo hacen los submarinos y los peces para permanecer quietos a cierta profundidad,

Más detalles

1 ESTUDIO SOBRE PERDIDAS DE CARGA

1 ESTUDIO SOBRE PERDIDAS DE CARGA 1 ESTUDIO SOBRE PERDIDAS DE CARGA La realización de este estudio fue motivada por la convicción de los fabricantes de que los datos existentes desde hace décadas sobre rugosidad y pérdidas de carga de

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

El generador de Van de Graaff

El generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea la carga inicial del conductor hueco Teóricamente, el

Más detalles

CAPITULO 4 EQUIPO EXPERIMENTAL. Se puede describir en forma general al equipo como un conjunto de partes formadas en

CAPITULO 4 EQUIPO EXPERIMENTAL. Se puede describir en forma general al equipo como un conjunto de partes formadas en CAPITULO 4 EQUIPO EXPERIMENTAL 4.1 DESCRIPCION GENERAL Se puede describir en forma general al equipo como un conjunto de partes formadas en su mayoría de acero inoxidable tipo AISI 304L y vidrio borosilicato

Más detalles

EJERCICIOS PARA TERCER CERTAMEN MECÁNICA DE FLUIDOS

EJERCICIOS PARA TERCER CERTAMEN MECÁNICA DE FLUIDOS EJERCICIOS PR TERCER CERTMEN MECÁNIC DE FUIDOS. En el tubo en U de la figura, se ha llenado la rama de la derecha con mercurio y la de la izquierda con un líquido de densidad desconocida. os niveles definitivos

Más detalles

Práctica 13. BARÓMETRO DE MERCURIO Y PSICRÓMETRO

Práctica 13. BARÓMETRO DE MERCURIO Y PSICRÓMETRO Práctica 13. BARÓMETRO DE MERCURIO Y PSICRÓMETRO OBJETIVOS Medida de la presión atmosférica. Determinación de la humedad relativa y de la presión de vapor de agua atmosférico. MATERIAL Barómetro de Mercurio.

Más detalles

RepublicofEcuador EDICTOFGOVERNMENT±

RepublicofEcuador EDICTOFGOVERNMENT± RepublicofEcuador EDICTOFGOVERNMENT± Inordertopromotepubliceducationandpublicsafety,equaljusticeforal, abeterinformedcitizenry,theruleoflaw,worldtradeandworldpeace, thislegaldocumentisherebymadeavailableonanoncommercialbasis,asit

Más detalles

Conceptos Básicos de Metrología en Presión

Conceptos Básicos de Metrología en Presión Conceptos Básicos de Metrología en Presión Ing. Luis Urbino Badilla Rojas Diciembre, 2014 OBJETIVO GENERAL Introducir los conceptos metrológicos relacionados con la magnitud de presión. OBJETIVOS ESPECÍFICOS

Más detalles

TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS

TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS TUBERIAS Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS INDICE 1.- MATERIALES... 3 2.- PERDIDAS DE CARGA... 4 2.1.- FACTORES QUE INFLUYEN EN LAS PERDIDAS DE CARGA... 4 2.2.- REGIMENES

Más detalles

CONTROL DE NIVEL VARI-LEVEL

CONTROL DE NIVEL VARI-LEVEL CONTROL DE NIVEL VARI-LEVEL CONTROL DE NIVEL VARI-LEVEL 75 VII.1. INTRODUCCIÓN El equipo VARI LEVEL ofrece posibilidades muy flexibles de control de nivel de refrigerantes. Los puntos o niveles de consigna

Más detalles

CALCULO DE LA ALTURA MANOMÉTRICA

CALCULO DE LA ALTURA MANOMÉTRICA CALCULO E LA ALTURA MANOMÉTRICA PRESIONES Presión atmosférica. Es la fuerza ejercida por la atmósfera por unidad superficie. El valor la presión atmosférica en condiciones normales al nivel l mar es: atmósfera

Más detalles

Laboratorio orio de Operaciones Unitarias I

Laboratorio orio de Operaciones Unitarias I Laboratorio orio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio

Más detalles

Módulo 3: Fluidos. Fluidos

Módulo 3: Fluidos. Fluidos Módulo 3: Fluidos 1 Fluidos Qué es un fluido? En Física, un fluido es una sustancia que se deforma continuamente (fluye) bajo la aplicación de una tensión tangencial, por muy pequeña que sea. Es decir,

Más detalles

Agustin Martin Domingo

Agustin Martin Domingo Mecánica de fluidos. Física y Mecánica de las Construcciones.. Martín. Grupo F. ETSM-UPM 1 1. gua de mar de densidad 1,083 g/cm 3 alcanza en un depósito grande una altura de1,52 m. El depósito contiene

Más detalles

PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES

PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES MATERIAL - Dinamómetro de 1 N - Bolas de péndulo (3 al menos)

Más detalles

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA

Más detalles

INSTRUMENTOS MECÁNICOS Características y funcionamiento

INSTRUMENTOS MECÁNICOS Características y funcionamiento INSTRUMENTOS MECÁNICOS Características y funcionamiento Estos indicadores basan su funcionamiento en la conversión directa, por medios mecánicos, de un determinado efecto físico, en un movimiento que servirá

Más detalles

Tema 2: Electrostática en medios conductores

Tema 2: Electrostática en medios conductores Tema : Electrostática en medios conductores. onductores y aislantes. arga por inducción.3 ondiciones de borde para el campo y para el potencial.4 ampo, densidad de carga y potencial en el interior de un

Más detalles

FABRICACIÓN DE ALCOHOL-GEL

FABRICACIÓN DE ALCOHOL-GEL Prácticas docentes en la COD: 10-71 FABRICACIÓN DE ALCOHOL-GEL INTRODUCCIÓN Los productos de higiene personal y doméstica, comenzando por el más clásico de todos, el jabón, desempeñan un importante papel

Más detalles

Ensayos para conocer resistencia de un suelo

Ensayos para conocer resistencia de un suelo Ensayos para conocer resistencia de un suelo La determinación de los parámetros, cohesión y ángulo de rozamiento que nos definen la resistencia del suelo se determinan en el estudio Geotécnico, bien a

Más detalles

Esp. Duby Castellanos MEDICIÓN DE LA VARIABLE PRESIÓN. Esp. Duby Castellanos

Esp. Duby Castellanos MEDICIÓN DE LA VARIABLE PRESIÓN. Esp. Duby Castellanos 1 MEDICIÓN DE LA VARIABLE PRESIÓN 2 DEFINICIONES Presión: es la fuerza que un fluido ejerce perpendicularmente sobre la unidad de superficie. Las unidades más comunes para su medición son: Kg/cm 2, PSI

Más detalles

ANEXO B. PROCEDIMIENTO DE ENSAYOS ISÓTROPOS CON CONTROL DE SUCCIÓN. Mini célula isótropa rígida

ANEXO B. PROCEDIMIENTO DE ENSAYOS ISÓTROPOS CON CONTROL DE SUCCIÓN. Mini célula isótropa rígida ANEXO B PROCEDIMIENTO DE ENSAYOS ISÓTROPOS CON CONTROL DE SUCCIÓN. Mini célula isótropa rígida B.1 Introducción La mini-célula isótropa rígida con control de succión fue diseñada y construida en los laboratorios

Más detalles

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL 1 COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL Los problemas que se plantean a continuación corresponden a problemas seleccionados para hacer un repaso general previo a un examen libre paracompletar la enseñanza

Más detalles

EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI

EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI 1) A través del medidor Venturi de la figura fluye hacia abajo aceite con gravedad específica de 0,90. Si la deflexión del manómetro h

Más detalles

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN ÍNDICE Parámetros fundamentales y operaciones básicas en aire acondicionado Condiciones de bienestar o confort Cálculo de la carga térmica de refrigeración

Más detalles

RESUMEN TEMA 13: CIRCUITOS NEUMÁTICOS

RESUMEN TEMA 13: CIRCUITOS NEUMÁTICOS RESUMEN TEMA 13: CIRCUITOS NEUMÁTICOS Neumática es la tecnología que utiliza la energía del aire comprimido para realizar un trabajo. Se utiliza para automatizar procesos productivos. Hoy en día son muchos

Más detalles

Clasificación de un aceite lubricante a través de sus parámetros característicos.

Clasificación de un aceite lubricante a través de sus parámetros característicos. Clasificación de un aceite lubricante a través de sus parámetros característicos. Ensayos a un aceite lubricante. Año: 2001 Cátedra: 1 Indice: Maquinas Térmicas I Trabajo Practico N : 2 (Informe de Laboratorio)

Más detalles

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS 3º INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA AUTOMATIZACIÓN INDUSTRIAL PRÁCTICA 5 DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS OBJETIVOS DE LA PRÁCTICA Identificar sobre un montaje real

Más detalles

1.1. DETERMINACIÓN DEL CONTENIDO DE HUMEDAD.

1.1. DETERMINACIÓN DEL CONTENIDO DE HUMEDAD. 1.1. DETERMINACIÓN DEL CONTENIDO DE HUMEDAD. Este ensayo tiene por finalidad, determinar el contenido de humedad de una muestra de suelo.el contenido de humedad de una masa de suelo, esta formado por la

Más detalles

Transformación de calor en trabajo: el motor de Stirling

Transformación de calor en trabajo: el motor de Stirling Práctica Nº 1 ransformación de calor en trabajo: el motor de Stirling 1. Conceptos implicados Primera y segunda ley de la termodinámica, calor, trabajo, máquinas térmicas, transformación de la energía.

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

JUSTIFICACION. Los temas mencionados son básicos para el estudio de los fluidos en reposa (estática de los fluidos).

JUSTIFICACION. Los temas mencionados son básicos para el estudio de los fluidos en reposa (estática de los fluidos). Nombre de la asignatura: Mecánica de Fluidos I. Carrera : Ingeniería Mecánica Clave de la asignatura: MCB-9330 Clave local: Horas teoría horas practicas créditos: 4-0-8 2. - UBICACIÓN DE LA ASIGNATURA

Más detalles

Al desarrollar los cuestionarios, tener en cuenta los procesos desarrollados en clase, cada respuesta debe tener justificación.

Al desarrollar los cuestionarios, tener en cuenta los procesos desarrollados en clase, cada respuesta debe tener justificación. AREA DE CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL Asignatura: FÍSICA Curso DÉCIMO Bimestre SEGUNDO Fecha 4.03.11 Elaboró Prof. LUIS ALBERTO GONZÁLEZ VEGA Revisó Prof. CAROLINA CHAVEZ V. HACIA UN PENSAMIENTO

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 06. Flujo de Fluidos en Tuberías Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

TRABAJO Y ENERGÍA. Las magnitudes físicas trabajo y energía nos acercarán de una manera sencilla a explicar éste y otros muchos fenómenos naturales.

TRABAJO Y ENERGÍA. Las magnitudes físicas trabajo y energía nos acercarán de una manera sencilla a explicar éste y otros muchos fenómenos naturales. TRABAJO Y ENERGÍA Si las Leyes Fundamentales de la Dinámica explican y predicen el movimiento de los cuerpos... Por qué más magnitudes físicas como trabajo W y energía E, que parece persiguen el mismo

Más detalles

Cálculo de pérdidas de carga

Cálculo de pérdidas de carga Cálculo de pérdidas de carga Pérdidas de carga en accesorios Longitud equivalente de tubería recta (en metros). Diámetro del tubo 25 32 40 50 65 80 100 125 150 200 250 300 400 500 600 700 Curva 90 0.2

Más detalles

PROCEDIMENTS SEGURS DE TREBALL D EQUIPS DE TREBALL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA DE LLAMA PERKIN ELMER 3110

PROCEDIMENTS SEGURS DE TREBALL D EQUIPS DE TREBALL ESPECTROFOTÓMETRO DE ABSORCIÓN ATÓMICA DE LLAMA PERKIN ELMER 3110 CODI PdT-E-714.220.001 EDIFICI TR4 PLANTA 2 NÚM. PORTA 226 Data: Març 2012 Revisió: 00 Pàgina: 1 de 6 DESCRIPCIÓN DEL El espectrofotómetro de Absorción Atómica permite determinar diversos elementos en

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

Práctica 2A Medida de Permeabilidad de los suelos Prácticas de Laboratorio

Práctica 2A Medida de Permeabilidad de los suelos Prácticas de Laboratorio 2A MEDIDA DE PERMEABILIDAD DE LOS SUELOS 1. INTRODUCCIÓN Henry Darcy, en el año 1856, encontró experimentalmente la ley que lleva su nombre: Q = K h 3 h 4 S = KiS L donde: Q = Caudal K = Coeficiente de

Más detalles

Modelado y Simulación de Sistemas Naturales : Sesion 6: Capilaridad

Modelado y Simulación de Sistemas Naturales : Sesion 6: Capilaridad Modelado y Simulación de Sistemas Naturales : Sesion 6: Capilaridad Profesor: Gabriel Villalobos Camargo., (gabriel.villalobosc@utadeo.edu.co) 5 de septiembre de 2014 Escalas y definición Orden de magnitud

Más detalles

FORMACIÓN DE IMÁGENES CON LENTES

FORMACIÓN DE IMÁGENES CON LENTES Laboratorio de Física de Procesos Biológicos FORMACIÓN DE IMÁGENES CON LENTES Fecha: 19/12/2005 1. Objetivo de la práctica Estudio de la posición y el tamaño de la imagen de un objeto formada por una lente

Más detalles

Práctica 1. MEDIDAS DE PRECISIÓN

Práctica 1. MEDIDAS DE PRECISIÓN Práctica 1. MEDIDAS DE PRECISIÓN OBJETIVOS Manejo de aparatos de precisión que se utilizan en el laboratorio. Medir dimensiones de diferentes cuerpos y a partir de éstas sus volúmenes. MATERIAL Aparatos

Más detalles

PI 3 Inyector con enchufes rápidos

PI 3 Inyector con enchufes rápidos Sp Instrucciones de funcionamiento y lista de piezas de recambio PI Inyector con enchufes rápidos PI 11 An ITW Company 10 PI Índice de contenidos Inyectores con enchufes rápidos PI para polvos orgánicos....................

Más detalles

VISCOSIDAD DEL ASFALTO MEDIANTE VISCOSIMETROS CAPILARES DE VACÍO I.N.V. E 716 07

VISCOSIDAD DEL ASFALTO MEDIANTE VISCOSIMETROS CAPILARES DE VACÍO I.N.V. E 716 07 VISCOSIDAD DEL ASFALTO MEDIANTE VISCOSIMETROS CAPILARES DE VACÍO I.N.V. E 716 07 1. OBJETO 1.1 Este método describe el procedimiento para determinar la viscosidad del asfalto (bitumen), con viscosímetros

Más detalles

Soybal Sport: Cursos de Formación. El Autoblocante 2ª Parte. El autoblocante. Comportamiento dinámico inducido por la actuación del autoblocante

Soybal Sport: Cursos de Formación. El Autoblocante 2ª Parte. El autoblocante. Comportamiento dinámico inducido por la actuación del autoblocante El autoblocante Comportamiento dinámico inducido por la actuación del autoblocante En este dibujo están representadas las elipses de adherencia de cada uno de los neumáticos, en función del peso que se

Más detalles

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría.

Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Mecánica de Fluidos Trabajo Práctico # 1 Propiedades Viscosidad Manometría. Como proceder: a.-imprima los contenidos de esta guía, el mismo contiene tablas y gráficas importantes para el desarrollo de

Más detalles