Teóricas de Análisis Matemático (28) Práctica 7 Optimización

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teóricas de Análisis Matemático (28) Práctica 7 Optimización"

Transcripción

1 Teóricas de Análisis Matemático (8) Práctica 7 Optimización Práctica 7 Parte Optimización Problemas de optimización Ejemplo Descomponer el número 6 en dos sumandos positivos de modo que el producto de uno de ellos por el cuadrado del otro sea máimo Si notamos con a uno de los sumandos en los que se descompone 6, el otro debe ser 6 Como ambos son positivos, se tiene que 0 y6 0, o sea que 0 6 Queremos hallar el valor de en el que la función, p()(6) 6 alcanza su valor máimo La función p es derivable en y por lo tanto, lo es en el intervalo (0;6) Sabemos que los etremos locales de p se encuentran en los donde p() 0 Calculamos p()(6) 7 () Como p() 0 () 0 0 o = y sólo estamos estudiando la función en el intervalo (0;6), el único punto crítico es = Dado que p es continua y que tiene un único cero en el intervalo (0;6), por el teorema de Bolzano podemos afirmar que, tanto en (0;) como en (;6), el signo de p es constante Por lo dicho anteriormente para conocer el signo de p, basta con calcularlo en un valor particular de cada intervalo En (0;), elegimos Como p() 0, resulta que p() 0 para todo (0;) Esto implica que p es estrictamente creciente en (0;] En (;6), elegimos 5 Como p(5) 5( ) 0, resulta que p() 0 para todo (;6) Esto implica que p es estrictamente decreciente en [;6) Área de Matemática Ciclo Básico Común Universidad de Buenos Aires

2 Teóricas de Análisis Matemático (8) Práctica 7 Optimización A partir de esta información acerca del crecimiento y del decrecimiento de p, podemos afirmar que en, p alcanza un máimo local y dicho máimo vale continuación un gráfico aproimado de la función p p() 6 Damos a Los dos sumandos en los que hay que dividir 6 son y Ejemplo En el triángulo isósceles de base y altura 0, se inscribe un rectángulo tal que dos de sus vértices pertenecen a la base del triángulo y los otros dos pertenecen uno a cada uno de los otros dos lados Calcular las dimensiones que debe tener el rectángulo para que su área sea máima Graficamos el triángulo con sus vértices en los puntos (0,0), ( 6,0) y (6,0) 5 La ecuación de la recta por (0,0), y (6,0) es y 0 Por la simetría de la figura, para calcular el área del rectángulo inscrito en el triángulo, alcanza con considerar los valores de (0;6) Así, el área del rectángulo es 5 0 a() base altura= 0 0 Para que eista un rectángulo en las condiciones del problema, debe ocurrir que 0 6 Queremos hallar el valor de, en el que la función 0 a() 0, Área de Matemática Ciclo Básico Común Universidad de Buenos Aires

3 Teóricas de Análisis Matemático (8) Práctica 7 Optimización alcanza su valor máimo La función a es derivable en y por lo tanto, lo es en el intervalo (0;6) Sabemos que los etremos locales de a se encuentran en los donde a() 0 Calculamos Entonces 0 a () 0 0 a() 0 0 Dado que a es continua en (0;6) y que en dicho intervalo tiene un único cero, utilizamos el teorema de Bolzano y podemos afirmar que (0;6) queda dividido en dos intervalos con signo constante en cada uno de ellos Los intervalos para analizar son (0;) y (;6) y, por lo dicho anteriormente, para conocer el signo de a, basta con calcularlo en un valor particular de cada intervalo En (0;), elegimos Como a () 0 0 Esto implica que a es estrictamente creciente en (0;] En (;6), elegimos Como a () 0 0, resulta que a() 0 para todo (0;), resulta que a() 0 para todo (;6) Esto implica que a es estrictamente decreciente en [;6) Así, en, la función alcanza un máimo local Las dimensiones del rectángulo de área máima corresponden y tenemos que el rectángulo tiene base = 6 y altura = En este caso, la función a() es una cuadrática con coeficiente principal negativo, por lo tanto alcanza su máimo en el vértice Ejemplo Se consideran las rectas que pasan por el punto (,) y que al cortar a los semiejes positivos determinan triángulos rectángulos Entre todas estas rectas, hallar aquella que (a) genera un triángulo de área mínima; (b) hace mínima la suma de las longitudes de los catetos Área de Matemática Ciclo Básico Común Universidad de Buenos Aires

4 Teóricas de Análisis Matemático (8) Práctica 7 Optimización Sea m la pendiente de una recta que pasa por (,) Observemos que para que la recta corte a los semiejes positivos debe ser m 0 Las rectas que estamos considerando pasan por el punto (,), luego son de la forma y m( ), con m 0 Estas rectas cortan al eje, cuando y 0, luego, m m m y cortan al eje y cuando 0, o sea y m (a) El área del triángulo en función de la pendiente de la recta (m) es base altura m ( m ) A()( m ) m m m Calculamos la derivada de la función área respecto de la variable m (m ) ( m ) m ( )(8 m m ) m A () m m m ( m)( m ) m Dado que m( ;0), el único valor en el que se anula la derivada es m Como A es continua, utilizando el teorema de Bolzano podemos afirmar que su único cero divide a ( ;0) en dos intervalos en los que el signo de Aes constante Los intervalos para analizar son ; y ;0, por lo dicho anteriormente para conocer el signo de A, basta con calcularlo en un valor particular de cada intervalo En ;, elegimos m Como (( ) )(( ) ) A( ) 0, resulta que ( ) A() m 0 para todo En ;0 elegimos m m ; Esto implica que a es estrictamente decreciente en ; Área de Matemática Ciclo Básico Común Universidad de Buenos Aires

5 Teóricas de Análisis Matemático (8) Práctica 7 Optimización Como A 0 resulta que A() m 0 para todo en ;0 m ;0 Esto implica que A es estrictamente creciente De esto se deduce que la función área tiene un mínimo local en m Dado que la función área es continua en ( ;0), es estrictamente decreciente a la izquierda de m y estrictamente creciente a la derecha de, concluimos que A tiene un mínimo absoluto en m y vale A 7 Es decir que la pendiente de la recta que pasa por (,) y hace mínima el área del triángulo es m, la ecuación de dicha recta es y 8 (b) Se quiere ahora minimizar la suma de las longitudes de los catetos de los triángulos formados por las rectas que pasan por el punto (,) y los semiejes positivos Utilizando los cálculos anteriores, y llamando L a la suma de las longitudes de los catetos en función de la pendiente de la recta, tenemos que L() m ( ) m m m m Calculamos la derivada de L respecto de m m L() m, m m, donde m( ;0) Área de Matemática Ciclo Básico Común Universidad de Buenos Aires 5

6 Teóricas de Análisis Matemático (8) Práctica 7 Optimización y buscamos los valores que anulan la derivada L() m 0 m 0 m o m Como m( ;0), el único punto crítico es m Utilizando el teorema de Bolzano, analizamos el signo de L en los intervalos ;0 evaluando en un punto en cada caso ; y en En ;, elegimos m Como L() 5 0, resulta que L() m 0 para todo m ; Esto implica que L es estrictamente decreciente en ; En ;0 elegimos m Como para todo L 7 0, tenemos que L() m 0 m ;0 Así, resulta que L es estrictamente creciente en ;0 De esto se deduce que la función L tiene un mínimo local en m Dado que es continua en ( ;0), L resulta estrictamente decreciente a la izquierda de m estrictamente creciente a la derecha de m, por lo cual concluimos que tiene un mínimo absoluto en m y vale corta el eje en 5 y al eje y en y 0 L 5 y corresponde al triángulo que Es decir que, la pendiente de la recta que hace mínima la suma de las longitudes de los catetos es m, la ecuación de dicha recta es y 0 y Área de Matemática Ciclo Básico Común Universidad de Buenos Aires 6

7 Teóricas de Análisis Matemático (8) Práctica 7 Optimización Ejemplo Sea f :[0;), definida por f () Se consideran los triángulos de vértices A (0,0), B (,()) f y C (,0) Hallar las dimensiones del triángulo de mayor área Hacemos un gráfico aproimado de f y de un triángulo Sea a() el área del triángulo ABC Es decir base altura () f a() Calculamos la derivada de la función área ( ) ()() () a ( ) ( )( ) Entonces Área de Matemática Ciclo Básico Común Universidad de Buenos Aires 7

8 Teóricas de Análisis Matemático (8) Práctica 7 Optimización a() 0()() 0 o Dado que [0;), el único valor en el que se anula la derivada es Como a es continua en (0;), utilizando el teorema de Bolzano, podemos afirmar que su único cero divide a (0;) en dos intervalos en los que el signo de a es constante Los intervalos para analizar son (0;) y (;), por lo dicho anteriormente, para conocer el signo de a, basta con calcularlo en un valor particular de cada intervalo ( )( ) En (0;), elegimos Como a() 0, resulta que a() 0 para todo (0;) ( ) Esto implica que a es estrictamente creciente en (0;] En (;) elegimos Como ( )( ) a() 0, resulta que a() 0 para todo (;) Esto implica que m es ( ) estrictamente decreciente en [;) De esto se deduce que la función área tiene un máimo local en Dado que a es continua en [0;), es estrictamente creciente a la izquierda de y estrictamente decreciente a la derecha de, concluimos que a tiene un máimo absoluto en y vale a() Los vértices del triángulo de mayor área son A (0,0), B (,) y C (,0) 8 Resolver los problemas a 7 de la Práctica 7 Ejemplo 5 Sea f :(0;) definida por f () 8 Hallar el punto del gráfico de f en el que la pendiente de la recta tangente es mínima Llamemos m() a la función que a cada punto del gráfico de f le asigna la pendiente de su recta tangente Sabemos que esta función es f () Es decir que m()() 6 f Queremos hallar el valor de (0;) en el que la función m alcanza su mínimo absoluto Para hallar los puntos críticos, calculamos la derivada Área de Matemática Ciclo Básico Común Universidad de Buenos Aires 8

9 Teóricas de Análisis Matemático (8) Práctica 7 Optimización 6 (8 ) m() 6 Como m() El único punto crítico es = Dado que m es continua en (0;), por el teorema de Bolzano, podemos afirmar que su único cero divide a (0;) en dos intervalos y en cada uno de ellos el signo de m es constante Los intervalos para analizar son 0; y ;, por lo dicho anteriormente, para conocer el signo de m, basta con calcularlo en un valor particular de cada intervalo En todo 0;, elegimos Como 0; Esto implica que m es estrictamente decreciente en (8 ) Como m() 0, resulta que m() 0 para todo es estrictamente creciente en ; En resumen tenemos 8 8 m() 0, resulta que m() 0 para 0; En ; elegimos ; Esto implica que m 0; m() 0 ; m() 0 m() 0 m() min Por lo tanto m alcanza un mínimo local en = Área de Matemática Ciclo Básico Común Universidad de Buenos Aires

10 Teóricas de Análisis Matemático (8) Práctica 7 Optimización Además, lim() m 6 y lim() m 6, de donde el mínimo local es 0 absoluto y podemos afirmar que la pendiente de la recta tangente al gráfico de f es mínima para = y vale 6 m() A continuación damos un gráfico aproimado de m para (0;) Sea [ ; ] Ejemplo 6 f () Hallar los valores máimos y mínimos que alcanza la función f en el intervalo Por ser la función f continua en el intervalo cerrado[ ; ], sabemos que alcanza, en dicho intervalo, un valor máimo y un valor mínimo Calculamos la derivada f () para 0 Área de Matemática Ciclo Básico Común Universidad de Buenos Aires 0

11 Teóricas de Análisis Matemático (8) Práctica 7 Optimización y observamos que f no es derivable en 0 Por otra parte, f () 0 0 o Así, los posibles valores de [ ; ] los etremos del intervalo: los en los que f puede alcanzar un máimo o un mínimo son y, [ ; ] tales que f () 0 :, y los [ ; ] donde f no es derivable: 0 Calculamos el valor de f en cada uno de estos puntos f ( ) ( ), 77 f ( ) ( ) f (0) 0 f,88 Al comparar estos valores, podemos afirmar que f ( ), es el valor máimo de f y f,88 es el valor mínimo Los puntos donde se alcanzan son derivada) y (un etremo del intervalo) Presentamos un gráfico aproimado de esta función (donde se anula la Área de Matemática Ciclo Básico Común Universidad de Buenos Aires

12 Teóricas de Análisis Matemático (8) Práctica 7 Optimización Ejemplo 7 Una editorial producirá un libro con las siguientes condiciones: en cada página el teto impreso estará contenido en un rectángulo de 00 cm, los márgenes superior e inferior deberán tener cm de altura y los laterales,5 cm de ancho Hallar las dimensiones de una página para que el consumo de papel sea mínimo Sean e y las dimensiones de una hoja del libro Se quiere que la superficie de cada hoja sea la menor posible, es decir, que S y sea mínima Además, el área de la región impresa debe medir 00 cm Pero la región impresa es un rectángulo de base (,5)( ) y altura ( y )( y), entonces debe ser ( )( y ) 00 Para que esto tenga sentido debe ser e y Al despejar y de esta igualdad obtenemos que y Tenemos entonces que la función que queremos minimizar es y cm,5cm cm,5cm S y para Calculamos su derivada (8 88)( )( 88) S() ( )( ) Luego, 86 ( 6 6) ( 8)( ) ( )( )( ) S() 0( 8)( ) 0 8 o Por las condiciones del problema sabemos que, por lo tanto el único punto crítico es 8 Como S es continua en (;), utilizando el teorema de Bolzano, podemos afirmar que su único cero divide a (;) en dos intervalos en los que el signo de S es constante Los intervalos para analizar son (;8) y (8;), por lo dicho anteriormente, para conocer el signo de S, basta con calcularlo en un valor particular de cada intervalo Área de Matemática Ciclo Básico Común Universidad de Buenos Aires

13 Teóricas de Análisis Matemático (8) Práctica 7 Optimización En el intervalo (;8), elegimos ( 8)( ) Como S() 0 ( ) es estrictamente decreciente en (;8), resulta que S () 0 para todo (;8) Esto implica que S ( 8)( ) En (8;) elegimos Como S() 0, resulta que S() 0 para ( ) todo (8;) Esto implica que m es estrictamente creciente en (8;) De esto se deduce que la función S tiene un mínimo local en 8 Dado que S es continua en (;), es estrictamente decreciente a la izquierda de 8y estrictamente creciente a la derecha de 8, por lo que concluimos que S tiene un mínimo absoluto en 8 Las dimensiones de la página para la que el consumo de papel es mínimo son: 8 00 y 8 y Están en condiciones de terminar la Práctica 7 Cintia Buton, Lisi D Alfonso, Flora Gutierrez, Gabriela Jeronimo, Gustavo Massaccesi, Juan Carlos Pedraza y Juan Sabia (05), Optimización, Teóricas de Análisis Matemático (8) Área de Matemática Ciclo Básico Común Universidad de Buenos Aires

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim Teóricas de Análisis Matemático (8) Práctica 6 L Hospital Caso cero sobre cero Veamos tres problemas de límites conocidos: Práctica 6 Parte Regla de L Hospital 3 3 3 sen(3) Los límites y se resuelven mediante

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

REPRESENTACION GRÁFICA DE FUNCIONES

REPRESENTACION GRÁFICA DE FUNCIONES REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Teóricas de Análisis Matemático (8) Práctica 0 Ecuaciones Diferenciales Práctica 0 Parte Ecuaciones Diferenciales Si un fenómeno está representado por una función f, la derivada de f representa la variación

Más detalles

Teorema del valor medio

Teorema del valor medio Práctica 6 - Parte 1 Teorema del valor medio El teorema del valor medio para derivadas (o teorema de Lagrange) es un resultado central en la teoría de funciones reales. Este teorema relaciona valores de

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: 3 + x y = 3 x x + x 3 + x y = 3 x x + x Abierta hacia arriba Abierta hacia abajo Abierta hacia abajo Calcula

Más detalles

(, ) ( ) ( ) ( ) ( ) ( ) = 0. Calcula las coordenadas de los demás vértices del cuadrado.

(, ) ( ) ( ) ( ) ( ) ( ) = 0. Calcula las coordenadas de los demás vértices del cuadrado. Eamen de geometría analítica del plano y funciones 3/6/0 Ejercicio. El punto A ( 6,) es un vértice de un cuadrado inscrito en la circunferencia de ecuación y y 4 6 7 = 0. Calcula las coordenadas de los

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN 9- DERIVADAS - DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de - en o = utilizando la definición Solución: y '() = -6 Calcula

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

Aplicaciones de la derivada 7

Aplicaciones de la derivada 7 Aplicaciones de la derivada 7 ACTIVIDADES 1. Página 160 a) La pendiente de la recta tangente es 12. b) La pendiente de la recta tangente es 3. 2. Página 160 a) La pendiente de la recta tangente es. b)

Más detalles

Unidad 11 Introducción a las derivadas y sus aplicaciones

Unidad 11 Introducción a las derivadas y sus aplicaciones Unidad 11 Introducción a las derivadas y sus aplicaciones PÁGINA 9 SOLUCIONES 1. Los límites quedan: f ( + h) f() 3 ( + h) + 5 11 3h a) lím = lím = lím = 3 h 0 h h 0 h h 0 h g( + h) g() 4 ( + h) 4 b) lím

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 006 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles

Definición 1. Definición 3. Un numero critico de una función f es un numero c en el dominio de f tal c ) no existe.

Definición 1. Definición 3. Un numero critico de una función f es un numero c en el dominio de f tal c ) no existe. CALCULO DIFERENCIAL Definición. Una función f ( ) tiene un máimo absoluto (o máimo global) en c si f ( c ) f ( ) D, donde D es el dominio de f. El numero f ( c ) se llama valor máimo de f en D. De manera

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:. Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

2. Calcula las velocidades medias anteriores tomando valores sobre la ecuación del movimiento de dicha partícula: s = 2

2. Calcula las velocidades medias anteriores tomando valores sobre la ecuación del movimiento de dicha partícula: s = 2 Unidad. Derivadas Resuelve Página 0 Movimiento de una partícula Un investigador, para estudiar el movimiento de una partícula, la a iluminado con destellos de flas cada décima de segundo (0, s) durante

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x

2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x EJERCICIOS DE ANÄLISIS 1) Estudia el dominio, ceros y signo, continuidad, límites en caso que tienda a + y -, máimos y mínimos relativos de las siguientes funciones. Realiza en cada caso el bosquejo correspondiente.

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

1 Problemas de Optimización

1 Problemas de Optimización 1 Problemas de Optimización Eercise 1.1 Hallar un número positivo ue sumado con su inverso nos dé una suma mínima Si llamamos a dicho número; entonces la epresión ue nos permite calcular la suma de él

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

MATEMÁTICAS 1º BAC Aplicaciones de las derivadas

MATEMÁTICAS 1º BAC Aplicaciones de las derivadas . Queremos construir una caja abierta, de base cuadrada y volumen 56 litros. Halla las dimenones para que la superficie, y por tanto el coste, sea mínimo.. Entre todos los rectángulos de área 6 halla el

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.

Más detalles

Demuestra que el punto de tangencia, T, es el lugar de la recta r desde el que se ve el segmento AB con ángulo máximo.

Demuestra que el punto de tangencia, T, es el lugar de la recta r desde el que se ve el segmento AB con ángulo máximo. Matemáticas aplicadas a las Ciencias Sociales II Resuelve Página 7 Optimización Una persona se acerca a una estatua de m de altura. Los ojos de la persona están m por debajo de los pies de la escultura.

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 2- Explorando el triángulo. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,

Más detalles

IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 01 Reserva (Modelo 6) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 6 Septiembre 01 ['5 puntos] De entre todos los triángulos rectángulos

Más detalles

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer

Más detalles

Lugares geométricos y cónicas

Lugares geométricos y cónicas Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página

Más detalles

MATEMÁTICAS. TEMA 7 Aplicaciones de la Derivada

MATEMÁTICAS. TEMA 7 Aplicaciones de la Derivada MATEMÁTICAS TEMA 7 Aplicaciones de la Derivada ÍNDICE MATEMÁTICAS º BACHILLERATO CCSS. TEMA 7: APLICACIONES DE LA DERIVADA 1. Introducción. Máximos y mínimos. 3. Monotonía (Crecimiento y Decrecimiento).

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 009 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

t si t 2. x 2 + xy + y 3 = 1 8.

t si t 2. x 2 + xy + y 3 = 1 8. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E000 () Una pelota se deja caer desde un edificio. La posición de la pelota en cualquier instante t (medido en segundos) está dada por s(t).5

Más detalles

MAXIMOS Y MINIMOS RELATIVOS

MAXIMOS Y MINIMOS RELATIVOS MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial

Más detalles

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización 09 Tema 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

Unidad 5. La derivada. 5.2 La derivada de una función

Unidad 5. La derivada. 5.2 La derivada de una función Unidad 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

en su construcción sea mínima. Sol: r = 3, h =

en su construcción sea mínima. Sol: r = 3, h = RELACIÓN DE PROBLEMAS ) Encontrar los etremos absolutos de y 6+ definida en [0, ]. Sol. Má en 0 y ; mín -/ en,5. ) Hallar dos números positivos cuya suma sea 0, sabiendo que su producto es máimo. Sol.:

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

Sección 2.3. # 27. Evalúa el límite, si es que existe. lim

Sección 2.3. # 27. Evalúa el límite, si es que existe. lim Sección. Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Matemáticas. Preparado por Dr. Eliseo Cruz Medina Mate 01. Ejercicios resueltos correspondientes al primer eamen parcial.

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS

SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS I. CONTENIDOS: 1. Máximos y mínimos de una función (definiciones) 2. Máximos y mínimos (metodología de cálculo) 3. Ejercicios

Más detalles

PROBLEMAS DE REPASO. Solución: Si llamamos x e y a las longitudes de cada uno de los catetos, sabemos que: x 2 y 2 1 y 2 1 x 2 El volumen del cono es:

PROBLEMAS DE REPASO. Solución: Si llamamos x e y a las longitudes de cada uno de los catetos, sabemos que: x 2 y 2 1 y 2 1 x 2 El volumen del cono es: PROBLEMAS DE REPASO 1. La hipotenusa de un triángulo rectángulo mide 1 dm. Hacemos girar el triángulo alrededor de uno de sus catetos. Determina la longitud de los catetos de forma que el cono engendrado

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles