EL "SPIN": UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL "SPIN": UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA"

Transcripción

1 EL "SPIN": UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA Ing. Salvador Puliafito P r o f e s o r T i t u l a r de la U n i v e r s i d a d de M e n d o z a y de la U n i v e r s i d a d Tecnológica N a c i o n a l. 1. INTRODUCCIÓN Las propiedades de sistemas electrónicos, cuyos "spin" sean iguales a 1/2, van a ser descriptos aquí de acuerdo con la concepción física del autor conocida como "dinámica gravitacional"(*), cuya revisión resultará conveniente para la mejor comprensión de este trabajo. Con este propósito, se establecerán relaciones entre la masa y la carga eléctrica de dichos sistemas, utilizando, para ello, las particulares características de las funciones de onda gravitacionales de los mismos. Además, se propondrán y discutirán mecanismos de conversión de energía gravitacional en e1éctrica. (*)- "Gravitational dynamics - A new quantum rela- tivistic conception", S. Puliafito, GRG Journal - Vol. 6 - N "Dinámica gravitational - Una nueva concepción cuántico-relativista", S. Puliafito. Una publicación de la Editorial Idearium de la Universidad de Mendoza (1979).

2 232 SALVADOR PULIAFITO También se examinarán, como consecuencia de tales procesos de conversión, la relación giromagnética del electrón y el valor de la constante K en el sistema M.K.S. 2. FUNCIONES DE ONDAS GRAVITAC10NALES PARA SISTEMAS ELECTRÓNICOS En esta sección se va a discutir una propiedad de la materia conocida como "spin". El caso especial del electrón será descripto en particular. La función de onda que satisface la descripción a efectuar se ajusta a la siguiente ecuación: (1) En particular, el campo lejano vendrá dado, entonces, por: (2) En la Figura N 1 se muestra la función de onda a analizar y los ejes principales a ser considerados, es decir, el eje (1), en correspondencia del eje z y los ejes (2) y (2'), en correspondencia con los ejes secundarios z' y z''. La función de onda, dada por la ecuación (1), describe las propiedades gravitacionales de sistemas electrónicos cuyos "spin" sean iguales a 1/2. 3. MASA GRAVITAC10NAL DEL ELECTRON La evaluación de la masa gravitacional de un sistema dado requiere la consideración del campo lejano correspondiente a su función de onda.

3 REVISTA DE LA UNIVERSIDAD DE MENDOZA 233 EL "SPIN": UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA FIG.N 0 1 El eje principal (1) debe considerarse como eje dinámico del sistema. De acuerdo con la concepción física de la "dinámica gravitacional" se define la masa como: Donde (3) (4) Por lo tanto, la masa gravitacional del e- lectrón podrá ser evaluada haciendo:

4 234 SALVADOR PULIAFITO (5) y, en c o n s e c u e n c i a : (6) Por lo tanto, la constante de normalización viene dada por: (7) 3.1 La masa gravitacional correspondiente a la región de fase negativa de la función de onda. La evaluación de la masa gravitacional, en correspondencia con la región de fase negativa, de la función de onda, estará fuertemente ligada con el proceso de conversión de energía en los sistemas electrónicos. La ecuación correspondiente será: (8) de la cual se obtiene: (9) 4. LA ENERGÍA ELÉCTRICA DE UN SISTEMA ELECTRÓNI- CO. En el marco de esta concepción se va a considerar un proceso de conversión parcial de energía gravitacional en eléctrica. Este proceso de conversión está asociado con las propiedades de "spin" de cierto tipo de

5 REVISTA DE LA UNIVERSIDAD DE MENDOZA 235 EL "SPIN": UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA partículas. Para facilitar la comprensión se va a considerar el modelo clásico de la Figura N 2 el cual se propone como un modelo común de una familia de sistemas electrónicos. 4.1 Modelos en escala para sistemas electrónicos. El modelo de la Figura N 2 es un modelo en escala, en el sentido de que los parámetros fundamentales se encuentran interrelacionados, de manera que un cambio en uno de ellos determinará el cambio de los otros, mediante un factor cuántico de escala. El valor de la frecuencia natural de gravitación del electrón es el parámetro clave a ser considerado en esta concepción. El cambio de escala del modelo requiere considerar la serie de potencias de la constante de estructura fina de la materia "a", tal como se puede ver en la Tabla adjunta. Un sistema electrónico puede considerarse como un sistema complejo formado, esencialmente, por dos partículas orbitando alrededor de un centro común de masa. Cada partícula tiene una masa gravitacional igual a la mitad de la masa del elect ron. Ambas partículas se ubican en la misma órbita (Fig.N 0 2). La frecuencia de revolución de cada partícula orbitante tiene un valor dado por: (10)

6 236 SALVADOR PULIAFITO FIG.N 0 2 donde: δ = f a c t o r de d e s l i z a m i e n t o de la frecuencia. α = constante de e s t r u c t u r a fina de la materia. El factor de d e s l i z a m i e n t o de frecuencia tiene un valor comprendido e n t r e : (11) El proceso de conversión de energía considera dos s i t u a c i o n e s distintas, las cuales dependen del e s t a d o energético de un sistema electrónico.

7 REVISTA DE LA UNIVERSIDAD DE MENDOZA 237 EL "SPIN": UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA TABLA POTENCIAS DE " α "

8 238 SALVADOR PULIAFITO Cuando el electrón no está excitado por un campo magnético externo, el sistema debería considerarse un sistema cerrado, porque su energía eléctrica está confinada en su interior. Por otro lado, existiendo una excitación externa, el sistema reaccionará generando un campo eléctrico lejano. En el primer caso, el campo eléctrico está confinado en su interior porque la frecuencia de revolución de las partículas orbitantes está sincronizada con el campo gravitacional, de tal forma que: δ =1 (12) En el segundo caso, se generará un campo e- léctrico externo debido a que la frecuencia de revolución no se encuentra sintonizada con la frecuencia natural del campo gravitacional ligado al sistema, de tal forma que, en este caso: δ<1 (13) y, por lo tanto, una cierta cantidad de energía eléctrica, convertida a partir de la energía gravitacional de la partícula será radiada hacia el exterior del sistema. En cualquier caso, los parámetros fundamen tales de los sistemas electrónicos deberán estar relacionados de la forma siguiente: (14)

9 REVISTA DE LA UNIVERSIDAD DE MENDOZA 239 EL "SPIN": UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA donde "A" es un factor de escala. Para un sistema electrónico común: k = 0 (15) y para los sistemas "hidrogenoides": k = 1 (16) Para un número cuántico n = 1, la condición de Bohr se satisface en las relaciones generales dadas en (14). 4.2 El estado excitado en los sistemas electrónicos. Un sistema electrónico crea un campo eléctrico lejano cuando es excitado por un campo magnético externo. Para hacerlo, dos hechos fundamentales parecen evidentes: 1) adoptar una orientación parti cular, de forma tal, de alinear el campo magnético con algunas de las direcciones con valor nulo de la función de onda. 2) modificar la frecuencia de revolución, respecto de la fre cuencia natural de gravitación. La orientación particular a adoptar tiene que ver con la mínima energía potencial del sistema excitado. La modificación de la frecuencia de revolución hace posible la creación de un campo eléctrico lejano. Esta acción implica algún cambio en el balance intrínseco de energía.

10 240 SALVADOR PULIAFITO En esta concepción, y en cualquier caso, la energía total del sistema vale: E T = E g + E e = m e c2 (17) En el caso particular de un sistema no excitado: de manera tal que: E eo << E go (18) E T E go (19) De todas formas, hay una pequeña cantidad de energía eléctrica, encerrada en el sistema, debido a la interacción de un par de líneas de flujo gravitacional ligadas a ambas partículas del sistema. La distancia existente entre ambas partículas es mucho menor que la longitud de onda gravitacional natural del sistema, y, en consecuencia, el enlace "interrumpido" genera un fotón que se intercambia permanentemente entre ambos componentes del sistema. Considerando el radio de cada partícula del sistema (Rp), la frecuencia de revolución sería levemente superior, de tal forma que: donde: y la energía del fotón será: ~ f oe = γf oe (20) γ = 1+Rp/R (21)

11 REVISTA DE LA UNIVERSIDAD DE MENDOZA 241 EL "SPIN": UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA (22) La frecuencia "f " es, en consecuencia, la frecuencia de revolución, sincrónica, de ambas partículas en un sistema no excitado. En el caso de los sistemas electrónicos excitados los parámetros fundamentales se definen por: (23) La masa gravitacional, evaluada en la región ecuatorial del sistema, permitirá determinar la energía eléctrica que escapa del sistema. Los fotones serán emitidos con una energía dada por: (24) de manera tal que la frecuencia asincrónica de revolución, de las partículas del sistema, será: (25) En consecuencia, el factor de deslizamiento de frecuencia tomará un valor dado por: (26) Este valor será comprobado posteriormente. Una importante conclusión, que se desprende

12 242 SALVADOR PULIAFITO de la consideración de este modelo gravitacional, es que los fotones emitidos configuran una nube de energía en forma de un "cinturón eléctrico" sobre la región ecuatorial del sistema, es decir, en correspondencia con 6 = V /2. Finalmente, se podrá establecer que el balance energético del sistema excitado quedará definido por: (27) (28) 4.3 La evaluación de la carga eléctrica. El así llamado campo eléctrico de un sistema electrónico, tal como se lo observa desde el exterior del mismo, parece entonces estar fuertemente vinculado a sistemas cuyos "spin" sean iguales a 1/2. Efectivamente, en esta discusión se ha seleccionado la configuración tipo "doble ocho" para describir la función de onda gravitacional ligada a estos sistemas. Mediante la inspección de este tipo particular de función de onda, se podrá evaluar la "carga eléctrica" del sistema. Para ello, se propone una ley general del tipo: (29) donde: I = 2eγf (30)

13 REVISTA DE LA UNIVERSIDAD DE MENDOZA 243 EL "SPIN"; UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA es el valor pico de la corriente electrónica producida por el mecanismo de conversión de energía de las partículas orbitantes. Se ha llamado "Noe" el flujo gravitacional total ligado al sistema y "c" es la.velocidad de la luz. La función de onda, en el dominio del tiempo es la bien conocida expresión: (31) la cual describe el campo gravitacional lejano li-_ gado al sistema. En el plano orbital: (32) Si se aplica la ley fundamental, propuesta por la ecuación (29), se podrá escribir, entonces, que: (33) Considerando la relación (7) que define la constante de normalización, "A 20 ", y la relación (25) que da la frecuencia efectiva de revolución "f", se tendrá finalmente que la carga eléctrica "e" tiene un valor: (34) Para un e l e c t r ó n, la ecuación (22) debe satisfacer la r e l a c i ó n s i g u i e n t e : (35)

14 244 SALVADOR PULIAFITO y, por lo tanto: (36) Además: (37) 4.4 La relación giromagnética del electrón Considerando el modelo básico de la Figura N 2, se podrá escribir una relación para el momento angular magnético: definido a lo largo del eje (1), y su componente: (38) definida a lo largo del eje (2). El momento angular dinámico del sistema se definirá, en consecuencia: (39) según el eje (1), y: (40) será su componente a lo largo del eje (2). Como se sabe, se podrá, entonces, escribir que: (41) (42)

15 REVISTA DE LA UNIVERSIDAD DE MENDOZA 245 EL "SPIN" UNA PROPIEDAD GRAVITACIONAL DE LA MATERIA y que: (43) En consecuencia, la relación giromagnética del electrón tendrá un valor dado por: (44) el cual está, en razonable acuerdo, con los valores experimentales. 4.5 La constante "K" en el sistema MKS de unidades: En el s i s t e m a MKS se considera: (45) donde "Roe" es el "radio clásico" del electrón. Comparando con la relación (34) se podrá entonces definir: 5. CONCLUSIONES En el marco de esta concepción los sistemas electrónicos parecen satisfacer a un modelo complejo cuyos componentes juegan un papel fundamental como conversores de energía gravitacional en eléctrica. Para la "dinámica gravitacional" el hecho de que los sistemas excitados posean una frecuencia asincrónica de revolución determina la radiación de

16 246 SALVADOR PULIAFITO energía eléctrica al exterior, lo que, en definitiva, origina la definición de una "carga eléctrica" para los mismos. Los fotones emitidos configuran una nube, en correspondencia con la región ecuatorial de tales sistemas, donde la función de onda exhibe una característica de fase negativa. En definitiva, masa gravitacional y carga eléctrica de un sistema electrónico se encuentran directamente vinculados a las características fundamentales de la función de onda que describe el campo gravitacional asociado al mismo. El proceso de conversión de energía gravitacional, en "energía eléctrica", se describe a partir de una ley básica propuesta en el marco de la "dinámica gravitacional".

17 REVISTA DE LA UNIVERSIDAD DE MENDOZA 247

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

Espectros de emisión y absorción.

Espectros de emisión y absorción. Espectros de emisión y absorción. Los espectros de emisión y absorción de luz por los átomos permitieron la justificación y ampliación del modelo cuántico. Espectros de emisión: Calentar un gas a alta

Más detalles

Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León.

Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Química General. Código: 0348. Primer semestre. Hoja de trabajo.

Más detalles

El modelo semiclásico de las propiedades de transporte: Objetivo

El modelo semiclásico de las propiedades de transporte: Objetivo El modelo semiclásico de las propiedades de transporte: Objetivo En el estudio de las propiedades de transporte se usa una aproximación que se basa en los principios usado para el estudio de los electrones

Más detalles

INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3.

INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3. El modelo de átomo INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education INDICE 1. El modelo de átomo 1.1. Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3. Rutherford: 1.3.1. Radioactividad

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ. RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de

Más detalles

El átomo: sus partículas elementales

El átomo: sus partículas elementales El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era

Más detalles

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica Química Técnico Profesional Intensivo SCUACTC002TC83-A16V1 Ítem Alternativa

Más detalles

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS

Más detalles

Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos)

Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Por favor asegúrese de leer las instrucciones generales dentro del sobre adjunto antes de comenzar a resolver este problema. En

Más detalles

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio Radiaciones Ionizantes: Utilización y Riesgos RIUR . Estructura y radiaciones atómicas Esta guía describe el conjunto de actividades que forman el tema 2 del módulo 1: " Estructura y radiaciones atómicas"

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES"

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN GUÍAS DE ONDA Y RESONADORES UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES" Prof. Francisco J. Zamora Propagación de ondas electromagnéticas en guías

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Theory Spanish (Costa Rica) El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos)

Theory Spanish (Costa Rica) El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Por favor asegúrese de leer las instrucciones generales del sobre adjunto antes de comenzar a resolver este problema. En este

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

De los anillos de Saturno a las trampas electrónicas. Grupo de dinámica no lineal

De los anillos de Saturno a las trampas electrónicas. Grupo de dinámica no lineal De los anillos de Saturno a las trampas electrónicas Grupo de dinámica no lineal Líneas de investigación Sistemas dinámicos hamiltonianos con aplicaciones en - Mecánica Celeste - Dinámica de actitud -

Más detalles

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia I: estructura atómica, modelos atómicos y tipos de átomos

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia I: estructura atómica, modelos atómicos y tipos de átomos Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia I: estructura atómica, modelos atómicos y tipos de átomos Química Técnico Profesional Intensivo SCUACTC001TC83-A16V1 Ítem Alternativa

Más detalles

Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica. Ing. Sol de María Jiménez González

Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica. Ing. Sol de María Jiménez González Estudio del átomo: 1. Átomos e isótopos 2. Modelos Atómicos 3. Teoría cuántica 1 Núcleo: protones y neutrones Los electrones se mueven alrededor. Característica Partículas Protón Neutrón Electrón Símbolo

Más detalles

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS ESTRUCTURA DE LA MATERIA Grupo D CURSO 20011 2012 EL NÚCLEO ATÓMICO DE QUÉ ESTÁN HECHAS LAS COSAS? MATERIA ~ 10-9 m Átomo FÍSICA MATERIALES ÁTOMO ~ 10-10 m NÚCLEO ~ 10-14 mnucleón < 10-15 m Electrón Protón

Más detalles

FÍSICA y QUÍMICA. Número cuántico Secundario (SUBNIVEL) l. Número cuántico Magnético (ORBITAL, como si fuera una caja) m.

FÍSICA y QUÍMICA. Número cuántico Secundario (SUBNIVEL) l. Número cuántico Magnético (ORBITAL, como si fuera una caja) m. TEMA 1: ESTRUCTURA DE LA MATERIA. MODELOS ATÓMICOS 1. Modelo Atómico de RUTHERFORD a. Modelo predecesor de Thomson. b. Modelo atómico de Rutherford. c. Virtudes y defectos del Modelo de Rutherford. 2.

Más detalles

QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES

QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES 2013-1 Teoría: Dra. Karina Cuentas Gallegos Martes y jueves 10-12 hrs. Laboratorio: M.C. Mirna Guevara García Jueves 12-14 hrs. Curso de Química

Más detalles

Balance Global de Energía

Balance Global de Energía Balance Global de Energía Balance de energía 1a Ley de la Termodinámica El balance básico global se establece entre la energía proveniente del sol y la energía regresada al espacio por emisión de la radiación

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

QUÍMICA 2º BACH. TEMA 1. ESTRUCTURA ATÓMICA.

QUÍMICA 2º BACH. TEMA 1. ESTRUCTURA ATÓMICA. Modelos atómicos QUÍMICA 2º BACH. TEMA 1. ESTRUCTURA ATÓMICA. Teoría atómica de Dalton: La materia está formada por átomos indivisibles. Los átomos de un elemento son distintos de los átomos de otro elemento

Más detalles

Ordenando Electrones. De qué forma? 2do Medio > Química Configuración Electrónica. Analiza la siguiente situación:

Ordenando Electrones. De qué forma? 2do Medio > Química Configuración Electrónica. Analiza la siguiente situación: do Medio > Química Ordenando Electrones Analiza la siguiente situación: Uno de los mayores logros de la ciencia de la primera mitad del siglo XX se dio en el área de la física, y fue el desarrollo de la

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

Con posterioridad el físico alemán Sommerfeld introdujo en el modelo la posibilidad de órbitas elípticas. Köningsberg, Munich, 1951

Con posterioridad el físico alemán Sommerfeld introdujo en el modelo la posibilidad de órbitas elípticas. Köningsberg, Munich, 1951 4. El paso de una órbita a otra supone la absorción o emisión de radiación. El átomo sólo absorberá o emitirá la radiación justa para pasar de una órbita a otra. Las órbitas de los electrones son estables

Más detalles

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada DINAMICA ESTRUCTURAL SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada Sistema sometido a cargas armónicas: Donde la carga p(t) tiene una forma senosoidal con amplitud P o y una frecuencia angular w Consideramos

Más detalles

GUÍA DIDACTICA CURSO FÍSICA 2º BACHILLERATO. PROFESOR: Alicia Blanco Pozos

GUÍA DIDACTICA CURSO FÍSICA 2º BACHILLERATO. PROFESOR: Alicia Blanco Pozos GUÍA DIDACTICA FÍSICA 2º BACHILLERATO CURSO 2016-17 PROFESOR: Alicia Blanco Pozos CONTENIDOS Los contenidos se organizan en 13 unidades didácticas distribuidos en cinco bloques de conocimiento: BLOQUE

Más detalles

ESQUEMA. De él cabe destacar el experimento que demostró que el modelo de Thompson era falso y los postulados que llevaron a que formulara su modelo:

ESQUEMA. De él cabe destacar el experimento que demostró que el modelo de Thompson era falso y los postulados que llevaron a que formulara su modelo: TEMA 2. ESTRUCTURA DE LA MATERIA.. MODELOS ATÓMICOS Dalton: Los átomos son indivisibles Thompson: Los átomos están formados por protones y neutrones. El átomo es una esfera de carga positiva y los electrones

Más detalles

radiación electromagnética

radiación electromagnética radiación electromagnética ondas propagándose en el espacio con velocidad c crestas amplitud l valles longitud de onda [ l]=cm, nm, μm, A Frecuencia=n=c/l [ n ]=HZ=1/s l= numero de ondas por unidad de

Más detalles

Apuntes del Modelo del átomo hidrogenoide.

Apuntes del Modelo del átomo hidrogenoide. Apuntes del Modelo del átomo hidrogenoide. Dr. Andrés Soto Bubert Un átomo hidrogenoide es aquel que tiene un solo electrón de carga e, rodeando un núcleo de carga +Ze. Átomos que cumplen esta descripción

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

PROCESOS INDUSTRIALES

PROCESOS INDUSTRIALES PROCESOS INDUSTRIALES HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura METROLOGÍA 2. Competencias Planear la producción considerando los recursos tecnológicos, financieros,

Más detalles

ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS

ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS 1.- Escriba la configuración electrónica de los siguientes iones o elementos: 8 O -2, 9 F - y 10 Ne, e indique el período y grupo de los elementos correspondientes.

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

EXTRUCTURA ATOMICA ACTUAL

EXTRUCTURA ATOMICA ACTUAL ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.

Más detalles

REDUCCIÓN DE VIBRACIONES

REDUCCIÓN DE VIBRACIONES REDUCCIÓN DE VIBRACIONES Vibraciones Mecánicas MC-571 Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería 1) Introducción Existen situaciones donde las vibraciones mecánicas pueden ser deseables

Más detalles

EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico.

EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico. EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico. Química 1º bachillerato El átomo 1 El átomo no es una partícula indivisible, sino que está

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

Aplicación de los criterios de espontaneidad a una reacción química completa

Aplicación de los criterios de espontaneidad a una reacción química completa Algunas reflexiones sobre el equilibrio químico a partir de consideraciones termodinámicas Prof. Marisa García Dra. María Antonia Grompone 1 Introducción En los programas de Química del Bachillerato Diversificado

Más detalles

El Modelo Moderno y resultados de nuestro interés

El Modelo Moderno y resultados de nuestro interés CLASES 3 Y 4 ESTRUCTURA ELECTRÓNICA DE LOS ELEMENTOS AL ESTADO FUNDAMENTAL. TABLA PERIÓDICA. ELECTRONEGATIVIDAD. El Modelo Moderno y resultados de nuestro interés Así es como el Modelo Moderno (MM) reemplazó

Más detalles

INFORME SECTOR. AIDO ARTES GRÁFICAS. Análisis de ciclo de vida de libros impresos

INFORME SECTOR.  AIDO ARTES GRÁFICAS. Análisis de ciclo de vida de libros impresos 2011 INFORME SECTOR www.ecodisseny.net Análisis de ciclo de vida de libros impresos INDICE 1. INTRODUCCIÓN 2. ANÁLISIS DE CICLO DE VIDA 3. ANÁLISIS DE CICLO DE VIDA DEL LIBRO 2 1. INTRODUCCIÓN El cálculo

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo.

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo. Slide 1 / 33 Slide 2 / 33 3 El número atómico es equivalente a cuál de los siguientes? Slide 3 / 33 A El número de neutrones del átomo. B El número de protones del átomo C El número de nucleones del átomo.

Más detalles

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1 Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS QUÍMICAS

PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS QUÍMICAS PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS QUÍMICAS 1.- DATOS INFORMATIVOS MATERIA: Química General I CARRERA: Química Analítica NIVEL: Primero

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S.

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S. UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S. PONDERACION DE EVALUACION EXAMENES ( 60 % ) - 1 era Evaluación

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA PROGRAMA DE ASIGNATURA

DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA PROGRAMA DE ASIGNATURA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA PROGRAMA DE ASIGNATURA NOMBRE DE LA MATERIA FÍSICA MODERNA CLAVE DE MATERIA FS 301 DEPARTAMENTO

Más detalles

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen.

A su vez, una molécula está compuesta por átomos. Cada uno de ellos posee unas propiedades diferentes en el interior de la molécula que constituyen. Constitución de la materia. Supongamos que cualquier sustancia de la naturaleza la dividimos en partes cada vez más pequeñas, conservando cada una de ellas las propiedades de la sustancia inicial. Si seguimos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

Respuestas del Control 1. Curso Noviembre 2008

Respuestas del Control 1. Curso Noviembre 2008 NOMBRE y APELLIDOS... NOTA: En los cálculos numéricos tenga en cuenta la precisión de las constantes y de las magnitudes que se dan y dé el resultado con el número de cifras significativas adecuado. La

Más detalles

LiceoTolimense Química Séptimo 1 Periodo ESTRUCTURA INTERNA DE LA MATERIA

LiceoTolimense Química Séptimo 1 Periodo ESTRUCTURA INTERNA DE LA MATERIA ESTRUCTURA INTERNA DE LA MATERIA Lectura comprensiva Desde la antigüedad los filósofos se preguntaban de qué estaban formadas las cosas que los rodeaban. Primero pensaron que la materia era continua, es

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

J.J Thomson propone el primer modelo de átomo:

J.J Thomson propone el primer modelo de átomo: MODELOS ATÓMICOS. DALTON En 1808, Dalton publicó sus ideas sobre el modelo atómico de la materia las cuales han servido de base a la química moderna. Los principios fundamentales de esta teoría son: 1.

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras

Más detalles

ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3)

ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3) ATOMO DE HIDROGENO I. Atomo de hidrógeno A. Descripción del sistema: Dos partículas que interaccionan por atracción de carga eléctrica y culómbica. 1. Ley de coulomb: a. En el sistema cgs en unidades de

Más detalles

E 1.3. LA LEY DE GAUSS

E 1.3. LA LEY DE GAUSS E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una

Más detalles

INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA.

INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA. CAPÍTULO 2 INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA. La radiación ionizante es aquella capaz de excitar y ionizar átomos en la materia con que interactúa. Entre las radiaciones ionizantes tenemos

Más detalles

PROBLEMAS RESUELTOS DE DISTRIBUCIÓN ELECTRONICA EN NIVELES, SUBNIVELES Y ORBITALES ATÓMICOS.

PROBLEMAS RESUELTOS DE DISTRIBUCIÓN ELECTRONICA EN NIVELES, SUBNIVELES Y ORBITALES ATÓMICOS. PROBLEMAS RESUELTOS DE DISTRIBUCIÓN ELECTRONICA EN NIVELES, SUBNIVELES Y ORBITALES ATÓMICOS. 1. Explique que indica el número cuántico magnético y el número cuántico de espín. Número cuántico magnético:

Más detalles

Capítulo 25. Rayos X

Capítulo 25. Rayos X Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes

Más detalles

2.2 GANANCIA, GANANCIA DIRECTIVA, DIRECTIVIDAD Y EFICIENCIA

2.2 GANANCIA, GANANCIA DIRECTIVA, DIRECTIVIDAD Y EFICIENCIA . GANANCIA, GANANCIA IRECTIVA, IRECTIVIA Y EFICIENCIA GANANCIA Otra medida útil para describir el funcionamiento de una antena es la ganancia. Aunque la ganancia de la antena está íntimamente relacionada

Más detalles

Problemario de Talleres de Estructura de la Materia. DCBI/UAM-I. Obra Colectiva del. / Revisión octubre del 2012 UNIDAD 2

Problemario de Talleres de Estructura de la Materia. DCBI/UAM-I. Obra Colectiva del. / Revisión octubre del 2012 UNIDAD 2 UNIDAD 2 CAPAS ELECTRÓNICAS Y TAMAÑO DE LOS ÁTOMOS, ENERGÍA DE IONIZACIÓN Y AFINIDAD ELECTRÓNICA 1.- De acuerdo al modelo atómico propuesto por la mecánica cuántica, consideras que tiene sentido hablar

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

Estructura de la materia y Sistema Periódico

Estructura de la materia y Sistema Periódico Estructura de la materia y Sistema Periódico 1 - Respecto el número cuántico «n» que aparece en el modelo atómico de Bohr indicar de manera razonada cuáles de las siguientes frases son correctas y cuáles

Más detalles

Astrofísica del Sistema Solar. Fuerzas no gravitatorias

Astrofísica del Sistema Solar. Fuerzas no gravitatorias Astrofísica del Sistema Solar Fuerzas no gravitatorias Fuerzas no gravitatorias: Fuerza de Lorentz. FNG en cometas debido a jets. Fuerzas debidas a radiación: - Presión de radiación. - Efecto Poynting-Robertson.

Más detalles

Corteza atómica: Estructura electrónica

Corteza atómica: Estructura electrónica Corteza atómica: Estructura electrónica Aunque los conocimientos actuales sobre la estructura electrónica de los átomos son bastante complejos, las ideas básicas son las siguientes: 1. Existen 7 niveles

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

Electricidad y Magnetismo. Ley de Coulomb.

Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es

Más detalles

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA.

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. 1.- Ciencia que estudia las características y la composición de los materiales,

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. 38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

RECOMENDACIÓN UIT-R S.1256

RECOMENDACIÓN UIT-R S.1256 Rec. UIT-R S.1256 1 RECOMENDACIÓN UIT-R S.1256 METODOLOGÍA PARA DETERMINAR LA DENSIDAD DE FLUJO DE POTENCIA TOTAL MÁXIMA EN LA ÓRBITA DE LOS SATÉLITES GEOESTACIONARIOS EN LA BANDA 6 700-7 075 MHz PRODUCIDA

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

G(θ) = máx{g 1 (θ), G 2 (θ)}

G(θ) = máx{g 1 (θ), G 2 (θ)} Rec. UIT-R F.1336 Rec. UIT-R F.1336 1 RECOMENDACIÓN UIT-R F.1336* DIAGRAMAS DE RADIACIÓN DE REFERENCIA DE ANTENAS OMNIDIRECCIONALES Y OTROS TIPOS DE ANTENAS DE SISTEMAS DE PUNTO A MULTIPUNTO PARA SU UTILIZACIÓN

Más detalles