Temas. Objetivo. Definición de autómata finito. Autómata finito determinístico y no determinístico. Autómata finito de estados mínimos 14:17

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Temas. Objetivo. Definición de autómata finito. Autómata finito determinístico y no determinístico. Autómata finito de estados mínimos 14:17"

Transcripción

1 0

2 Tems Definición de utómt finito Autómt finito determinístico y no determinístico Autómt finito de estdos mínimos Ojetivo Que el estudinte logre: 1) Identificr conceptos constructivos de l Teorí de l utómts. 2) Definir utómts finitos. 3) Aplicr los lgoritmos pr convertir AFND AFD y pr otener un AFD de estdos mínimos. 1

3 Autómt Dispositivo mecánico cpz de procesr cdens de símolos. Ddo un lenguje L definido sore un lfeto A y un cden x ritrri, determin si x L o x L. Un utómt tiene dos posiles recciones: Cden x Autómt SI Ls hilers son reconocids o ceptds NO Ls hilers son rechzds por el utómt Lenguje 2

4 3 Ls grmátics proporcionn un método pr generr cdens de un lenguje y pr reconocer cdens de un lenguje se hn descripto utómts de vrios tipos. GRAMÁTICAS LENGUAJES AUTÓMATAS Grmátics no restringids Lengujes Irrestrictos o recursivmente enumerles (Tipo 0) Máquins de Turing Grmátics sensiles l contexto Lengujes sensiles l contexto (Tipo 1) Autómts ligdos linelmente Grmátics lires de contexto Lengujes lires de contexto (Tipo 2) Autómts de pil Grmátics regulres Lengujes regulres (Tipo 3) Autómts finitos

5 Un utómt finito (AF) es un modelo de computción muy restringido, sin emrgo tiene un grn plicción en reconocimiento de ptrones. Es un dispositivo strcto que posee un número finito de estdos. Un AF cuent con un cint de entrd, un cez lector y un unidd de control (puede estr en un estdo en un instnte ddo). 4

6 5 Un AF es un quíntupl A =(Q,,, q 0, F) Q es un conjunto finito y no vcío de estdos es un lfeto finito (símolos de entrd) es un función de trnsición : Q x Q q 0 Q es el símolo de inicio F Q es el conjunto de estdos finles

7 6 Digrm de trnsición Un estdo Estdo de inicio Estdo de ceptción Un trnsición EJEMPLO q 0 A = ({q 0, q 1 ), {, },, q 0, {q 0, q 1 }) con: (q 0,) = q 0 (q 0, ) = q 1 (q 1,) = q 1 L(A) = { n m / n,m 0} q 1

8 Tl de trnsición En cd fil se coloc un estdo y se usn ls columns pr los símolos de entrd. En l intersección de fil y column se coloc el conjunto de estdos que pueden ser lcnzdos por un trnsición del estdo con l entrd. A veces, se utiliz un vector uxilir cuyos elementos son los distintos estdos finles. EJEMPLO A = ({q 0, q 1 ), {, },, q 0, {q 0, q 1 }) con: (q 0,) = q 0 (q 0, ) = q 1 (q 1,) = q 1 Tl de Trnsición q 0 q 0 q 1 q q 1 q 0 q 1 L(A) = { n m / n,m 0} Estdos Finles q 0 q 1 7

9 L trnsición direct define trnsiciones de estdos deido l procesmiento de un símolo de entrd, por ejemplo, (q 0,) = q 1. L función de trnsición se puede extender e que define trnsiciones de estdos (múltiples) deido l procesmiento de un hiler de símolos de entrd. Cso se: (q, )=q Inducción: e(q,x)= ( e(q,x),) L función de trnsición extendid es un proyección: Ejemplo e : Q x * Q q 0 q 1 e (q 0,)= ( e (q 0,),)= ( ( (q 0,),),)= ( (q 0,),)= (q 1,)= q 1 8

10 9 Un utómt finito A =(Q,,,q 0,F) cept un hiler x * si A, lee todos los símolos de x, comenzndo en el estdo q 0, leyendo primero el símolo de l izquierd hst que se pre en un estdo finl. Un lenguje reconocido por un utómt se define: L(A)= x * / e (q 0,x) F Los lengujes ceptdos por AF son los regulres.

11 AF determinístico (AFD): si pr todo (q,) Q x, (q,) 1. Un AFD tiene lo sumo un trnsición desde cd estdo. AF No determinístico (AFND): conjunto de estdos finles F Q estdo inicil, q 0 Q A = (Q,,, q 0, F) función de trnsición : Q 2 Q lfeto conjunto de estdos Extensión de cdens ( : Q * 2 Q ) Es decir, un proyección de prejs (estdo, símolo de entrd) suconjuntos de Q en vez de elementos individules de Q. (q,) > 1. Más de un función de trnsición pr el símolo desde el estdo q

12 L = {xyz / x,z {0,1}*, y {00,11}} ER= (0/1)* (00/11) (0/1)* 0,1 q 0 0,1 0 q 1 0 q 2 1 q 3 1 A = ({q 0, q 1, q 2, q 3 ), {0,1},, q 0, {q 2 }) con: (q 0,0) = {q 0, q 1 } (q 3,0) = (q 0, 1) = {q 0, q 3 } (q 3, 1) = {q 2 } (q 1,0) = {q 2 } (q 1,1) = (q 2, 0) = {q 2 } (q 2,1) = {q 2 } En los Autómts Finitos, todo se puede resolver con un Autómt Finito Determinístico. TEOREMA: Se L un lenguje ceptdo por un AFND. Entonces existe un AFD que cept el mismo lenguje L. L(AFND) = L(AFD)

13 PROCEDIMIENTO DE CONVERSIÓN DE AFND A AFD: 1) Se especificn ls funciones de trnsición. 2) Si (q 0,) = q 0,q 1,,q n '(q 0,) = q n, con A' 3) Se otienen ls funciones de trnsición pr los nuevos estdos donde: '(q n,) = (q 0,) (q 1,)... (q n,) 4) Se determin el conjunto F' de estdos finles q n F' q 0 F q 1 F... q n F con F y F' conjunto de estdos finles de A y A'. A = ({q 0,q 1,q 2 }, {,},,q 0, {q 2 }) q 0 q 1 q 2 Se otienen ls funciones de trnsición pr los nuevos estdos: '(q 01,) = (q 0,) (q 1,) = q 01 = q 01 '(q 01,) = (q 0,) (q 1,) = q 012 = q 012 '(q 012,) = (q 0,) (q 1,) (q 2,) = q 01 = q 01 '(q 012,) = (q 0,) (q 1,) (q 2,) = q 012 =q 012 (q 0,) = {q 0, q 1 } '(q 0,) = q 01 (q 1,) = {q 0, q 1, q 2 } '(q 1,)= q 012 (q 0,) = (q 1,) = (q 2,) = (q 2,) = A = ({q 0,q 01,q 012 }, {,},, q 0, {q 012 }) q 0 q 01 q

14 Procedimiento pr encontrr un AFD de estdos mínimos: 1) Se cre un estdo trmp pr quells funciones de trnsición no definids. Ls funciones de trnsición del estdo trmp tmién se definen. 2) Se construye un mtriz tringulr superior. Se mrc con un X los estdos no equivlentes. Inicilmente se mrcn ls entrds correspondientes un estdo finl y un estdo no finl, que son no equivlentes. 3) Pr cd pr de estdos p y q ún no mrcdos se prue si por trnsitividd son tmién no equivlentes. Pr cd símolo de entrd, se considern los pres de estdos: r = (p,) s = (q,) Si l entrd (r,s) en l tl tiene un X tmién se coloc un X en l entrd (p,q). Si l entrd (r,s) no está ún mrcd entonces el pr (p,q) se uic en l list de esper. Más delnte, si (r,s) recie un X entonces cd pr en l list de esper socid con (r,s) tmién recie un X. 4) Todos los estdos no mrcdos son equivlentes. Se construye el utómt finito determinístico de estdos mínimos equivlente l ddo

15 14 14 A = ({1,2,3,4,5,}, {,},, 1, {2,3,5}) (1,) = 1 (1,) = 2 (2,) = 4 (2,) = 3 (3,) = 4 (3,) = 3 (4,) = 5 (4,) = (5,) = (5,) = 5 1) Se cre un estdo trmp pr ls trnsiciones no especificds: (4,) = T (5,) = T (T,) = T (T,) = T / T 4 5

16 2) Se construye l mtriz tringulr superior y se mrcn los estdos no equivlentes / T T 1 X X X 2 X X 3 X X 4 X 5 X 15 15

17 3) Pr cd pr de estdos p y q ún no mrcdos se prue si por trnsitividd son tmién no equivlentes T 1 X X X X X 2 X X X 3 X X X 4 X X 5 Son X equivlentes / T 4 5 Se intent mrcr (1,4) (1,) = 1 (1,5) con X (4,) = 5 Se mrc (1,4) Se intent mrcr (2,5) (2,) = 4 (2,) = 3 (5,) = T (5,) = 5 List de esper Se intent mrcr (1,T) (1,) = 1 (1,) = 2 (T,) = T (T,) = T Se intent mrcr (2,3) (2,) = 4 (2,) = 3 (3,) = 4 (3,) = 3 (2,T) con X Se mrc (1,T) Se intent mrcr (4,T) (4,) = 5 (5,T) con X (T,) = T Se mrcn (4,T), (2,5) Se intent mrcr (3,5) (3,) = 4 (3,) = 3 (5,) = T (5,) =

18 17 17 Los estdos 2 y 3 que no están mrcdos significn que son equivlentes. Autómt inicil / T 4 5 Autómt de Estdos Mínimos

19 Permiten relizr cálculos prtir de un cden de entrd, o se, trducen un cden de entrd en un cden de slid. x Autómt Finito Trductor x Un AFD es un 7-upl Lenguje Regulr A =(Q,,, q 0, F,O, ) Q,,, q 0, F coinciden con l definición de utómts finitos. O es un conjunto finito de símolos de slid. es l función (posilemente prcil) de slid : Q x O* En l representción gráfic de un trductor finito, el vlor de se greg como un nuevo rótulo sore los rcos. Se (q, ) = q' y (q, ) = y O*; entonces y rotuln el rco que conect q y q'

20 Función de trducción pr cdens L extensión nturl de, * : Q x * O* se define: *(q, ) = *(q, x) = *(q, x). ( e * (q, x), ) L diferenci entre y * es que se define desde un estdo y un símolo del lfeto, y * se define desde un estdo y un cden de símolos. EJEMPLO: Autómt finito trductor que clcul f(x) = 2x + 3 pr x N, x > 0, x representdo en unrio. x=1 trduce x=2 trduce A = ({q 0, q 1 ), {1},, q 0, {q 1 }, {1}, ) con: q q 1 (q 0,1) = q 1 (q 1,1) = q 1 (q 0,1)=11111 (q 1,1)=

21 Autómt Finito Autómt Finito Determinístico Alg. pr convertir Autómt Finito No Determinístico Autómt Finito de Estdos Mínimos Métodos Autómt Finito Expresiones Regulres Grmátics Regulres Importnci Práctic: se usn pr los Anlizdores Léxicos

Autómatas Finitos. Programación II Margarita Álvarez 0,1 0,1. q 3

Autómatas Finitos. Programación II Margarita Álvarez 0,1 0,1. q 3 Autómts Finitos 0,1 0,1 q 0 0 q 1 0 q 2 1 q 3 1 Progrmción II Mrgrit Álvrez Autómts Dispositivo mecánico cpz símolos. de procesr cdens de Ddo un lenguje L definido sore un lfeto A y un cden x ritrri, determin

Más detalles

AUTOMATAS FINITOS CIENCIAS DE LA COMPUTACION I 2009

AUTOMATAS FINITOS CIENCIAS DE LA COMPUTACION I 2009 AUTOMATAS FINITOS Un utómt finito es un modelo mtemático de un máquin que cept cdens de un lenguje definido sore un lfeto A. Consiste en un conjunto finito de estdos y un conjunto de trnsiciones entre

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid.

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid. Dpto. de Informátic (ATC, CCIA y SI). Univiersidd de Vlldolid. TEORÍA DE AUTÓMATAS Y ENGUAJES FORMAES II Ingenierí Técnic en Informátic de Sistems. Curso 20-2 AUTÓMATAS DE PIA. Dd l siguiente grmátic independiente

Más detalles

Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado)

Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado) CC2A Computción II Auxilir 5 Iván Bustmnte Clse Auxilir 5 Aútomts Finitos Determinísticos (Digrms de Estdo) Un utómt finito determinístico es un modelo de un sistem que tiene un cntidd finit de estdos

Más detalles

1. Indicar el lenguaje aceptado por los siguientes autómatas :

1. Indicar el lenguaje aceptado por los siguientes autómatas : Universidd Rey Jun Crlos Grdo en Ingenierí de Computdores Máquins Secuenciles, Autómts y Lengujes Hoj de Prolems: Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio, ( ) vnzdo.. Indicr

Más detalles

Exámenes de Teoría de Autómatas y Lenguajes Formales. David Castro Esteban

Exámenes de Teoría de Autómatas y Lenguajes Formales. David Castro Esteban Exámenes de Teorí de Autómts y Lengujes Formles Dvid Cstro Esten Teorí de Autómts y Lengujes Formles Ingenierí Técnic en Informátic de Sistems Ferero 24 Prolem (2 ptos.) Otener expresiones regulres pr

Más detalles

Autómatas sobre palabras infinitas

Autómatas sobre palabras infinitas Autómts sobre plbrs infinits Mrcelo Arens M. Arens Autómts sobre plbrs infinits 1 / 46 Teorí de utómts sobre plbrs infinits Los utómts sobre plbrs infinits son un herrmient fundmentl pr l verificción forml.

Más detalles

Tema 25. AP con dos pilas. Más allá del autómata de pila. No-LLC. Máquina de Turing, Problema del paro y Tesis de Church

Tema 25. AP con dos pilas. Más allá del autómata de pila. No-LLC. Máquina de Turing, Problema del paro y Tesis de Church Tem 25 Máquin de Turing, Prolem del pro y Tesis de Church No-LLC LLC no-miguos LLC-Det LR Pl mrk Pl i i c i Dr. Luis A. Pined ISBN: 970-32-2972-7 LLC Proceso de i i c i : AP con dos pils Push tods ls s

Más detalles

Fundamentos de Informática I. ITI Sistemas - (C) César Llamas, UVA, Representación. funcionamiento. funcionamiento.

Fundamentos de Informática I. ITI Sistemas - (C) César Llamas, UVA, Representación. funcionamiento. funcionamiento. Autómts Fundmentos de Informátic I. ITI Sistems - (C) Césr Llms, UVA, 24 Autómts Introducción Representción AF determinist y lengujes funcionmiento δ - mplid AF no determinist no determinismo funcionmiento

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

Minimización de AFDs, método y problemas

Minimización de AFDs, método y problemas Minimizción de Fs, método y prolems Elvir Myordomo, Universidd de Zrgoz 8 de octure de. Resultdos sore utómts determinists mínimos El F mínimo existe y es único, es decir Teorem. do unf M = (Q,Σ,δ,q,F),

Más detalles

Tema 2: Lenguajes regulares

Tema 2: Lenguajes regulares Tem : Lengujes regulres Ide de utómt Autómts finitos y grmátis regulres Autómts finitos determinists Autómts finitos no determinists Grmátis regulres (y lineles) l dereh Exresiones regulres Exresiones

Más detalles

TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA

TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA 3.1.- Lenguje regulr Un lenguje regulr es un lenguje forml que puede ser definido por medio de un mecnismo regulr, son mecnismos regulres: ls expresiones regulres,

Más detalles

NOTAS DE CLASE TEORIA DE LA COMPUTACIÓN. Autora: Dra. Cecilia Poblete Ibaceta. Revisión Técnica: Ing. David Jiménez Mimila

NOTAS DE CLASE TEORIA DE LA COMPUTACIÓN. Autora: Dra. Cecilia Poblete Ibaceta. Revisión Técnica: Ing. David Jiménez Mimila NOTAS DE CLASE TEORIA DE LA COMPUTACIÓN Autor: Revisión Técnic: Ing. Dvid Jiménez Mimil Edición Corregid y Aumentd de Enero de 2006 TABLA DE CONTENIDOS CONJUNTOS... 3 RELACIONES Y FUNCIONES.... 10 GRAMÁTICAS...

Más detalles

Relación de ejercicios hechos en clase en los últimos días previos al examen de febrero

Relación de ejercicios hechos en clase en los últimos días previos al examen de febrero Relción de ejercicios hechos en clse en los últimos dís previos l exmen de ferero De cuerdo con l definición de APND, propón 5 ejemplos de utómt con pil que cepten: - el lenguje Σ * ({f}, Σ, Σ, { ((f,,ε),

Más detalles

June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista

June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista s s no s s s DSIC - UPV June 24, 2011 (DSIC - UPV) s s June 24, 2011 1 / 41 (AFD) s s no s (AFD) Un (AFD) es un 5-tupl de l siguiente form: A = (Q,Σ,δ, q 0, F), siendo: Q un conjunto finito de estdos Σ

Más detalles

Examen Parcial de Autómatas y Lenguajes Formales 12 de diciembre de 2003

Examen Parcial de Autómatas y Lenguajes Formales 12 de diciembre de 2003 Exmen Prcil de Autómts y Lengujes Formles 2 de diciemre de 23 Resolver los siguientes prolems. Tiempo 2 hors.. Dr un grmátic y demostrr que es correct pr L = { m n 2m < n < 3m}. 2. Dr un utómt de pil determinist

Más detalles

Una Introducción a la Teoría de Autómatas sobre Arboles

Una Introducción a la Teoría de Autómatas sobre Arboles Un Introducción l Teorí de Autómts sobre Arboles IIC3800 IIC3800 Un Introducción l Teorí de Autómts sobre Arboles 1 / 40 Arboles etiquetdos Σ: Alfbeto (conjunto finito de símbolos) Definición (Arbol binrio)

Más detalles

Ejercicios de Lenguajes Gramáticas y Autómatas. Curso 2004 / 2005

Ejercicios de Lenguajes Gramáticas y Autómatas. Curso 2004 / 2005 Ejercicios de Lengujes Grmátics y Autómts Curso 24 / 25 Lengujes Regulres... 2 A. Ejercicio ásicos... 2 B. Ejercicios de exmen... 5 Lengujes Independientes del Contexto... 9 C. Ejercicio ásicos... 9 D.

Más detalles

Minimización de autómatas. Minimización de autómatas. Ejemplo 1. Ejemplo 2. b b

Minimización de autómatas. Minimización de autómatas. Ejemplo 1. Ejemplo 2. b b Minimizción de utómts Construcción de un AFDt con un número de estdos mínimo que se equivlente un AFDt ddo. Definiciones previs: Estdos ccesiles: es ccesile q ccesile s Σ, δ(q, s) es ccesile Estdos k-equivlentes

Más detalles

Problemas de Lenguajes y Autómatas

Problemas de Lenguajes y Autómatas Trjo VIII Semestre A2005 Prolems Prolems de Lengujes y Autómts 1. Pr los lengujes ddos sore Σ = {, } construir un expresión regulr de él y un Autómt Finito que lo cepte: ) L = {w w tiene un numero pr de

Más detalles

En la definición clásica [85], los autómatas a pila son considerados tuplas. movimientos o transiciones válidos del autómata.

En la definición clásica [85], los autómatas a pila son considerados tuplas. movimientos o transiciones válidos del autómata. Cpítulo 5 Autómts pil Los utómts pil son máquins bstrcts que reconocen exctmente l clse de los lengujes independientes del contexto. En este cpítulo introducimos este tipo de utómts, que servirán de bse

Más detalles

Lenguajes y Autómatas finitos

Lenguajes y Autómatas finitos Trjo VII Semestre A2005 Teorí Lengujes y Autómts finitos 1. Lengujes. Conceptos fundmentles Se Σ un colección finit de símolos. Este conjunto de símolos se denomin lfeto y los elementos letrs. Un plr sore

Más detalles

Relaciones de equivalencia

Relaciones de equivalencia Relciones de equivlenci. Un relción de equivlenci en un conjunto X se puede interpretr como el suconjunto de X X ddo por (, ) X X }. Enúnciesen ls propieddes de l relción de equivlenci en términos de dicho

Más detalles

EJERCICIOS del TEMA 2: Lenguajes Regulares

EJERCICIOS del TEMA 2: Lenguajes Regulares EJERCICIOS de MAC 1 ALF (Tem 2) Curso 2010/2011 EJERCICIOS del TEMA 2: Lengujes Regulres Sore AFDs (utómts finitos determinists): 1. Rzon l vercidd o flsedd de l siguientes firmción, poyándote en l teorí

Más detalles

Teoría de Autómatas y Lenguajes Formales. Propiedades de los lenguajes regulares

Teoría de Autómatas y Lenguajes Formales. Propiedades de los lenguajes regulares Teoí de Autómts y engujes Fomles Popieddes de los lengujes egules José M. Sempee Deptmento de Sistems Infomáticos y Computción Univesidd Politécnic de Vlenci Popieddes de los lengujes egules. Algunos conceptos

Más detalles

2 Contents. 8. Formas normales Autómatas de Pila 118. Chapter 3. Máquinas de Turing Definición y termininología

2 Contents. 8. Formas normales Autómatas de Pila 118. Chapter 3. Máquinas de Turing Definición y termininología Contents Chpter 1. Autómt finito 5 1. Alfbetos y lengujes 5 2. Operciones 7 3. Operciones con lengujes 9 4. Numerbilidd 16 5. Lengujes Regulres y Expresiones Regulres 19 6. Autómts finitos determinists

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

AUTÓMATAS PUSH-DOWN Y MÁQUINAS DE TURING

AUTÓMATAS PUSH-DOWN Y MÁQUINAS DE TURING 1 FACULTAD REGIONAL ROSARIO AUTÓMATAS PUSH-DOWN Y MÁQUINAS DE TURING GUÍA TEÓRICO-PRÁCTICA PARA ALUMNOS DE LA CÁTEDRA SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES DE LA CARRERA DE INGENIERÍA EN SISTEMAS DE INFORMACIÓN

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

Procesadores del Lenguaje I. Antonio Falcó

Procesadores del Lenguaje I. Antonio Falcó Procesdores del Lenguje I Antonio Flcó 2 Índice generl I Preliminres 5 1. Alfbetos y Lengujes 7 1.1. Cdens y Lengujes.............................. 7 1.2. Operciones con lengujes...........................

Más detalles

Lenguajes Regulares. Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza. Última revisión: Feb.

Lenguajes Regulares. Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza. Última revisión: Feb. Lengujes Regulres Deprtmento de Informátic e Ingenierí de Sistems C.P.S. Universidd de Zrgoz Últim revisión: Fe. 2003 LengujesRegulres..ppt 27/03/2006 1 Índice Prolem de especificción de lengujes Lengujes

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Además de las operaciones tradicionales, es posible expresar otras operaciones binarias. Tabla 1.1. Operación AND.

Además de las operaciones tradicionales, es posible expresar otras operaciones binarias. Tabla 1.1. Operación AND. Grupos y Cmpos Definición de operción inri Operciones como l sum, rest, multiplicción o división de números son considerds operciones inris, y que socin un pr de números con un resultdo. En generl, un

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

AUTÓMATAS FINITOS y LENGUAJES REGULARES

AUTÓMATAS FINITOS y LENGUAJES REGULARES Dpto. de nformátic (ATC, CCA y LS. Universidd de Vlldolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES ngenierí Técnic en nformátic de Sistems. Curso 2011-12. AUTÓMATAS FNTOS y LENGUAJES REGULARES 1. Sen

Más detalles

Ambigüedad. Ambigüedad. Tema 16. Una gramática ambigua. Una gramática ambigua. Una gramática ambigua

Ambigüedad. Ambigüedad. Tema 16. Una gramática ambigua. Una gramática ambigua. Una gramática ambigua Ambigüedd em 16 Ambigüedd Dr. Luis A. Pined SBN: 970-32-2972-7 Si un grmátic gener más de un estructur prtir de l mism riz y con l mism cosech (más de un estructur pr l mism cden), dich grmátic es mbigu

Más detalles

ANÁLISIS RISI 2(2), COMPARATIVO (2005) ENTRE UN ANALIZADOR SINTÁCTICO LL Y UN ANALIZADOR SINTÁCTICO LR PARA UN LENGUAJE FORMAL

ANÁLISIS RISI 2(2), COMPARATIVO (2005) ENTRE UN ANALIZADOR SINTÁCTICO LL Y UN ANALIZADOR SINTÁCTICO LR PARA UN LENGUAJE FORMAL ANÁLISIS RISI 2(2), COMPARATIVO 60-68 (2005) ENTRE UN ANALIZADOR SINTÁCTICO LL Y UN ANALIZADOR SINTÁCTICO LR PARA UN LENGUAJE FORMAL Rev. investig. sist. inform. Fcultd de Ingenierí de Sistems e Informátic

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1

Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1 Autómts Lengujes regulres Autómts no determinists Cerrdur Autómts finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS Frncisco Hernández Quiroz Deprtmento de Mtemátics Fcultd

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Clase 13: Derivación de gramáticas y ambigüedad

Clase 13: Derivación de gramáticas y ambigüedad olicitdo: Ejercicios 11: Derivciones de grmátics y mbigüedd M. en C. Edgrdo Adrián Frnco Mrtínez http://computcion.cs.cinvestv.mx/~efrnco @efrnco_escom edfrncom@ipn.mx 1 Contenido Derivción Ejemplo 01

Más detalles

Inferencia Gramatical

Inferencia Gramatical 3 Inferenci Grmticl 3.1 Introducci n L utilizci n en l pr ctic de los mžtodos sint cticos de reconocimiento de forms viene condiciond, no s lo por l necesidd de tener resuelt l etp de representci n, que

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍAS

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍAS UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍAS PROF. ING. GRACIELA BARCHINI DE GIMÉNEZ PROF. ING. MARGARITA ÁLVAREZ DE BENÍTEZ TEORÍA DE LA COMPUTABILIDAD 1. Determine

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

Aprendizaje y Percepción. Tema 8: Métodos Sintáctico/Estructurales: Modelos de Markov

Aprendizaje y Percepción. Tema 8: Métodos Sintáctico/Estructurales: Modelos de Markov prendizje y Percepción Fcultd de Informátic Universidd Politécnic de Vlenci Tem 8: Métodos Sintáctico/structurles: lfons Jun, nrique Vidl, Roberto Predes, Jorge Civer DSIC UPV: nero, Índice Introducción:

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

AUTÓMATAS FINITOS (*) Autómatas finitos no deterministas

AUTÓMATAS FINITOS (*) Autómatas finitos no deterministas Vol. (6) 1: pp. 61-70 CONVERSIÓN DE UN AFN A UN AFD (1) Edgr Ruiz L. (2) Edurdo Rffo L. RESUMEN El rtículo present l conversión de un utómt finito no determinist (AFN) un utómt finito determinist (AFD),

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1 MÉTODO DE KARNAUGH Jesús Pizrro Peláez MÉTODO DE KARNAUGH... 1 1. INTRODUCCIÓN... 1 2. MÉTODO DE KARNAUGH... 2 3. EJEMPLO DE APLICACIÓN (I)... 4 4. ESTADOS NO IMPORTA EN LAS FUNCIONES LÓGICAS... 6 5. EJEMPLO

Más detalles

1. Principios de Realidad y Localidad formulados por EPR (1935). 2. La paradoja EPR. 3. De la teoría a los experimentos: Desigualdades de Bell

1. Principios de Realidad y Localidad formulados por EPR (1935). 2. La paradoja EPR. 3. De la teoría a los experimentos: Desigualdades de Bell L PRDOJ EPR Y LS DESIGULDDES DE ELL. Principios de Relidd y Loclidd formuldos por EPR 935. p y p. L prdoj EPR. 3. De l teorí los experimentos: Desigulddes de ell 964. 4. Demostrción de l desiguldd HSH.

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

3 HERRAMIENTAS DE MATEMÁTICAS

3 HERRAMIENTAS DE MATEMÁTICAS HERRAMIENAS DE MAEMÁICAS Entre ls operciones mtemátics más comunes se encuentrn: Sum, Rest, Multiplicción, División, Elevción Potencis Etrcción de Ríces, que se indicn con los signos siguientes: -El signo

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES ) Resolver el siguiente sistem de ecuciones lineles t t z emplendo el método de Guss utilizndo trnsformciones elementles de fils En qué csos es comptible? b) Relcionr ls mtrices

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Daniel Montoya Profesor de Matemáticas

Daniel Montoya Profesor de Matemáticas Te doy l ienvenid mi págin, est está conceid como complemento l presentción del desrrollo forml de los contenidos en clses. Aquí se exponen ls mteris en form secuencil los progrms de mtemátics propios

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción l Lógic y l Computción Prte III: Lengujes y Autómts Autores: Alejndro Tiroschi y Pedro Sánchez Terrf Contenidos 1 Introducción 1 2 Lengujes y Autómts 3 2.1 Cdens, lfetos y lengujes.............................

Más detalles

Algoritmo Tipo «Estrella» Para Resolver en Paralelo un Sistema de Ecuaciones Lineales Utilizando el Método de Householder

Algoritmo Tipo «Estrella» Para Resolver en Paralelo un Sistema de Ecuaciones Lineales Utilizando el Método de Householder Algoritmo Tipo «Estrell» Pr Resolver en Prlelo un Sistem de Ecuciones Lineles Utilizndo el Método de Householder M. en C. Héctor Smuel Grcí Sls Profesor Investigdor del CIDETEC- IPN M. en C. Teodoro Alvrez

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

3. RECTA REAL. 3.1 Intervalos reales. Curso de Apoyo en Matemática

3. RECTA REAL. 3.1 Intervalos reales. Curso de Apoyo en Matemática Curso de Apoyo en Mtemátic. RECTA REAL Es muy común mnejrse en l vid cotidin con números que osciln en ciertos rngos. Muchos de los fenómenos que se producen en l nturlez no tienen soluciones excts, y

Más detalles

C a r ta del Err a n t e

C a r ta del Err a n t e C r t del Err n t e c r i t e r i o s d e l e d i c i ó n p e R e d e r s K r l V r g s T l l e r de Diseño Gr á f i c o 6ª Et p. 2013 Visulizción de los contenidos Portd Texto Principl Imágenes Nots iniciles

Más detalles

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos: Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324

Nombre de la asignatura : Lenguajes y Autómatas. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB- 9324 . D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Lenguajes y Autómatas Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB- 9 Horas teoría-horas práctica-créditos

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 200-20 MATERIA: TECNOLOGÍA INDUSTRIAL II INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

Álgebra de Boole y circuitos con puertas lógicas

Álgebra de Boole y circuitos con puertas lógicas Tem 3 Álger de Boole y circuitos con puerts lógics Los circuitos que componen un computdor son muy diversos: los hy destindos portr l energí necesri pr ls distints prtes que componen l máquin y los hy

Más detalles

N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA

N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA N I 00.02.52 Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA Plegdo de plnos DESCRIPTORES: Plegdo de plnos. N O R M A N I 00.02.52 Septiembre de 1999 EDICION: 1ª I B E R D R O L A Plegdo de plnos Indice

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles