Física del Estado Sólido Práctico 5 Vibraciones de los Cristales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física del Estado Sólido Práctico 5 Vibraciones de los Cristales"

Transcripción

1 Física del Estado Sólido Práctico 5 Vibraciones de los Cristales 1. Medición de las Constantes de Fuerza Considere una red lineal monoatómica, siendo M la masa de cada átomo y a la distancia entre ellos. Sea β p la constante de fuerza entre dos átomos que distan pa, es decir, β 1 para interacción de primeros vecinos, β 2 para segundos vecinos, etc. a) Verifique que la relación de dispersión en este caso es: ω 2 = 2 M β p (1 cos pka) p>0 b) Demuestre que si se conoce experimentalmente la relación de dispersión ω(k) las constantes de fuerza pueden deducirse a través de: 2. Cadena Lineal Diatómica β p = Ma 2π + π a π a dk ω 2 (k) cos pka Desarrolle el modelo para una cadena lineal diatómica formada por una red lineal (de periodicidad a) y una base de dos átomos de masas M 1 y M 2 (suponiendo M 1 M 2 ), siendo la distancia entre los átomos de la base b. Considere el caso en que solamente hay fuerzas elásticas (de constante β) entre átomos diferentes y próximos (distancias interatómicas menores que a). Llame u s y v s a los desplazamientos (en torno a sus posiciones de equilibrio) de los átomos de masas M 1 y M 2, respectivamente, ubicados en la celda s-ésima. a) Plantee las ecuaciones de movimiento para átomos genéricos de cada tipo y busque soluciones de ondas sinusoidales de frecuencia angular ω y vector de onda k: u s = u 0 e iska e iωt v s = v 0 e iska e iωt siendo u 0 y v 0 las amplitudes de oscilación correspondientes a cada tipo de átomo, encuentre la relación entre ω 2 y k. b) Comportamiento en el Centro de la Zona de Brillouin Para ka << 1 (centro de la Zona de Brillouin): i. Calcule las velocidades de grupo de los fonones acústicos y ópticos cerca del centro de la primera Zona de Brillouin. Cómo se relaciona la primera con la velocidad de 1

2 propagación del sonido y cuál es el signo de la segunda? ii. Halle la relación entre las amplitudes de vibración de cada tipo de átomo v 0 /u 0 para las dos ramas (acústica y óptica). c) Comportamiento en el Borde de la Zona de Brillouin Halle la relación entre las amplitudes de vibración de cada tipo de átomo v 0 /u 0 para las dos ramas (acústica y óptica) cuando el vector de onda es: k = k max = π/a. Demuestre que para este valor de k las dos redes se comportan como si no estuvieran acopladas; una red permanece en reposo mientras que la otra se mueve. d) Doblamiento en el Borde de la Zona de Brillouin Compare la solución para las vibraciones de una cadena monoatómica con la de una cadena diatómica, cuando los átomos (además de las constantes de acoplamiento entre ellos) son idénticos entre sí (M 1 = M 2 ) y se encuentran equidistantes (b = a/2). Observe que el período de la cadena diatómica es el doble del de la cadena monoatómica. e) En el caso de que la diferencia entre las masas sea muy grande (M 1 >> M 2 ) encuentre soluciones analíticas aproximadas para los modos ópticos y acústicos. 3. Energía de una onda vibracional Considere una onda longitudinal: u s = u 0 cos(ωt ska) que se propaga en una red lineal monoatómica de átomos de masa M, espaciado a e interacción entre vecinos más próximos de constante β. a) Demuestre que la energía total de la onda es: E = 1 2 M s ( ) 2 dus + 1 dt 2 β s (u s u s+1 ) 2 en donde s se extiende sobre todos los átomos. b) Por sustitución de u s en esta expresión, demuestre que la energía total por átomo promediada en el tiempo es: 1 4 Mω2 u β(1 cos pka)u2 0 = 1 2 Mω2 u a) Demuestre a partir de u s+q = u 0 e i(s+q)ka e iωt, que el momento lineal de un cristal lineal que contiene N átomos iguales de masa M, equidistantes a, en el que se excita una onda de vector de onda k es: p = N 1 r=0 M u r t N 1 = iωmu 0 e iωt r=0 e irka Evalúe este resultando usando que, para k 0, el valor de la suma que aparece en la expresión anterior es: 1 e inka 1 e ika 2

3 b) Aplicando la condición periódica en los límites u r = u r+n (Born - von Karman) demuestre los valores de k quedan restringidos por: e inka = 1. c) Utilice estos resultados para demostrar que un fonón posee una cantidad de movimiento nula, excepto cuando k = 0. Nota: Esto demuestra que la cantidad k, denominada cantidad de movimiento del cristal, y usualmente asimilada al momento lineal del fonón, es un momento puramente cuántico (asociada a reglas de selección de transiciones entre estados cuánticos), y que no es posible interpretarla como la cantidad de movimiento de la vibración de los átomos estudiados clásicamente. 5. Cristal de moléculas diatómicas Considere los modos normales de una cadena lineal diatómica en los cuales todos los átomos tienen la misma masa M. La periodicidad de la cadena es a mientras que la separación entre los átomos de la base es b, de forma que δ = b/a 1/2. Las constantes de fuerza son: β 1 entre los átomos de la base, y β 2 entre un átomo de la base y el más próximo de uno de los dos átomos que pertenecen a otra base. a) Determine y represente cualitativamente los espectros ω(k) acústico y óptico de fonones de esta red. b) Halle en forma exacta ω(k) para k = 0 y k = π/a. c) Evalúe para δ = 1/2 y: i. β 2 = 10β 1 ii. β 2 = β 1 6. Dispersión Inelástica Considere una onda electromagnética (fotones de energía ω i y cantidad de movimiento h k i ) viajando por un medio material cristalino en el que los átomos vibran con frecuencia angular ω q, siendo q el vector de onda de la onda vibracional correspondiente. Estudie la dispersión inelástica de dicha onda electromagnética utilizando la teoría general de dispersión usando una densidad de dispersión dependiente del tiempo ρ( r, t), donde la dependencia temporal se origina solamente en el desplazamiento de los átomos respecto a su posición de equilibrio. Considere el caso de una red monoatómica, en la que el desplazamiento del átomo n-ésimo puede escribirse como: r n = T n + u n (t) donde T n (puntos de la red directa) son las posiciones de equilibrio y u n (t) es el desplazamiento (respecto al equilibrio) originado por la onda vibracional. a) Asumiendo átomos puntuales, de forma que la densidad de dispersión de equilibrio es: ρ( r) = n δ( r T n ) calcule la amplitud de dispersión expandiéndola en potencias de u n (t), asumiendo que el desplazamiento es pequeño. 3

4 b) Verifique que el término de orden cero en la expansión anterior corresponde a la deducción usada en la difracción de rayos X que conduce a la condición de Laue para difracción. c) Utilizando el mismo argumento para el término de primer orden deduzca que los fotones dispersados tienen energía ω d y cantidad de movimiento k d están dados por las siguientes reglas de selección: ω d = ω i ± ω( q) k d = k i ± q + G Nota: El signo + corresponde a la absorción de un cuanto de energía de la onda vibracional (fonón) por la onda electromagnética, mientras que el signo corresponde a la emisión de uno de esos cuantos. Cuando la relación de dispersión ω( q) corresponde a fonones acústicos se denomina dispersión de Brillouin, mientras que para fonones ópticos se denomina dispersión Raman. Observe que la periodicidad de la red cambia la regla de conservación de cantidad de movimiento en un término G denominado cantidad de movimiento del cristal. 7. Red cuadrada a) Considere vibraciones transversales de una red plana cuadrada de filas y columnas de átomos idénticos. Sea u lm el desplazamiento normal al plano de la red del átomo de la columna l y fila m (ver figura). Sea M la masa de cada átomo y suponga que las constantes de fuerza son tales que la ecuación del movimiento es: M d2 u lm dt 2 = β [(u l+1,m + u l 1,m 2u l,m ) + (u l,m+1 + u l,m 1 2u l,m )] b) Suponiendo soluciones de la forma: u lm = u 0 e i(lkxx+mkyy ωt) donde a es la separación entre los átomos vecinos más próximos; demuestre que se satisface la ecuación del movimiento si: ω 2 M = 2β (2 cos k x a sen k y a) esta es la relación de dispersión para el problema. 4

5 c) Demuestre que la región del espacio k para la cual existen soluciones independientes, puede tomarse como una red cuadrada de lado 2π/a. Esta es la primera zona de Brillouin de la red cuadrada. Represente ω en función de k para k = k x con k y = 0 y para k x = k y. d) Demuestre que para ka << 1 es: 8. Absorción Infrarroja ω = βa 2 /M kx 2 + ky 2 = βa 2 M k Considere la respuesta de un cristal lineal diatómico a la radiación electromagnética en el infrarrojo. Suponga el cristal formado por iones de masas m y M con carga opuesta q y q y que sólo hay interacción elástica de primeros vecinos, con constante β. El campo eléctrico puede suponerse: E = E 0 e i(kx ωt) y se desprecia la parte magnética. a) Escriba cómo se modifican las ecuaciones de movimiento de la red diatómica forzada por la acción del campo. b) Suponga que la onda electromagnética se encuentra en la región del infrarrojo, o sea λ = 1 100µm. Para un cristal con constante de red típica a 5Å, compare el vector de onda del campo electromagnético con el borde de la zona de Brillouin. Deduzca que la respuesta del material se dará en el centro de la zona de Brillouin, por lo que es razonable suponer k 0. c) Bajo la aproximación anterior resuelva los desplazamientos atómicos en función del campo eléctrico y observe que poseen resonancias para ω 0 = 2β ( 1 m + 1 ) M, correspondiente al valor de la rama de fonones ópticos en el centro de la zona de Brillouin. 9. Modo vibracional localizado en un defecto Considere una cadena lineal monoatómica infinita, de átomos de masa M y acoplamiento de primeros vecinos β. En el origen de coordenadas (correspondiente al índice s = 0) la cadena posee un defecto o impureza sustitucional de masa m (es decir, un átomo de masa m M se encuentra en la posición del átomo de masa M que debería estar en ese lugar). a) Escriba las ecuaciones de movimiento para la impureza sustitucional (s = 0) y alguno de sus primeros vecinos (s = 1 ó s = 1). b) Escriba las ecuaciones seculares que se obtienen al buscar soluciones de ondas localizadas, es decir soluciones del tipo: u s = u 0 ( 1) s (α s + iωt) e Nota: Si Re[α] < 0 esto corresponde a una oscilación localizada cuya amplitud es máxima en la posición del defecto (s = 0). c) Encuentre la frecuencia de oscilación propia ω 0 del estado localizado escribiéndola en función de la frecuencia máxima de la cadena lineal infinita, ω m = de masas r = m/m. 4β M y la relación 5

6 d) Grafique ω 0 (r) discutiendo: i. Para qué valores de r existen vibraciones localizadas. ii. Cómo son los valores de ω 0 en comparación con ω m. e) Halle los valores de α en función de r, verificando cuándo son efectivamente modos localizados, es decir, Re[α] < Anomalía de Kohn En los metales es de esperar que las constantes de fuerza interplanares β p entre los planos s y s + p sean de la forma (para una red monoatómica, siendo M la masa de cada átomo y a la distancia entre ellos): β p = A sen(pk 0a) pa donde A y k 0 son constantes y p puede ser cualquier número entero positivo. a) Utilizando el resultado del ejercicio 1, parte a), halle una expresión para ω 2 y para su derivada ω2 k. b) Demuestre que ω2 k es infinita para k = k 0. Interprete este resultado. 11. Modos de fonones blandos (Soft Phonons) Considere una línea de átomos de masas iguales, pero de cargas alternadas, en donde e p = e( 1) p es la carga del ion p. El potencial interatómico es la suma de dos contribuciones: 1. Una interacción elástica de corto alcance que actúa entre los vecinos más próximos únicamente, con constante de fuerza β 1R = γ. 2. Una interacción de Coulomb entre todos los iones. a) Demuestre que la contribución de la interacción de Coulomb correspondiente al vecino a distancia pa se puede modelar (a primer orden en el desplazamiento) por constantes de fuerza atómica elástica: β C p = 2( 1) p e2 p 3 a 3 en donde a es la distancia de equilibrio entre los vecinos más próximos. b) A partir del resultado del ejercicio 1, parte a), demuestre que la relación de dispersión puede escribirse como: ω 2 ω0 2 donde: ω 0 = 4γ M y σ = ( ) ka = sen 2 + σ 2 e2. γa 3 ( 1) p (1 cos pka) c) Demuestre que ω 2 es negativo (modo inestable) en el límite de la zona ka = π si se cumple σ > 4/(7ζ(3)) = 0,475, donde ζ es la función ζ de Riemann. d) Demuestre que la velocidad del sonido para valores pequeños de ka es imaginaria si se cumple σ > 1/(2 ln 2). e) Interprete físicamente estos resultados. p=1 p 3 6

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

FES. Vibraciones reticulares

FES. Vibraciones reticulares Vibraciones reticulares Los átomos en un sólido están oscilando en torno a sus posiciones de equilibrio con una amplitud que depende de la temperatura. Como hemos mencionado en el apartado previo estas

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

TEMA 3: MOVIMIENTO ONDULATORIO

TEMA 3: MOVIMIENTO ONDULATORIO http://www.textoscientificos.com/fisica/magnetismo/naturaleza-magnetismo-monopolo-magnetico 3.1 Tipos de onda ONDA: perturbación que se propaga http://upload.wikimedia.org/wikipedia/commons/4/42/blender3d_circularwaveanim.gif

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Contenido. 5. Estructura cristalina. Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51

Contenido. 5. Estructura cristalina. Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51 Contenido 5. Estructura cristalina 1 / Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51 Contenido: Tema 05 5. Estructura cristalina 5.1 Arreglo periódico de átomos: bases,

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Examen de problemas (SOLUCIONADO)

Examen de problemas (SOLUCIONADO) 1. [3.0 puntos] Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Septiembre Curso: 2004-05 Examen de problemas SOLUCIONADO a Determinar las frecuencias rotacionales en Hz de la molécula

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA Onda Electromagnética ESTA FORMADA POR UN PAR DE CAMPOS (UNO ELECTRICO Y OTRO MAGNETICO) QUE VARIAN CON LA POSICION Y EL TIEMPO ESA ONDA

Más detalles

Propiedades Ópticas de Metales

Propiedades Ópticas de Metales Propiedades Ópticas de Metales Ricardo E. Marotti Mayo 2008 * e-mail: khamul@fing.edu.uy Instituto de Física Facultad de Ingeniería Universidad de la República Montevideo, URUGUAY Propiedades Ópticas de

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

2 Ondas superficiales

2 Ondas superficiales 513430 - Sismología 6 2 Ondas superficiales En las interfases que separan medios elásticos de diferentes características, las ondas del cuerpo (P, S) se interfieren constructivamente para producir ondas

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

Contenido. 2. Vibraciones de la red y propiedades térmicas. 1 / Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/69 69

Contenido. 2. Vibraciones de la red y propiedades térmicas. 1 / Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/69 69 Contenido 2. Vibraciones de la red y propiedades térmicas 1 / Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/69 69 Contenido: Tema 02 2. Vibraciones de la red y propiedades térmicas

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Estudio de la coherencia espacial de una fuente de luz

Estudio de la coherencia espacial de una fuente de luz Estudio de la coherencia espacial de una fuente de luz Clase del miércoles 29 de octubre de 2008 Prof. María Luisa Calvo Coherencia espacial Está ligada a las dimensiones finitas de las fuentes de luz.

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ. RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES"

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN GUÍAS DE ONDA Y RESONADORES UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES" Prof. Francisco J. Zamora Propagación de ondas electromagnéticas en guías

Más detalles

BLOQUE 4.1 ÓPTICA FÍSICA

BLOQUE 4.1 ÓPTICA FÍSICA BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico.

EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico. EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico. Química 1º bachillerato El átomo 1 El átomo no es una partícula indivisible, sino que está

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

1 La fuerza de Lorentz

1 La fuerza de Lorentz 1 La fuerza de Lorentz 1.1 Definición del campo magnético Dr. Gustavo A Pérez M. 1.- Dado un campo eléctrico E y un campo magnético B la fuerza sobre una partícula que se mueve con velocidad v es F = q

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

INDICE 22. La carga eléctrica Resumen, preguntas, problemas 23. El campo eléctrico Resumen, preguntas, problemas Resumen, preguntas, problemas

INDICE 22. La carga eléctrica Resumen, preguntas, problemas 23. El campo eléctrico Resumen, preguntas, problemas Resumen, preguntas, problemas INDICE 22. La carga eléctrica 22-1. las propiedades de la materia con carga 646 22-2. la conservación y cuantización de la carga 652 22-3. la ley de Colulomb 654 22-4. las fuerzas en las que intervienen

Más detalles

El modelo semiclásico de las propiedades de transporte: Objetivo

El modelo semiclásico de las propiedades de transporte: Objetivo El modelo semiclásico de las propiedades de transporte: Objetivo En el estudio de las propiedades de transporte se usa una aproximación que se basa en los principios usado para el estudio de los electrones

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO INTRODUCCIÓN Es muy probable que alguna vez hayas estado por mucho tiempo observando las ondas producidas sobre la superficie del agua en un estanque, al lanzar un objeto o caer una gota sobre ella; o

Más detalles

Capítulo 25. Rayos X

Capítulo 25. Rayos X Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

TEMA 3 TEORIA DE SEMICONDUCTORES

TEMA 3 TEORIA DE SEMICONDUCTORES TEMA 3 TEORIA DE SEMICONDUCTORES (Guía de clases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica CONTENIDO PARTÍCULAS CARGADAS Átomo Electrón Ión Hueco TEORÍA DE LAS BANDAS DE ENERGÍA

Más detalles

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra abnervelazco@yahoo.com Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional

Más detalles

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio?

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio? 2º Bachillerato: Ondas (generalidades) 1. Concepto de onda Cuando se produce una variación de una magnitud física en un punto del espacio, se produce una perturbación (del equilibrio). Por ejemplo, se

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

2.3 Velocidad de fase y grupo

2.3 Velocidad de fase y grupo 2.3 Velocidad de fase y grupo La velocidad c en las secciones anteriores es la velocidad de fase de las ondas superficiales (c = ω/k). Es la velocidad con que una fase se propaga. En general, las velocidades

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA IEO-394 Semiconductores Juan E. Martínez P. Docente. UdeA Bandas de Energía Y Corrientes de Portadores en Semiconductores. PARTICION DE LOS NIVELES DE ENERGIA A medida que se traen juntos N átomos Cada

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Espectro electromagnético

Espectro electromagnético RADIOCOMUNICACIONES 11-03-2015 Espectro electromagnético La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos tan notables como Newton y Max Plank. Para los astrónomos conocer

Más detalles

INDICE Capitulo 27. La Carga Eléctrica y la Ley de Coulomb Capitulo 28. El Campo Eléctrico Capitulo 29. La Ley de Gauss

INDICE Capitulo 27. La Carga Eléctrica y la Ley de Coulomb Capitulo 28. El Campo Eléctrico Capitulo 29. La Ley de Gauss INDICE Capitulo 27. La Carga Eléctrica y la Ley de Coulomb 1 27.1. Electromagnetismo. Un estudio preliminar 1 27.2. La carga eléctrica 2 27.3. Conductores y aislantes 3 27.4. La Ley de Coulomb 4 27.5.

Más detalles

Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés)

Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés) Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés) R. Baquero Departamento de Física Cinvestav setiembre 2008 amarre fuerte 1 Por qué estudiamos el método de amarre fuerte? Uno

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

T8. ELECTROMAGNETISMO Y RELATIVIDAD ESPECIAL

T8. ELECTROMAGNETISMO Y RELATIVIDAD ESPECIAL T8. ELECTROMAGNETISMO Y RELATIVIDAD ESPECIAL 1. Introducción 2. Ecuaciones de Maxwell y concepto de campo 2.1 Las ecuaciones 2.2 El campo eléctrico y las fuerzas eléctricas 2.3 El campo magnético y las

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

7. Difracción n de la luz

7. Difracción n de la luz 7. Difracción n de la luz 7.1. La difracción 1 7. Difracción de la luz. 2 Experiencia de Grimaldi (1665) Al iluminar una pantalla opaca con una abertura pequeña, se esperaba que en la pantalla de observación

Más detalles

Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos)

Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Por favor asegúrese de leer las instrucciones generales dentro del sobre adjunto antes de comenzar a resolver este problema. En

Más detalles

INDICE Capitulo 1. Átomos en movimiento 1-4. reacciones químicas Capitulo 2. Física básica Capitulo 3. La relación de la física con otras ciencias

INDICE Capitulo 1. Átomos en movimiento 1-4. reacciones químicas Capitulo 2. Física básica Capitulo 3. La relación de la física con otras ciencias INDICE Capitulo 1. Átomos en movimiento 1-1. introducción 1-1 1-2. la materia esta formada de átomos 1-3 1-3. procesos atómicos 1-7 1-4. reacciones químicas 1-10 Capitulo 2. Física básica 2-1. introducción

Más detalles

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs 1) EL PÉNDULO BALÍSTICO Se muestra un péndulo balístico,

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles