Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II"

Transcripción

1 Carlos A. Olarte Bases de Datos II

2 Contenido 1 Introducción 2 OLAP 3 Data Ware Housing 4 Data Mining

3 Introducción y Motivación Cómo puede analizarse de forma eficiente volúmenes masivos de datos? La consulta, Suma de las transacciones anterior y siguiente por cada transacción es implementable en SQL? Como procesar información proveniente de diferentes origines?

4 Clasificación de los Sys de Info Orientados a transacciones (OLTP): Grandes volúmenes de información, muy detallados, alta transaccionalidad, insumos para la toma de decisiones. Orientados a la toma de decisiones (OLAP): Baja transaccionalidad, resumidos, consultas extensas, toma de decisiones, identificación de patrones, comportamientos, etc

5 Problemas con los Sys Ap. TD. SQL (Est) no es suficiente en algunos casos para responder algunas consultas Los lenguajes de consultas no están optimizados para realizar consultas de este tipo (análisis estadísticos, agrupaciones por dimensiones, etc) Encontrar patrones y tendencias dados un conjunto de datos no es tarea sencilla (I.A) Normalmente se tienen diferentes orígenes de datos con diferentes esquemas, diferentes SGBD, etc

6 Análisis de Datos y OLAP OLAP (On Line Analytical Processing). Es una extensión de SQL, y se refiere a una serie de herramientas y técnicas que permiten realizar análisis de datos y ejecutar consultas que soliciten datos resumidos casi de manera instantánea

7 Continuación Atributos de Medida: Miden algún valor y pueden ser agrupados (valores, cantidades, precios, etc) Atributos de Dimensión: Definen las dimensiones (manera de agrupar) en la que se observan los atributos de medida Atributos Multi dimensionales: Pueden ser de medida o de dimensión utilizados por ejemplo en las tablas dinámicas

8 Ejemplo Ciudad: Cali Plan1 Plan2 Plan3 Total Ven Ven Ven Total

9 Continuación En forma de tabla: Vend Plan Num Ven1 Plan1 2 Ven1 Plan2 5 Ven1 Plan3 7 Ven1 all 14 Ven2 Plan Plan1 all

10 Continuación Como se aprecia en el ejemplo anterior, el número de columnas está determinado por los datos almacenados (en este caso particular por los diferentes planes), lo que no resulta conveniente para el modelo relacional. El atributo all es representado en los SGBD por null.

11 Cubos de Datos Generalización de tabulaciones cruzadas bidimensionales a n-dimensionales. Ejemplo: Figure: Ejemplo de Cubo de Datos

12 Continuación OLAP permite a los analistas crear diferentes resúmenes de datos multi-dimensionales en ĺınea. Con los cubos de datos se pueden realizar las siguientes operaciones: Pivotaje: Modificación de las dimensiones utilizadas (Ejemplo: solo ver el cubo por plan) Corte: Rebanar el cubo, es decir, dejar constante una o varias dimensión del cubo

13 Niveles de Granularidad Abstracción: Pasar de un nivel de grano fino a uno de grano grueso por medio de agrupaciones. Por ejemplo, de group by plan,ciudad,vendedor a group by plan,ciudad Concreción: Proceso inverso. Debe obtenerse de los datos originales

14 Jerarquías Algunos atributos pueden tener diferentes niveles de detalle. Por ejemplo, se pueden realizar resumes agrupando por mes, año, semana, día, hora,etc. O por ejemplo la ubicación puede ser por país, región, ciudad, sucursal, etc.

15 Como calcular los CUBOS? Ejecutar todas las funciones de agregación (muy costoso, 2 n posibles agrupamientos) A partir de una agregación generar las otras (Concreción) Ejemplo: Pasar de group by país,ciudad,sucursal a group by país,ciudad

16 Nuevos comandos SQL Nuevas Funciones Estadísticas: stddev,variance,media y moda Funciones binarias: Correlación, covarianza y curvas de regresión

17 Modificadores de Agrupamiento Cube: Genera la combinación de los agrup. Ej, group by cube(x,y,z) genera las agrup (x,y,z), (x,y), (x,z), (y,z), (x), (y), (z), () Figure: Ejemplo de Rollup

18 Continuación Rollup: Útil para agrup de una jerarquía. Ej, group by rollup (x,y,z) genera las agrup (x,y,z),(x,y), (x), () Figure: Ejemplo de Rollup

19 Continuación Es posible combinar sentencias rollup y cube para generar el producto cartesiano de las posibles combinaciones y con clausulas having eliminar las no deseadas como lo muestra el siguiente ejemplo.

20 Continuación Figure: Ejemplo de una Combinación Rollup y Cube

21 ALL vs. NULL Para evitar confusiones entre el uso de NULL para representar ALL y los valores nulos, es posible utilizar decode y grouping. Esta última función retorna 1 en caso que sean todas las tuplas (all) y 0 de lo contrario.

22 Clasificación Rank: Dado un rango de valores, clasificar las tuplas. Por ejemplo si se quiere calcular el top-10 de las mejores sucursales. Si dos tuplas ocupan la misma posición, se obtendrá la misma clasificación.

23 Continuación

24 Continuación También es posible clasificaciones a partir de una partición, por ejemplo, el top ten de los productos mas vendidos por sucursal:

25 Continuación Percentiles: Con ntile(n) es posible clasificar tuplas a partir de particiones. Por ejemplo:

26 Continuación Ventanas: Se utilizan para definir rangos de tuplas que se desean agrupar en una sentencia. Por ejemplo, la distancia al promedio diario de ventas:

27 Continuación (Ventanas) Los siguientes argumentos también son validos para definir ventanas: between rows 1 preceding and 1 following between rows 10 preceding and current range between 10 preceding and current row (haciendo uso del valor de ordenación)

28 Data Ware Housing Solución a los problemas de consolidación de información de diferentes orígenes de datos Evitan adicionar carga a los sistemas OLTP con consultas para la toma de decisiones Mantienen la información del pasado vigente.

29 Arquitectura Figure: Arquitectura de un D.W

30 Continuación Como recoger los datos?: Los orígenes pueden enviar al destino las actualizaciones constantemente (arquitectura dirigida por los orígenes) o el destino envía peticiones de nuevos datos a los orígenes (arq dirigida por el destino) El D.W puede estar ligeramente desactualizado (de lo contrario generaría una carga excesiva para los orígenes y el destino)

31 Continuación Esquema de B.D: Los orígenes pueden tener diferentes esquemas. En el D.W se encarga de integrarlos (vistas materializadas). Limpieza de datos: Operaciones de filtro sobre los datos del origen (mayúsculas, Ids que no coinciden, etc)

32 Continuación En cuando al esquema de la B.D del D.W: Tablas de hechos: Se conocen a las tablas que contienen datos multi dimensionales (ventas, compras, afiliaciones, etc). Tablas de Dimensiones: Tablas que contienen las referencias de los atributos de las tablas de hechos. Por ejemplo Planes, Vendedores, Ciudades, etc. A estas llaves llegan las referencias (foráneas) de las tablas de hechos

33 Data Marts Son almacenes de datos especializados. Si sobre un conjunto específico del D.W se realizan continuamente análisis, dicho subconjunto puede crearse como un data mart. Los D.M puede ser creados a partir de los datos del D.W o utilizar directamente los orígenes de datos. Lo que se logra al utilizar los D.M es tener un nivel mas fino de granularidad en comparación al D.W

34 Data Mining Descubrimiento de conocimiento en bases de datos Predicciones y búsqueda de patrones Clasificación y asociaciones

35 Clasificación Dados los Ejemplo de Formación (casos del pasado) y los elementos ya pertenecientes a una clase, predecir la clase a la que pertenece un nuevo elemento. Mecanismo: Reglas de clasificación (Conjuntos Disyuntos)

36 Árboles de Decisión Las hojas son clases y los nodos predicados o funciones de asociación Para clasificar un nuevo elemento se parte de la raíz y siguiendo los predicados se llega a una clase

37 Ejemplo de una Árbol Dec

38 Redes Neuronales Clasificación de la entrada dependiendo del entrenamiento de la red (peso entre los arcos)

39 Otros Clasificadores Redes de Bayes: Estimación de la probabilidad de que un elemento se encuentre en una clase CP-Networks: Explotación de la independencia de las condiciones de preferencia (prefiero un automóvil automático sobre uno mecánico sin importar las otras características)

40 Regresión Predicción del valor de una variable dado un conjunto de ellas. Por ejemplo, dado {X 1, X 2...X n } encontrar los coeficientes para ajustar Y = a 0 X 0...a n X n

41 Reglas de Asociación Identificar parejas causa efecto de una población (por ejemplo en las compras en linea). Soporte: Porcentaje de población que satisface la causa y el efecto Confianza: Frecuencia con la que ocurre el match Correlación: Medida para saber que tan ajustado está el modelo

42 Agrupamientos Saber que tan dispersos se encuentran los elementos de una población o un subconjunto de ellos. (Por ejemplo, se compran mas electrodomésticos en el norte que en el sur).

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición (cont.) Un Data Warehouse es una colección de

Más detalles

Sistema de análisis de información. Resumen de metodología técnica

Sistema de análisis de información. Resumen de metodología técnica Sistema de análisis de información Resumen de metodología técnica Tabla de Contenidos 1Arquitectura general de una solución de BI y DW...4 2Orígenes y extracción de datos...5 2.1Procesos de extracción...5

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

MS_20461 Querying Microsoft SQL Server

MS_20461 Querying Microsoft SQL Server Gold Learning Gold Business Intelligence Silver Data Plataform www.ked.com.mx Por favor no imprimas este documento si no es necesario. Introducción. Este curso proporciona a los estudiantes las habilidades

Más detalles

Capítulo 2 Tecnología data warehouse

Capítulo 2 Tecnología data warehouse Capítulo 2 Tecnología data warehouse El objetivo de éste capítulo es mostrar la tecnología data warehouse (DW) como una herramienta para analizar la información. Este capítulo se encuentra organizado de

Más detalles

OLAP 2 OLAP 1 OLAP 4 OLAP 3 OLAP 5 OLAP 6

OLAP 2 OLAP 1 OLAP 4 OLAP 3 OLAP 5 OLAP 6 OLAP EXPLOTACIÓN UN DW: EXPLOTACIÓN UN DW:... OLAP 1 OLAP 2 EXPLOTACIÓN UN DW: MOLO UN AMBIENTE OLAP EXPLOTACIÓN UN DW: LAS HERRAMIENTAS OLAP PRESENTAN AL USUARIO UNA VISIÓN MULTIDIMENSIONAL LOS DATOS

Más detalles

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes Capítulo 4 Arquitectura para análisis de información propuesta 4.1 Arquitectura Zombi es una arquitectura que proporciona de manera integrada los componentes necesarios para el análisis de información

Más detalles

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a:

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a: Oracle Business Intelligence Enterprise Edition 11g. A lo largo de los siguientes documentos trataré de brindar a los interesados un nivel de habilidades básicas requeridas para implementar efectivamente

Más detalles

Base de Datos Oracle 10g: Introducción a SQL Código: D17216 - Duración: 5 días (40 horas)

Base de Datos Oracle 10g: Introducción a SQL Código: D17216 - Duración: 5 días (40 horas) Base de Datos Oracle 10g: Introducción a SQL Código: D17216 - Duración: 5 días (40 horas) Lo que aprenderá Esta clase es aplicable para los usuarios de Oracle8i, Oracle9i y Oracle Database 10g. En este

Más detalles

Curso Oficial Microsoft: LENGUAJE DE CONSULTA DE SQL SERVER. Duración : 35 Hrs.

Curso Oficial Microsoft: LENGUAJE DE CONSULTA DE SQL SERVER. Duración : 35 Hrs. Curso Oficial Microsoft: LENGUAJE DE CONSULTA DE SQL SERVER Duración : 35 Hrs. Sobre este curso Este curso de 5 días impartido por un instructor proporciona a estudiantes con las habilidades técnicas necesarias

Más detalles

CAPÍTULO 2 DATA WAREHOUSES

CAPÍTULO 2 DATA WAREHOUSES CAPÍTULO 2 DATA WAREHOUSES Un Data Warehouse (DW) es un gran repositorio lógico de datos que permite el acceso y la manipulación flexible de grandes volúmenes de información provenientes tanto de transacciones

Más detalles

Construcción de cubos OLAP utilizando Business Intelligence Development Studio

Construcción de cubos OLAP utilizando Business Intelligence Development Studio Universidad Católica de Santa María Facultad de Ciencias e Ingenierías Físicas y Formales Informe de Trabajo Construcción de cubos OLAP utilizando Business Intelligence Development Studio Alumnos: Solange

Más detalles

Módulo Minería de Datos

Módulo Minería de Datos Módulo Minería de Datos Diplomado Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Análsis Dimensional OLAP On-Line Analytical Processing Estructura del Proceso

Más detalles

FACULTAD DE INGENIERÍA. Bases de Datos Avanzadas

FACULTAD DE INGENIERÍA. Bases de Datos Avanzadas FACULTAD DE INGENIERÍA Ingeniería en Computación Bases de Datos Avanzadas Datawarehouse Elaborado por: MARÍA DE LOURDES RIVAS ARZALUZ Septiembre 2015 Propósito Actualmente las empresas necesitan contar

Más detalles

Capítulo 12: Indexación y asociación

Capítulo 12: Indexación y asociación Capítulo 12: Indexación y asociación Conceptos básicos Índices ordenados Archivos de índice de árbol B+ Archivos de índice de árbol B Asociación estática Asociación dinámica Comparación entre indexación

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

MANUAL BÁSICO DEL LENGUAJE SQL

MANUAL BÁSICO DEL LENGUAJE SQL MANUAL BÁSICO DEL LENGUAJE SQL ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO LABORATORIO DE INFORMÁTICA BOGOTÁ D. C. 2007-2 TABLA DE CONTENIDO INTRODUCCIÓN... 3 1. COMANDOS... 4 1.1 Comandos DLL... 4

Más detalles

8 MICROSOFT SQL SERVER 2008 R2. CURSO PRÁCTICO RA-MA

8 MICROSOFT SQL SERVER 2008 R2. CURSO PRÁCTICO RA-MA ÍNDICE CAPÍTULO 1. CARACTERÍSTICAS, NOVEDADES Y ENTORNO DE TRABAJO...17 1.1 NOVEDADES EN SQL SERVER 2008 R2...17 1.2 INSTALACIÓN DE MICROSOFT SQL SERVER 2008 R2...18 1.3 VERSIONES DE MICROSOFT SQL SERVER

Más detalles

Sistemas de Información para la Gestión. UNIDAD 2: RECURSOS DE TI Información y Aplicaciones

Sistemas de Información para la Gestión. UNIDAD 2: RECURSOS DE TI Información y Aplicaciones UNIDAD 2: RECURSOS DE TI Información y Aplicaciones UNIDAD 2: RECURSOS DE TI Información y Aplicaciones 1. La Información: Propiedades de la Información. Sistemas de Información. Bases de Datos. 2. Administración

Más detalles

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II BASE DE DATOS Comenzar presentación Base de datos Una base de datos (BD) o banco de datos es un conjunto

Más detalles

IWG-101: Introducción a la Ingeniería. Departamento de Informática, UTFSM 1

IWG-101: Introducción a la Ingeniería. Departamento de Informática, UTFSM 1 IWG-101: Introducción a la Ingeniería Departamento de Informática, UTFSM 1 Gestión de Bases de Datos Gestión de Bases de Datos Base de datos una colección de datos relacionados organizados de manera de

Más detalles

8 SQL SERVER 2008 RA-MA

8 SQL SERVER 2008 RA-MA ÍNDICE Capítulo 1. Características, novedades y entorno de trabajo... 17 1.1 Novedades en SQL Server 2008... 17 1.2 Instalación de Microsoft SQL Server 2008... 19 1.3 Versiones de Microsoft SQL Server

Más detalles

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 FLUJO DE CAPACITACIÓN Prerrequisitos Fundamentos de Programación Sentencias SQL Server 2012 Duración: 12 horas 1. DESCRIPCIÓN

Más detalles

DATA WAREHOUSE DATA WAREHOUSE

DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE Autor: Roberto Abajo Alonso Asignatura: Sistemas Inteligentes, 5º Curso Profesor: José Carlos González Dep. Ing. Sistemas Telemáticos, E.T.S.I. Telecomunicación Universidad

Más detalles

Por qué DW y DM? Data Warehouse and Data Mining. Información en las empresas. Data Warehouse

Por qué DW y DM? Data Warehouse and Data Mining. Información en las empresas. Data Warehouse Data Warehouse and Data Mining José A. Royo http://www.cps.unizar.es/~jaroyo email: joalroyo@unizar.es Departamento de Informática e Ingeniería de Sistemas Por qué DW y DM? Mayor poder de procesamiento

Más detalles

CAPÍTULO 4 IMPLEMENTACIÓN DE SARP. Este capítulo describe los detalles de la implementación de SARP. Una vez explicado el

CAPÍTULO 4 IMPLEMENTACIÓN DE SARP. Este capítulo describe los detalles de la implementación de SARP. Una vez explicado el CAPÍTULO 4 IMPLEMENTACIÓN DE SARP Este capítulo describe los detalles de la implementación de SARP. Una vez explicado el diseño del sistema SARP (ver Capítulo 3) es posible realizar su implementación.

Más detalles

Temario Curso Bases de Datos

Temario Curso Bases de Datos Temario Curso Bases de Datos TEMA 1. INTRODUCCION A LAS BASES DE DATOS 1. Cualidades De La Información 2. Sistemas de Información 2.1. Componentes de un Sistema de Información 3. Niveles de Gestión de

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza (raqueltl@unizar.es) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

PROGRAMAS DE ESTUDIO FORMATO 7 INTRODUCCIÓN A SQL. Área de Formación Profesional

PROGRAMAS DE ESTUDIO FORMATO 7 INTRODUCCIÓN A SQL. Área de Formación Profesional PROGRAMAS DE ESTUDIO FORMATO 7 NOMBRE DE LA ASIGNATURA INTRODUCCIÓN A SQL CICLO, AREA O MODULO Área de Formación Profesional CLAVE DE LA ASIGNATURA IT222 OBJETIVOS GENERALES DE LA ASIGNATURA Al final del

Más detalles

Optimización de consultas Resumen del capítulo 14

Optimización de consultas Resumen del capítulo 14 Optimización de consultas Resumen del capítulo 14 Libro: Fundamentos de Bases de Datos Silberschatz et al. 5ed. Dr. Víctor J. Sosa Agenda 1. Visión general 2. Estimación de las estadísticas de los resultados

Más detalles

MATERIA: BASE DE DATOS II. GUIA DE LABORATORIO #9. Pág.: 1/ 12 Tema:

MATERIA: BASE DE DATOS II. GUIA DE LABORATORIO #9. Pág.: 1/ 12 Tema: GUIA DE LABORATORIO #9. Pág.: 1/ 12 Tema: Contenido: 1. Objetivos. 2. Entorno teórico. 3. Ejecución de Guía. 4. Actividad Ex aula. 5. Autoevaluación. 6. Bibliografía. Objetivos: Diseño de CUBOS. 1. Desarrolla

Más detalles

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas para la Gestión Unidad 3 Aplicaciones de Sistemas U.N.Sa. Facultad de Cs.Económicas SIG 2010 UNIDAD 3: APLICACIONES DE SISTEMAS Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración

Más detalles

Programa Analítico Plan de estudios 2011. Asignatura: Bases de Datos

Programa Analítico Plan de estudios 2011. Asignatura: Bases de Datos Programa Analítico Plan de estudios 2011 Asignatura: Bases de Datos CARRERA: LCC Lic. en y LSI Ciencias de la Computación - Lic. en Sistemas de Información AÑO: 3 (LCC) y 4 (LSI) CREDITO HORARIO: 7 DESPLIEGUE:

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios Universidad Nacional de Salta Facultad de Ciencias Económicas, Jurídicas y Sociales Sistemas de Información para la Gestión Fundamentos de la Inteligencia de Negocios Administración de Bases de Datos e

Más detalles

Almacenes de datos. (Data Warehouses) Wladimiro Díaz Villanueva. Universitat de València. Wladimiro.Diaz@uv.es. 13019 Diseño de bases de datos p.

Almacenes de datos. (Data Warehouses) Wladimiro Díaz Villanueva. Universitat de València. Wladimiro.Diaz@uv.es. 13019 Diseño de bases de datos p. Almacenes de datos (Data Warehouses) Wladimiro Díaz Villanueva Wladimiro.Diaz@uv.es Universitat de València 13019 Diseño de bases de datos p.1/72 Almacenes de datos 1. Introducción. 2. Almacenes de datos:

Más detalles

Querying Microsoft SQL Server 2012

Querying Microsoft SQL Server 2012 Cursos Especialización Versión 1.0 13/02/2013 Tabla de contenido 1. Introducción... 3 2. Objetivos... 3 3. Prerrequisitos... 4 4. Duración y Precio... 4 5. Contenido... 4 2 Cursos Especialización Querying

Más detalles

Informática II Ing. Industrial. Data Warehouse. Data Mining

Informática II Ing. Industrial. Data Warehouse. Data Mining Data Warehouse Data Mining Definición de un Data Warehouses (DW) Fueron creados para dar apoyo a los niveles medios y altos de una empresa en la toma de decisiones a nivel estratégico en un corto o mediano

Más detalles

CONSULTAS DE RESUMEN SQL SERVER 2005. Manual de Referencia para usuarios. Salomón Ccance CCANCE WEBSITE

CONSULTAS DE RESUMEN SQL SERVER 2005. Manual de Referencia para usuarios. Salomón Ccance CCANCE WEBSITE CONSULTAS DE RESUMEN SQL SERVER 2005 Manual de Referencia para usuarios Salomón Ccance CCANCE WEBSITE CONSULTAS DE RESUMEN Una de las funcionalidades de la sentencia SELECT es el permitir obtener resúmenes

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. 2 Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II. Guía 9 3 Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo

Más detalles

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Redundancia e inconsistencia de datos: Puesto que los archivos que mantienen almacenada la información son creados por

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

El diseño de la base de datos de un Data Warehouse. Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias

El diseño de la base de datos de un Data Warehouse. Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias El diseño de la base de datos de un Data Warehouse Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias El modelo Multidimensional Principios básicos Marta Millan millan@eisc.univalle.edu.co

Más detalles

Registro (record): es la unidad básica de acceso y manipulación de la base de datos.

Registro (record): es la unidad básica de acceso y manipulación de la base de datos. UNIDAD II 1. Modelos de Bases de Datos. Modelo de Red. Representan las entidades en forma de nodos de un grafo y las asociaciones o interrelaciones entre estas, mediante los arcos que unen a dichos nodos.

Más detalles

Unidad III: Lenguaje de manipulación de datos (DML) 3.1 Inserción, eliminación y modificación de registros

Unidad III: Lenguaje de manipulación de datos (DML) 3.1 Inserción, eliminación y modificación de registros Unidad III: Lenguaje de manipulación de datos (DML) 3.1 Inserción, eliminación y modificación de registros La sentencia INSERT permite agregar nuevas filas de datos a las tablas existentes. Está sentencia

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

Análisis de Datos. Práctica de métodos predicción de en WEKA

Análisis de Datos. Práctica de métodos predicción de en WEKA SOLUCION 1. Características de los datos y filtros Una vez cargados los datos, aparece un cuadro resumen, Current relation, con el nombre de la relación que se indica en el fichero (en la línea @relation

Más detalles

Operaciones en el Modelo Relacional. Relacional. Relacional. Índice. Lenguajes de Consulta

Operaciones en el Modelo Relacional. Relacional. Relacional. Índice. Lenguajes de Consulta Operaciones en el Modelo Relacional Bases de Datos Ingeniería a Técnica T en Informática de Sistemas El interés de los usuarios de las bases de datos se suele centrar en realizar consultas (contestar a

Más detalles

Procedimientos para agrupar y resumir datos

Procedimientos para agrupar y resumir datos Procedimientos para agrupar y resumir datos Contenido Introducción Presentación de los primeros n valores Uso de funciones de agregado 4 Fundamentos de GROUP BY 8 Generación de valores de agregado dentro

Más detalles

Nociones de performance

Nociones de performance Maestría en Bioinformática Bases de Datos y Sistemas de Información Nociones de performance Ing. Alfonso Vicente, PMP alfonso.vicente@logos.com.uy Agenda Conceptos Índices Optimizador Planes de acceso

Más detalles

Base de datos relacional

Base de datos relacional Base de datos relacional Una base de datos relacional es una base de datos que cumple con el modelo relacional, el cual es el modelo más utilizado en la actualidad para modelar problemas reales y administrar

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios Sistemas de Información para la Gestión UNIDAD 2: Infraestructura de Tecnología de la Información Unidad 2 Infraestructura de Tecnología de la Información Estructura de TI y tecnologías emergentes. Estructura

Más detalles

Guía práctica de SQL

Guía práctica de SQL Guía práctica de SQL Francisco Charte Ojeda Agradecimientos Introducción Qué es SQL? Aplicaciones de SQL Intérpretes de SQL Tipos de RDBMS Cómo usar este libro Convenciones tipográficas 1. El modelo relacional

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 5 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 5 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 5 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Data Warehouse Modelo multidimensional Diagrama

Más detalles

Práctica A: Procedimientos para agrupar y resumir datos

Práctica A: Procedimientos para agrupar y resumir datos Procedimientos para agrupar y resumir datos 1 Práctica A: Procedimientos para agrupar y resumir datos Objetivos Después de realizar esta práctica, el alumno será capaz de: Utilizar las cláusulas GROUP

Más detalles

2071 Querying Microsoft SQL Server 2000 with Transact- SQL

2071 Querying Microsoft SQL Server 2000 with Transact- SQL 2071 Querying Microsoft SQL Server 2000 with Transact- SQL Introducción La meta de este curso es proveer a los estudiantes con las habilidades técnicas requeridas para escribir consultas básicas de Transact-SQL

Más detalles

Estructura de una BD Oracle. datafiles redo log controlfiles tablespace objetos Estructura lógica. Tablespaces tablespace SYSTEM

Estructura de una BD Oracle. datafiles redo log controlfiles tablespace objetos Estructura lógica. Tablespaces tablespace SYSTEM Estructura de una BD Oracle. Una BD Oracle tiene una estructura física y una estructura lógica que se mantienen separadamente. La estructura física se corresponde a los ficheros del sistema operativo:

Más detalles

RECURSOS DE TI Aplicaciones - Bibliografía FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS

RECURSOS DE TI Aplicaciones - Bibliografía FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS Sistemas de Información para la Gestión UNIDAD 3: RECURSOS DE TECNOLOGÍA DE INFORMACIÓN Aplicaciones UNIDAD 2: RECURSOS DE TI Aplicaciones 1. Administración de bases de datos e información: Sistemas de

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

ÍNDICE CAPÍTULO 1. TIPOS DE ALMACENAMIENTO DE LA INFORMACIÓN... 13

ÍNDICE CAPÍTULO 1. TIPOS DE ALMACENAMIENTO DE LA INFORMACIÓN... 13 ÍNDICE CAPÍTULO 1. TIPOS DE ALMACENAMIENTO DE LA INFORMACIÓN... 13 1.1 SISTEMAS LÓGICOS DE ALMACENAMIENTO DE LA INFORMACIÓN...13 1.2 ALMACENAMIENTO EN FICHEROS...13 1.2.1 Registros físicos y registros

Más detalles

Aplicaciones de Estadística Descriptiva

Aplicaciones de Estadística Descriptiva Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos

Más detalles

2.6.2.- Aplicaciones de las vistas. 2.6.1.- Concepto de vista. 2.6.3.- Vistas en SQL. 2.6.3.- Vistas en SQL.

2.6.2.- Aplicaciones de las vistas. 2.6.1.- Concepto de vista. 2.6.3.- Vistas en SQL. 2.6.3.- Vistas en SQL. 2.6.1.- Concepto de vista. Una vista es una tabla derivada de otras tablas (básicas o virtuales). Una vista se caracteriza porque: Se considera que forma parte del esquema externo. Una vista es una tabla

Más detalles

http://en.wikipedia.org/wiki/edgar_f._codd

http://en.wikipedia.org/wiki/edgar_f._codd 26/03/2012 1 http://en.wikipedia.org/wiki/edgar_f._codd Codd estableció los fundamentos del modelo relacional en el artículos de 1970 "A Relational Model of Data for Large Shared Data Banks". En adelante,

Más detalles

BASES DE DATOS TEMA 4 DISEÑO DE BASES DE DATOS RELACIONALES

BASES DE DATOS TEMA 4 DISEÑO DE BASES DE DATOS RELACIONALES BASES DE DATOS TEMA 4 DISEÑO DE BASES DE DATOS RELACIONALES El modelo relacional se basa en dos ramas de las matemáticas: la teoría de conjuntos y la lógica de predicados de primer orden. El hecho de que

Más detalles

Primeramente estudiaremos la forma básica de la sentencia SELECT, que esta formado por:

Primeramente estudiaremos la forma básica de la sentencia SELECT, que esta formado por: Oracle básico (II): Creación y manejo de tablas Con el artículo anterior iniciamos una entrega de Oracle Básico comenzando con el tema de creación y manejo de tablas. Ahora pasaremos a estudiar la consulta

Más detalles

Para poder ingresar al mismo, es necesario tener instalado el programa Mozilla Firefox

Para poder ingresar al mismo, es necesario tener instalado el programa Mozilla Firefox Sistema de Trámites Manual del Usuario Versión Diciembre /2011 INGRESO AL SISTEMA Para poder ingresar al mismo, es necesario tener instalado el programa Mozilla Firefox Luego en la Barra de Navegacion

Más detalles

Business Intelligence

Business Intelligence 2012 Business Intelligence Agenda Programas Diferencias de OLTP vs OLAP Arquitectura de una solución de BI Tecnologías Microsoft para BI Diferencias entre OLTP v/s OLAP Alineación de Datos OLTP Datos organizados

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS

ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS Base de Datos ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS Una base de datos es un conjunto de elementos de datos que se describe a sí mismo, con relaciones entre esos elementos, que presenta

Más detalles

Alumna: Adriana Elizabeth Mendoza Martínez. Grupo: 303. P.S.P. Miriam De La Rosa Díaz. Carrera: PTB. en Informática 3er Semestre.

Alumna: Adriana Elizabeth Mendoza Martínez. Grupo: 303. P.S.P. Miriam De La Rosa Díaz. Carrera: PTB. en Informática 3er Semestre. Alumna: Adriana Elizabeth Mendoza Martínez. Grupo: 303. P.S.P. Miriam De La Rosa Díaz. Carrera: PTB. en Informática 3er Semestre. Tema: Sistemas Subtema: Base de Datos. Materia: Manejo de aplicaciones

Más detalles

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS 1. RESEÑA HISTORICA Las exigencias competitivas del mercado hacen que las organizaciones busquen mecanismos

Más detalles

Seleccione sólo el criterio a través del cual se desea filtrar (Estudiante) y pulsar Aceptar.

Seleccione sólo el criterio a través del cual se desea filtrar (Estudiante) y pulsar Aceptar. Seleccione sólo el criterio a través del cual se desea filtrar (Estudiante) y pulsar Aceptar. Sólo se mostraran los registros que coinciden con la ocupación de Estudiante. 3.12 TABLAS DINÁMICAS Un informe

Más detalles

Sistemas de Data Warehousing

Sistemas de Data Warehousing Federación Médica del Interior (FEMI) Sociedad Uruguaya de Informática en la Salud (SUIS) Información en Salud Edición 2009 Sistemas de Data Warehousing Dr. Ing. Adriana Marotta (In.Co - F.Ing - UDELAR)

Más detalles

A.1. Definiciones de datos en SQL

A.1. Definiciones de datos en SQL A.1. Definiciones de datos en SQL Las Sentencias del lenguaje de definición de datos (DDL) que posee SQL operan en base a tablas. Las Principales sentencias DDL son las siguientes: CREATE TABLE DROP TABLE

Más detalles

MS_10774 Querying Microsoft SQL Server 2012

MS_10774 Querying Microsoft SQL Server 2012 Querying Microsoft SQL Server 2012 www.ked.com.mx Av. Revolución No. 374 Col. San Pedro de los Pinos, C.P. 03800, México, D.F. Tel/Fax: 52785560 Introducción Este curso de cinco días impartido por instructor,

Más detalles

INTRODUCCION A LAS BASES DE DATOS Procesamiento de Archivos vs Bases de Datos ARCHIVOS BASES DE DATOS

INTRODUCCION A LAS BASES DE DATOS Procesamiento de Archivos vs Bases de Datos ARCHIVOS BASES DE DATOS INTRODUCCION A LAS BASES DE DATOS Procesamiento de Archivos vs Bases de Datos ARCHIVOS Datos repetidos. No se manejan estándares. Había inconsistencia de datos. Falta de seguridad en los datos. No existían

Más detalles

Inteligencia de Negocios. & Microsoft Excel 2013

Inteligencia de Negocios. & Microsoft Excel 2013 Inteligencia de Negocios (Business Intelligence - BI) & Microsoft Excel 2013 Instructor: Germán Zelada Contenido del Curso Fundamentos de Data Warehousing y BI Qué es Business Intelligence? Definiendo

Más detalles

FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA INDUSTRIAL

FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA INDUSTRIAL FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA INDUSTRIAL Código-Materia: 05253 - Excel avanzado Requisito: Excel nivel intermedio Programa - Semestre: Ingeniería Industrial Período académico: 15-2

Más detalles

ST31_Querying Microsoft SQL Server

ST31_Querying Microsoft SQL Server ST31_Querying Microsoft SQL Server Presentación Este curso de 5 días proporciona a los estudiantes las habilidades técnicas necesarias para escribir consultas de Transact-SQL básicas para Microsoft SQL

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

5- Uso de sentencias avanzadas

5- Uso de sentencias avanzadas Objetivos: 5- Uso de sentencias avanzadas Elaborar sentencias de manejo de datos. Recursos: Microsoft SQL Server Management Studio Guías prácticas. Introducción: Después de trabajar con las sentencias

Más detalles

XII Encuentro Danysoft en Microsoft Abril 2015. Business Intelligence y Big Data XII Encuentro Danysoft en Microsoft Directos al código

XII Encuentro Danysoft en Microsoft Abril 2015. Business Intelligence y Big Data XII Encuentro Danysoft en Microsoft Directos al código Business Intelligence y Big Data XII Encuentro Danysoft en Microsoft Directos al código Ana María Bisbé York Servicios Profesionales sp@danysoft.com 916 638683 www.danysoft.com Abril 2015 Sala 1 SQL Server

Más detalles

Diseño del Sistema de Información

Diseño del Sistema de Información Diseño del Sistema de Información ÍNDICE DESCRIPCIÓN Y OBJETIVOS... 2 ACTIVIDAD DSI 1: DEFINICIÓN DE LA ARQUITECTURA DEL SISTEMA... 7 Tarea DSI 1.1: Definición de Niveles de Arquitectura... 9 Tarea DSI

Más detalles

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas. Datamining Técnicas

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas. Datamining Técnicas Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Datamining Técnicas Yerko Halat 4 de Octubre del 2001 1 Concepto: Lógica Difusa Cliente

Más detalles

Boletín de Problemas de la Asignatura II18 Bases de Datos. Ingeniería Informática Universitat Jaume I

Boletín de Problemas de la Asignatura II18 Bases de Datos. Ingeniería Informática Universitat Jaume I Boletín de Problemas de la Asignatura II18 Bases de Datos Ingeniería Informática Universitat Jaume I Ingeniería Informática. Universitat Jaume I II18 - Bases de Datos. Práctica 1 Práctica 1 Objetivos de

Más detalles

FUNDAMENTOS DE DATA WAREHOUSE

FUNDAMENTOS DE DATA WAREHOUSE FUNDAMENTOS DE DATA WAREHOUSE 1. Qué es Data Warehouse? El Data Warehouse es una tecnología para el manejo de la información construido sobre la base de optimizar el uso y análisis de la misma utilizado

Más detalles

UNIDAD 3. MODELO RELACIONAL

UNIDAD 3. MODELO RELACIONAL UNIDAD 3. MODELO RELACIONAL El modelo relacional se basa en dos ramas de las matemáticas: la teoría de conjuntos y la lógica de predicados de primer orden. El hecho de que el modelo relacional esté basado

Más detalles

ÍNDICE. Introducción... Capítulo 1. Novedades de Access 2013... 1

ÍNDICE. Introducción... Capítulo 1. Novedades de Access 2013... 1 Introducción... XIII Capítulo 1. Novedades de Access 2013... 1 Nuevas posibilidades de cifrado, compactación y reparación de archivos... 1 Trabajo en la nube... 2 Compartir la información... 3 Guardar

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Reporte Registro de Personas con Discapacidad

Reporte Registro de Personas con Discapacidad SISTEMA INTEGRAL DE LA PROTECCION SOCIAL SISPRO SISTEMA DE GESTION DE DATOS SGD Reporte Registro de Personas con Discapacidad CÓDIGO: VERSIÓN: 3 FECHA: 201310 Reporte Registro de Personas con Discapacidad

Más detalles

Consultas con combinaciones

Consultas con combinaciones UNIDAD 1.- PARTE 2 MANIPULACIÓN AVANZADA DE DATOS CON SQL. BASES DE DATOS PARA APLICACIONES Xochitl Clemente Parra Armando Méndez Morales Consultas con combinaciones Usando combinaciones (joins), se pueden

Más detalles

Sistemas de Datos. Rendimiento de la Base de datos. Procesamiento de consultas y administración del rendimiento

Sistemas de Datos. Rendimiento de la Base de datos. Procesamiento de consultas y administración del rendimiento Rendimiento de la Base de datos. Procesamiento de consultas y administración del rendimiento Esquema de la clase 1. Procesamiento de consultas 2. El optimizador del DBMS 3. Los Ajustes del Rendimiento

Más detalles

INDICE Primera Parte. Panorámica general de SQL 2. Rápido repaso de SQL 3. SQL en Perspectiva

INDICE Primera Parte. Panorámica general de SQL 2. Rápido repaso de SQL 3. SQL en Perspectiva INDICE Prólogo XXIII Por qué este libro es para usted XXVII Primera Parte. Panorámica general de SQL 1 1. Introducción 3 El lenguaje SQL 3 El papel de SQL 6 Características y beneficios de SQL 7 Independencia

Más detalles

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM?

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM? Introducción En vista de los comentarios y sugerencias que nos hicieron, via mail y por chat, sobre la posibilidad de la creación de nuevo conocimiento, he creido conveniente introducir el tema Data Mining

Más detalles

Nivel Básico/Intermedio. Instalar y Configurar SQL Server 2008. Diseñar una Base de Datos. Optimización de consultas

Nivel Básico/Intermedio. Instalar y Configurar SQL Server 2008. Diseñar una Base de Datos. Optimización de consultas SQL SERVER 2008 Nivel Básico/Intermedio Instalar y Configurar SQL Server 2008 Diseñar una Base de Datos Optimización de consultas Administración y seguridad de una base de datos Analista de sistema, profesionales

Más detalles

SQL Server 2014 Implementación de una solución de Business Intelligence (SQL Server, Analysis Services, Power BI...)

SQL Server 2014 Implementación de una solución de Business Intelligence (SQL Server, Analysis Services, Power BI...) Prólogo 1. A quién se dirige este libro? 15 2. Requisitos previos 15 3. Objetivos del libro 16 4. Notación 17 Introducción al Business Intelligence 1. Del sistema transaccional al sistema de soporte a

Más detalles