Representación gráfica de esta función de densidad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Representación gráfica de esta función de densidad"

Transcripción

1 Distribución normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Se ha usado en una gran variedad de aplicaciones prácticas en las que las variables son altura, peso de una persona, coeficientes de inteligencia, mediciones científicas, mediciones físicas en áreas tales como los experimentos meteorológicos, los estudios acerca de las lluvias y las mediciones sobre partes manufacturadas, etc. A la distribución normal, frecuentemente, se le llama distribución gaussiana, en honor de Karl Friedrich Gauss ( ), quien en investigaciones realizadas sobre la naturaleza de errores experimentales, observó que las discrepancias existentes entre mediciones repetidas de la misma cantidad física mostraban un sorprendente grado de regularidad; sus patrones (distribución), como se descubrió, se podían aproximar muy cercanamente por medio de cierto tipo de curva de distribución continua, que se denomina curva normal de errores y que se atribuye a las leyes de la casualidad. Se dice que una variable aleatoria X sigue una distribución normal de parámetros µ y X n( µ, σ ) 2 lo que representamos del modo. Empleando cálculos bastante laboriosos, puede demostrarse que el modelo de la función de densidad que corresponde a tales distribuciones viene dado por la fórmula: σ 2, Características Representación gráfica de esta función de densidad Características: Puede tomar cualquier valor (-, + ). Es simétrica con respecto a su eje vertical. Es asintótica con respecto a su eje horizontal; esto quiere decir que jamás va a tocar el eje de las equis.

2 Son más probables los valores cercanos la media µ El área total bajo la curva es 1. Conforme nos separamos de ese valor µ, la probabilidad va decreciendo de igual forma a derecha e izquierda (es simétrica). Conforme nos separamos de ese valor µ la probabilidad va decreciendo de forma más o menos rápida dependiendo de un parámetro σ, que es la desviación típica. Ésta curva alcanza un único máximo (moda) en µ, que es simétrica con respecto al mismo, y en ese máximo coinciden la media, la mediana y la moda. La mayor parte de la masa de probabilidad (área comprendida entre la curva y el eje de abcisas) se encuentra concentrado alrededor de la media, y las ramas de la curva se extienden asintóticamente a los ejes, de modo que cualquier valor "muy alejado" de la media es posible (aunque poco probable). 2 σ (o equivalentemente) será el parámetro de dispersión. Cuanto menor sea, mayor cantidad de masa de probabilidad habrá concentrada alrededor de la media (grafo de f muy apuntado cerca de µ ) y cuanto mayor sea "más aplastado" será. La función que nos define esta distribución es: Al dar a la función los valores de µ,, σ 2 y valores a x, obtendremos la distribución en cuestión, la que tiene forma de campana, por lo que también se le conoce como campana de Gauss. Hay un número infinito de funciones de densidad Normal, una para cada combinación de µ, y σ. La media µ, mide la ubicación de la distribución y la desviación estándar σ mide su dispersión. F(x) es el área sombreada de esta gráfica

3 Sí sumamos la µ, ± σ, se observará que aproximadamente el 68.26% de los datos se encuentran bajo la curva, si sumamos a µ, ± 2σ, el 95.44% de los datos estará entre esos límites y si sumamos a µ, ± 3σ, entonces el 99.74% de los datos caerá dentro de esos límites. Esta característica es a la vez una forma empírica y rápida de demostrar si los datos que se analizan tienen una distribución Normal; ya que para trabajar los datos con esta distribución, debe verificarse que efectivamente así se distribuyen, ya que de no hacerlo, las decisiones que en un momento dado se tomarán de un análisis de los datos con la distribución Normal, serían erróneas. TIPIFICACIÓN Cómo se determinan probabilidades con la distribución Normal? Lo más lógico es que la función f(x, µ,, σ 2 ), se integre entre los límites de la variable x; esto es, La integral anterior nos daría el área bajo la curva de la función, desde a hasta b, que corresponde o es igual a la probabilidad buscada. Como es físicamente imposible, e innecesario, construir tablas separadas para todas las parejas de valores concebibles de µ y σ se ha logrado estandarizar la distribución normal por un nuevo conjunto de observaciones de una variable aleatoria para una distribución que tiene µ=0 y σ=1. Si la variable x es N(µ, σ) entonces la variable tipificada x es:

4 a la variable Z se la denomina variable tipificada de X, y a la curva de su función de densidad curva normal tipificada. z = x µ σ Característica de la distribución normal tipificada (reducida, estándar) No depende de ningún parámetro Su media es 0, su varianza es 1 y su desviación típica es 1. La curva f(x) es simétrica respecto del eje Y Tiene un máximo en este eje Tiene dos puntos de inflexión en z =1 y z = -1 z = x µ σ n σ Donde σ = es el error estándar. x n Caso uno: CASOS MÁS FRECUENTES Caso dos: Caso tres: Caso cuatro:

5 Caso cinco: Caso seis: Ejemplo El acero que se utiliza para tuberías de agua a menudo se recubre internamente con un mortero de cemento para evitar la corrosión. En un estudio de los recubrimientos de mortero de una tubería empleada en un proyecto de transmisión de agua en California (Transportation Engineering Journal, Noviembre de 1979) se especificó un espesor de 7/16 pulgadas para el mortero. Un gran número de mediciones de espesor dieron una media de pulgadas y una desviación estándar de pulgadas. Sí las mediciones de espesor, tenían una distribución Normal, qué porcentaje aproximado fue inferior a 7/16 de pulgada? x = variable que nos define el espesor del mortero en pulgadas µ = pulgadas σ = pulgadas Z = 16 = p(z = -2.41) = p(x < 7/16 pulgadas) = 0.5- p(z = -2.41) = = Por tanto, x 100% = 0.8% de los recubrimientos de mortero tienen un espesor menor de 7/16 pulgadas.

6 Ejemplo Un tubo fluorescente estándar tiene una duración distribuida Normalmente, con una media de 7,000 horas y una desviación estándar de 1,000 horas. Un competidor ha inventado un sistema de iluminación fluorescente compacto que se puede insertar en los receptáculos de lámparas incandescentes. El competidor asegura que el nuevo tubo compacto tiene una duración distribuida Normalmente con una media de 7,500 horas y una desviación estándar de 1,200 horas. a. Cuál tubo fluorescente tiene mayor probabilidad de tener una duración mayor de 9,000 horas? b. Cuál tubo tiene mayor probabilidad de tener una duración de menos de 5,000 horas? a) Tubo 1 X 1 = variable que nos define la duración en horas de un tubo fluorescente µ = 7,000 horas σ = 1,000 horas Tubo 2 X 2 = variable que nos define la duración del tubo fluorescente del competidor µ = 7,500 horas σ = 1,200 horas z = = p(z 1 = 2.00) = p(x1 > 9,000 horas) = 0.5 p(z1 = 2.00) = = z = = p(z 2 = 1.25) = p(x 2 > 9,000 horas) = 0.5 p(z 2 = 1.25) = = Por tanto el tubo fluorescente del competidor tiene una probabilidad mayor de durar más de 9,000 horas b) z = = p(z 1 = -2.00) = p(x1 < 5,000 horas) = 0.5 p(z1 = -2.00) = = Autor: Rosalba Patiño Herrera Agosto del 2002

7 z = = p(z 2 = -2.08) = p(x 2 < 5,000 horas) = 0.5 p(z 2 = ) = = Por tanto, el tubo fluorescente que tiene una mayor probabilidad de durar menos de 5,000 horas es el del primer fabricante. Ejemplo La distribución de la demanda (en número de unidades por unidad de tiempo) de un producto a menudo puede aproximarse con una distribución de probabilidad Normal. Por ejemplo, una compañía de comunicación por cable ha determinado que el número de interruptores terminales de botón solicitados diariamente tiene una distribución Normal, con una media de 200 y una desviación estándar de 50. a) En qué porcentaje de los días la demanda será de menos de 90 interruptores? b) En qué porcentaje de los días la demanda estará entre 225 y 275 interruptores? c)con base en consideraciones de costos, la compañía ha determinado que su mejor estrategia consiste en producir una cantidad de interruptores suficiente para atender plenamente la demanda en 94% de todos los días. Cuantos interruptores terminales deberá producir la compañía cada día? a) X = variable que nos indica el número de interruptores demandados por día a una compañía de cable µ = 200 interruptores por día σ = 50 interruptores por día z = = p(z = ) = p(x < 90) = 0.5 p(z = -2.20) = = Por tanto, x 100% = 1.39% de los días se tendrá una demanda menor de 90 interruptores b) z = = 0.5 p(z1= 0.50) = z = = p(z2 = 1.50) = p(225 x 275) = p(z2) p(z1) = = Por tanto, x 100% = 24.17% de los días se tendrá una demanda entre 225 y 275

8 interruptores. c) En este caso se trata de determinar que valor toma x cuando se pretende cumplir con el 94% de la demanda de todos los días. Por tanto despejaremos de la fórmula de z; x = µ + zσ x = µ + z(p = 0.44)σ = z(p = 0.44)(50) = (1.55)(50) = = 278 interruptores terminales por día cómo se obtiene el valor de z? En la tabla buscamos la z que corresponde a una probabilidad de 0.94 y nos damos cuenta de que no existe un valor exacto de 0.94 por lo que tomamos los valores de área más cercanos; luego, z(p = ) = 1.50; z(p = ) = 1.60 Por tanto si interpolamos, encontramos que el valor de z para una probabilidad de es de 1.55, y es el valor que se sustituye en la ecuación. Aproximación normal a la distribución binomial Una dstribución binomial B(n,p) se puede aproximar por una distribución normal, siempre que n sea grande y p no esté muy próxima a 0 o a 1. La aproximación consiste en utilizar una distribución normal con la misma media y desviación típica que la distribución binomial. En la practica se utiliza la aproximación cuando : n 30, np 5, nq 5 µ=np σ= npq Y tipificando se obtiene la normal estándar correspondiente: x np z = npq La distribución normal algunas veces ofrece una aproximación muy exacta a la distribución binomial. Esto sucede cuando n (el número de intentos) es alto y p (la probabilidad de éxito en un intento individual) se aproxima a ½. En la siguiente figura se puede apreciar que aumentando n se aproxima al patrón en forma de campana simétrica.

9 Se puede apreciar en los gráficos anteriores como a medida que aumenta n mejora el parecido de las gráficas de barras de las distribuciones binomiales (discretas) a la gráfica de la distribución normal estándar (continua), pero con el inconveniente de que se produce un desplazamiento hacia la derecha de la distribución binomial a medida que aumenta n. Cuando n aumenta, la longitud de las barras disminuye, cosa lógica, porque la suma de las longitudes de todas las barras es 1 (función de probabilidad definida sobre una variable aleatoria discreta); mientras que el área bajo la función de densidad (definida sobre una variable aleatoria continua) de la distribución normal estándar, también es 1. De hecho, se pueden usar las distribuciones normales para obtener una aproximación de las probabilidades binomiales cuando n no es un número tan alto y p difiere un poco de ½. Teorema del límite central Para muestras grandes, se puede obtener una aproximación cercana de la distribución muestral de la media con una distribución normal.

10 Teniendo en cuenta que ya sabemos la media y desviación típica de la distribución muestral, podemos decir que: µ x =µ y x n σ σ = para muestras aleatorias infinitas con media µ y desviación típica σ y n grande, entonces: x µ z = σ n Este teorema es muy importante, puesto que justifica el uso de los métodos de la curva normal en una gran cantidad de problemas. se utiliza para poblaciones infinitas y para poblaciones finitas cuando n a pesar de ser grande representa una porción muy pequeña de la población. Es difícil señalar con precisión qué tan grande debe ser n de modo que podamos aplicar el Teorema Central del límite, pero a no ser que la distribución sea muy inusual, por lo general se considera que n =30 es lo suficientemente alto.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Habilidades Matemáticas. Alejandro Vera

Habilidades Matemáticas. Alejandro Vera Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos

Más detalles

3 PROBABILIDAD Y DISTRIBUCION NORMAL

3 PROBABILIDAD Y DISTRIBUCION NORMAL 3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

Tema 4 Variables Aleatorias

Tema 4 Variables Aleatorias Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

TEOREMA DEL LÍMITE CENTRAL

TEOREMA DEL LÍMITE CENTRAL Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Distribución normal estándar. Juan José Hernández Ocaña

Distribución normal estándar. Juan José Hernández Ocaña Distribución normal estándar Juan José Hernández Ocaña Tipos de variables jujo386@hotmail.com Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades.

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

DISTRIBUCIÓN NORMAL. > = P (Z > 0,6) = 0, El 72,58% de las vacas pesa más de 570 kg. Puede esperarse que 73 vacas superen ese peso.

DISTRIBUCIÓN NORMAL. > = P (Z > 0,6) = 0, El 72,58% de las vacas pesa más de 570 kg. Puede esperarse que 73 vacas superen ese peso. DISTRIBUCIÓN NORMAL 1. El peso de las 100 vacas de una ganadería se distribuye según una normal de media 600 kg y una desviación típica de 50 kg. Se pide: Cuántas vacas pesan más de 570 kilos? Cuántas

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Distribución Muestral.

Distribución Muestral. Distribución Muestral jujo386@hotmail.com Uno de los objetivos de la Estadística es tratar de inferir el valor real de los parámetros de la población Por ejemplo Cómo podríamos asegurar que una empresa

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

Clase 7: Algunas Distribuciones Continuas de Probabilidad

Clase 7: Algunas Distribuciones Continuas de Probabilidad Clase 7: Algunas Distribuciones Continuas de Probabilidad Distribución Uniforme Continua Una de las distribuciones continuas más simples en Estadística es la Distribución Uniforme Continua. Esta se caracteriza

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

La probabilidad de obtener exactamente 2 caras en 6 lanzamientos de una moneda es. 2) (2) (2) "it^g) = 64

La probabilidad de obtener exactamente 2 caras en 6 lanzamientos de una moneda es. 2) (2) (2) it^g) = 64 Las distribuciones binomial, normal y de Poisson CAPITULO 7 Wmmr LA DISTRIBUCION B I N O M I A L Si p es la probabilidad de que cualquier evento ocurra en un solo ensayo (denominada probabilidad de éxito)

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Distribuciones de Probabilidad Normal [Gaussiana]

Distribuciones de Probabilidad Normal [Gaussiana] Distribuciones de Probabilidad Normal [Gaussiana] Distribución Normal o Gaussiana Una variable aleatoria X es llamada variable aleatoria normal (guassiana) si su pdf está dado por, 1 2 2 x / 2 f X x e

Más detalles

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana.

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana. 35 Curvas de densidad Existe alguna manera de describir una distribución completa mediante una única expresión? un diagrama tallo-hoja no es práctico pues se trata de demasiados datos un histograma elimina

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes Objetivos Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos Epígrafes Introducción a los Gráficos p, np. Interpretación Gráficos c y u. Interpretación 2-1 Gráfico

Más detalles

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/99 SP XII José Mª Chacón Íñigo IES Llanes, Sevilla Te explicamos como realizar la operación de distribución de probabilidad

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

ESTADISTICA DESCRIPTIVA Y PROBABILIDAD

ESTADISTICA DESCRIPTIVA Y PROBABILIDAD ESTADISTICA DESCRIPTIVA Y PROBABILIDAD CODIGO 213543 (COMPUTACION) 223543 (SISTEMAS) 253443 (CONTADURIA) 263443( ADMINISTRACION) 273443 (GRH) HORAS TEORICAS HORAS PRACTICAS UNIDADES CREDITO SEMESTRE PRE

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

MATEMÁTICAS 1º DE BACHILLERATO

MATEMÁTICAS 1º DE BACHILLERATO POLINOMIOS Y FRACCIONES 1. Operaciones fracciones algebraicas 2. Opera y simplifica fracciones 3. Repaso fracciones 4. Fracciones equivalentes 5. Potencias de fracciones 6. Operaciones con fracciones 7.

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA

UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA I. DATOS INFORMATIVOS 1.1 Asignatura : Estadística para el Comunicador Social 1.2 Código : 1001-1023 1.3 Pre-requisito

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4)

Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4) Análisis Estadístico de Datos Climáticos Distribuciones paramétricas de probabilidad (Wilks, cap. 4) 2013 Variables aleatorias Una variable aleatoria es aquella que toma un conjunto de valores numéricos

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

1 - TEORIA DE ERRORES : distribución de frecuencias

1 - TEORIA DE ERRORES : distribución de frecuencias - TEORIA DE ERRORES : distribución de frecuencias CONTENIDOS Distribución de Frecuencias. Histograma. Errores de Apreciación. Propagación de errores. OBJETIVOS Representar una serie de datos mediante un

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

La desviación típica y otras medidas de dispersión

La desviación típica y otras medidas de dispersión La desviación típica y otras medidas de dispersión DISPERSIÓN O VARIACIÓN La dispersión o variación de los datos intenta dar una idea de cuan esparcidos se encuentran éstos. Hay varias medidas de tal dispersión,

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

Precio de la gasolina regular (colones por litro, promedio anual)

Precio de la gasolina regular (colones por litro, promedio anual) CATÁLOGO MATERIALES DE APOYO PARA BACHILLERATO POR MADUREZ Educación Abierta 800 700 600 500 400 300 200 100 0 Pantallazo Precio de la gasolina regular (colones por litro, promedio anual) 2009 2010 2011

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Los gráficos p, 100p y u difieren de los gráficos np y c en que los

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles