ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO"

Transcripción

1 ACONDICIONAMIENTO TÉMICO ACONDICIONAMIENTO TÉMICO E HIGOMÉTICO La ncsidad d aislar térmicamnt un dificio stá justificada por cuatro razons fundamntals: 1. Economizar nrgía, al rducir las pérdidas térmicas por las pards. 2. Mjorar l confort térmico, al rducir la difrncia d tmpratura d las suprficis intriors d las pards y ambint intrior. 3. Suprimir los fnómnos d condnsación y con llo vitar humdads n los crramintos. 4. Mjorar l ntorno mdioambintal, al rducir la misión d contaminants asociada a la gnración d nrgía. 2 LA ECONOMÍA DE ENEGÍA EL ACONDICIONAMIENTO TÉMICO La importancia d la crisis nrgética actual obliga a considrar sriamnt las posibilidads d ahorro Cómo s pud actuar para consguir una conomía d nrgía n la dificación? D varias formas: Mjorando l rndiminto d las instalacions d calfacción, con la pusta a punto d los qumadors, una buna rgulación, tc. ducindo las pérdidas d calor. Los parámtros dl problma La difrncia d tmpraturas ntr xtrior intrior actúa como difrncia d potncial capaz d movilizar transport d nrgía calorífica a través d los crramintos. Al calntar un dificio s produc un dsquilibrio ntr la tmpratura intrior y la tmpratura xtrior, provocando la fuga d calor, ntr l ambint intrior (más calint) y l ambint xtrior (más frío), y d varias formas: Por rnovación dl air (vntilación infiltración a través d la rndijas d purtas, vntanas, tc.). El air calint intrior s rmplazado por l frío dl xtrior. A través d las pards, tchos, sulos o acristalamintos. A través d tubrías, caldras no aisladas. θ θ i 4

2 EL ACONDICIONAMIENTO TÉMICO EL ACONDICIONAMIENTO TÉMICO El problma n invirno El problma n vrano S producn pérdidas d calor (l xtrior stá más frío) ya qu los crramintos no son absolutamnt aislants. S trata d asgurar una tmpratura mnor o igual al xtrior. Dos opcions: A través d aislaminto térmico A través d cámaras d vntilación. 5 6 EL POBLEMA DE LAS CONDENSACIONES EL POBLEMA DE LAS CONDENSACIONES Parámtros dl problma La difrncia d humdads rlativas ntr l xtrior y l intrior actúa como difrncia d potncial capaz d movilizar vapor d agua a través d los crramintos. En invirno pudn producirs condnsacions n los paramntos intriors a causa d las difrncias d humdad y tmpratura n xtrior intrior. Cuando las humdads intrnas (cocinas y baños) son altas db vntilars. Φ Φ i θ, Φ θ i, Φ i 7 8

3 MODOS DE TANSMISIÓN DEL CALO FLUJO DE CALO Mcanismos d transmisión d calor Convcción: transfrncia d nrgía mdiant la mzcla íntima d distintas parts dl matrial: s produc mzclado intrcambio d matria. Conducción: transfrncia d nrgía dsd cada porción d matria a la matria adyacnt por contacto dircto, sin intrcambio, mzcla o flujo d cualquir matrial. Convcción natural: l orign dl mzclado s la difrncia d dnsidads qu acarra una difrncia d tmpratura. Convcción forzada: la causa dl mzclado s un agitador mcánico o una difrncia d prsión (vntiladors, comprsors...) impusta xtrnamnt. adiación: transfrncia d nrgía mdiada por ondas lctromagnéticas, manadas por los curpos calints y absorbidas por los curpos fríos. Considrando una pard plana, homogéna y d una suprfici (S) muy grand con rspcto a su spsor (), para una conducción n régimn stacionario y sin dsprndiminto d calor intrno; si las tmpraturas d ambas caras son difrnts, pro uniforms y constants (θ 1 ) y (θ 2 ), s stablcrá un flujo d calor (Q) por unidad d timpo qu vin dado sgún la ly d Fourir por la siguint rlación: S θ t S Q θ1 θ2 ( ) 9 10 FLUJO DE CALO FLUJO DE CALO Si lo xprsamos así: θ1 θ2 Q. S l valor juga l papl d una rsistncia térmica, análoga a una rsistncia léctrica. frida a una suprfici unitaria:. S La invrsa d la rsistncia térmica intrna s dnomina transmitancia térmica U y dfin la cantidad d calor transmitida a través d la unidad d ára d una mustra d matrial o d una structura d spsor, dividida por la difrncia d tmpratura ntr las caras calint (θ 1 ) y fría (θ 2 ) y n condicions stacionarias. 1 U 2 ( W/m.K) 2 ( m.k/w) 11 12

4 FLUJO DE CALO FLUJO DE CALO La cantidad d calor transmitido por unidad d timpo y ára dpnd dl spsor d la pard, dl gradint d tmpratura (Δ θ θ 1 - θ 2 ), y también d las propidads intrínscas dl matrial n cuanto a su aptitud para conducir l calor conductividad térmica (). La invrsa d la conductividad térmica s dnomina rsistividad térmica r y vin dada n m.k/w r 1 Matrial (W/m.K) El coficint s la cantidad d calor qu pasa n la unidad d timpo a través d la unidad d ára d una mustra d xtnsión infinita y caras plano-parallas y d spsor unidad, cuando s stablc una difrncia d tmpratura ntr sus caras d un grado. vin dado n W/m.K. θ 1 20ºC Q 1 cm θ 2 19ºC S 1 cm 2 13 Vapor d agua Air Espuma d polistirno Papl Agua líquida Vidrio Hilo Mrcurio Plomo Acro Aluminio Cobr 0,025 0,026 0,036 0,13 0,61 0,35-1,3 2,2 8, Malos conductors Bunos conductors 14 FLUJO DE CALO ESISTENCIA PAED SIMPLE Similitud con circuitos léctricos Cuando l calor s transfir a través d una pard aparc una rsistncia a la conducción Q θ θ S θ 1 θ 2 Conductividad θ θ / Similitud con circuitos léctricos θ θ sistncia térmica 2 1 Δθ Para dtrminar la rsistncia térmica total d una pard qu spara dos ambints a difrnts tmpraturas, no solamnt dbmos tnr n cunta la rsistncia térmica intrna d dicha pard, sino también otras rsistncias suplmntarias, dnominadas rsistncias térmicas suprficials intrna y xtrna ( si y s ), dbidas a las dificultads d cambios d calor ntr la pard y l air (transfrncias d calor por convcción y radiación). Int. si Ext. s V 0 I I V 0 Q S Δθ 15 16

5 ESISTENCIA PAED SIMPLE ESISTENCIA PAED COMPUESTA La rsistncia térmica total d la pard simpl srá: T si s si s La rsistncia térmica total srá la suma d las rsistncias térmicas parcials d cada capa: T si 1 2 n s El valor dl coficint suprficial dpnd d muchos factors, tal como l moviminto dl air u otro fluido, las rugosidads d la suprfici y la naturalza y tmpratura dl ambint. La transmitancia térmica qu s la invrsa d la rsistncia térmica srá: 1 1 U T si + + s 17 Para l caso particular d un crraminto con trs capas T si s T si s U T Int. si si s s Ext. 18 HETEOGENEIDADES EN LA PAED PSICOMETÍA Los crramintos normals no son homogénos ni continuos, ya qu xistn ncuntros d muros, forjados, structuras, tcétra, por lo qu n l coficint d transmisión dbn incluirs los coficints d transmisión d stos puntos singulars o punts térmicos El air atmosférico contin cirta cantidad d vapor d agua qu varía con los cambios stacionals o sgún la producción d vapor d agua. A una tmpratura dada l air no pud contnr n stado d vapor más qu una cantidad d agua infrior a un nivl máximo dnominado d saturación (13 g/kg a 18 C, p.j.). Cuando l contnido d vapor d agua s mnor (10,4 g/kg, p.j.), l air no stá saturado y s caractriza por su humdad rlativa o rlación ntr l pso o prsión d vapor d agua xistnt y l vapor d agua saturant: 10,4/ (Φ 80 %)

6 PSICOMETÍA PSICOMETÍA La prsión d saturación crc con la Tª d air, como s v n l ábaco psicrométrico. Una masa d air inicialmnt no saturada (80 % a 18 C, p.j.) llvada a una Tª más baja pud alcanzar l nivl d saturación mantnindo su prsión d vapor d agua. A partir d st punto part dl vapor d agua s condnsará n stado líquido. La Tª a partir d la cual s produc sta condnsación s dnomina punto d rocío dl ambint considrado (14 C, n st jmplo). El vapor d agua producido n l intrior d un local aumnta la prsión d vapor dl air ambint y sto ocasiona una difrncia d prsión d vapor ntr los ambints intrno y xtrno. S produc un procso d difusión d vapor a través dl lmnto sparador d los dos ambints, dsd l ambint con más prsión d vapor, gnralmnt l intrior, hacia l ambint con mnos prsión d vapor, gnralmnt l xtrior. Así, pus, s producirá simpr l fnómno d la condnsación cuando l air dscinda su Tª hasta un nivl igual o infrior a su punto d rocío, o cuando l vapor contnido n l air s ncuntr n contacto con un crraminto u objto cuya Tª sa infrior al punto d rocío. En l transport d vapor a través dl crraminto, si n algún punto d su intrior la prsión d vapor s suprior a la d saturación n s punto (o sa, si la Tª n s punto s infrior a la d rocío dl vapor n l mismo) s producirá condnsación d vapor d agua PSICOMETÍA Al producirs l fnómno d condnsación xist un dsprndiminto d calor, crándos un problma compljo qu obliga, a fctos prácticos, a la introducción d hipótsis simplificadoras. Ly d Dalton: En cualquir mzcla mcánica d gass y vapors (aqullos qu no s combinan químicamnt): El fnómno d la difusión dl vapor d agua n st campo s studia d una manra análoga al d la transmisión d calor n régimn prmannt, s dcir, suponiéndos qu no han tnido lugar fnómnos scundarios. Cada gas o vapor n la mzcla jrc una prsión parcial individual qu s igual a la prsión qu jrcría si él sólo ocupara todo l spacio. La prsión total d la mzcla s igual a la suma d las prsions jrcidas por cada uno d los gass o vapors n particular. El air obdc a dicha ly ya qu s una mzcla d gass y vapors. La prsión barométrica total s la suma d todas las prsions parcials jrcidas por los gass scos y por l vapor d agua. Por lo tanto: P atmosférica P air sco + P vapor agua 23 24

7 Humdad absoluta (H a ): s la cantidad d vapor d agua (m v ) contnida n una unidad d volumn d air (V): H a masa d vapor d agua m volumn d air sco V v 3 ( g/m ) Humdad rlativa (Φ): s la rlación ntr la cantidad d vapor d agua qu tin una dtrminada masa d air (m v ) y la qu tndría si stuvis saturado d humdad a la misma tmpratura (m vs ). Es quivalnt a la rlación ntr prsions d vapor P v y P sat : Humdad spcífica (H ): s la masa d vapor d agua (m v ) contnida n 1 kg d masa d air sco (M). También s llama Contnido d Humdad: H masa d vapor d agua mv masa d air sco M ( g/kg) Prsión d saturación (P sat ): para una tmpratura dtrminada, s la prsión dl vapor n condicions d saturación. Prsión parcial d vapor d agua Pv φ (%) Prsión d saturación P masa d vapor d agua a T φ (%) 100 masa d vapor d agua n saturación a T sat Coficint d v d prmabilidad (o difusividad) dl vapor d agua a través d un matrial: cantidad d vapor d agua qu atravisa una mustra d xtnsión infinita y d caras plano-parallas por unidad d ára, unidad d difrncia d prsión parcial dl vapor ntr caras y unidad d timpo. d mv masa qu atravisa por unidad d timpo (g/s) mv v g. m S ára (m S Δ P 2 ) v MN. s spsor (m) ΔP v incrmnto d prsión parcial d vapor (MN/m 2 ) La rsistividad al vapor (r v ) s la invrsa dl coficint d prmabilidad dl vapor. r v 1 d v MN. s g. m El factor d rsistncia a la difusión dl vapor d agua indica cuantas vcs s mayor la rsistncia a la difusión dl vapor d agua d un matrial con rspcto a una capa d air d igual spsor (para l air µ 1). rsistividad al vapor dl matrial rsistividad al vapor dl air sistividad al vapor dl air 5,5 MN.s/g.m El spsor d air quivalnt frnt a la difusión dl vapor d agua s l producto dl spsor por l factor d rsistncia a la difusión dl vapor d agua : Sd μ μ

8 ÁBACO PSICOMÉTICO Tmpratura d saturación T s (o punto d rocío): tmpratura a la qu una mustra d air húmdo llga a saturars y mpiza la condnsación, para una dtrminada prsión d vapor parcial. La rlación ntr los distintos parámtros la proporciona l ÁBACO PSICOMÉTICO: 29 Si la tmpratura sca xtrior dl air s 0 C y l air contin 3,4 g/kg d air sco, la humdad rlativa s dl 90 %, y xist una prsión d vapor d 5,4 mbar. Esta pud sr una típica condición dl air n invirno (Punto A). Est mismo air, con la misma cantidad d agua por masa d air sco, calntado a 20 C pasa a tnr una humdad rlativa dl 23 %, lo cual nos dmustra lo qu sucd al introducir st air xtrior para vntilación y calntarlo (punto B). Si a st air l aportamos 7 g/kg como rsultado d actividads normals n un dificio, a la misma tmpratura, su humdad rlativa ascndrá al 70 % con una prsión d vapor d 16,5 mbar, y un contnido d 10,4 g/kg (punto C). Est mismo air para alcanzar la saturación tndrá qu bajar al mnos su tmpratura a 14,5 C. 30 PIME MÉTODO 1. Calcular la distribución d la tmpratura n l crraminto: si stá formado por varias hojas la caída d tmpratura n cada una d las hojas s calcula: Δ Δ n n θn ( θi θ) θ T sindo: Δθ n : caída d tmpratura n la hoja n, n ºC θ i y θ : tmpraturas intrior y xtrior, n ºC n : spsor d la hoja n, n m n : conductividad térmica d la hoja n, n W/m C T : rsistncia térmica total, n m 2.K/W n : rsistncia térmica d la hoja n, n m 2.K/W n T Para cada una d las tmpraturas antriors y con ayuda dl ábaco psicrométrico, tablas o fórmulas, calcular la prsión d saturación. Sgún l CTE, la prsión d saturación n función d la tmpratura s pud calcular con las siguints xprsions: Tmpratura (θ) 0ºC Tmpratura (θ) < 0ºC Psat Psat 610,5. 610,5. 17,269. θ 237,3+θ 21,875. θ 265,5+θ 32

9 3. Calcular la distribución d la prsión d vapor n l crraminto: si stá formado por varias hojas s calcula: S Δ P P P P P ( ) ( ) μ dn n n vn vi v vi v Sdn Sdn sindo: P vn : caída d prsión d vapor n la hoja n, n Pa. P vi : prsión d vapor (humdad rlativa por prsión d saturación) dl air intrior, n Pa. P v : prsión d vapor dl air xtrior, n Pa. S dn : spsor d air quivalnt d cada capa frnt a la difusión dl vapor d agua, n m. n : spsor d la capa n, n m. μ n : factor d rsistncia a la difusión dl vapor d agua d cada 4. Comparar la prsión d saturación con la prsión d vapor n cada hoja dl crraminto. Si la prsión d saturación s mayor qu la prsión d vapor no s producn condnsacions. Si la prsión d saturación s mnor qu la prsión d vapor s producn condnsacions. capa SEGUNDO MÉTODO 1. Calcular la distribución d la tmpratura n l crraminto: igual qu n l apartado 1 dl método antrior. 2. Calcular las prsions d vapor n cada capa: igual qu n l apartado 3 dl método antrior. 3. Con ayuda dl ábaco psicrométrico, tablas o fórmulas, para cada prsión d vapor obtnida n l apartado antrior, calcular l punto d rocío. 4. Comparar la tmpratura xistnt n l crraminto con l punto d rocío: Si la tmpratura s mayor qu l punto d rocío no s producn condnsacions. Si la tmpratura s mnor qu l punto d rocío s producn condnsacions. 35

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

Resistencias de frenado

Resistencias de frenado Rsistncias d frnado 06.1 Gnralidads. l rducir la vlocidad d un motor controlado por un convrtidor d frcuéncia, la carga qu acciona sigu n moviminto dbido a su momnto d inrcia, o cuando l motor actúa contra

Más detalles

TEMA 3. Superficies Adicionales. Aletas.

TEMA 3. Superficies Adicionales. Aletas. TEMA 3. Suprficis Adicionals. Altas. Introducción Alta rcta d spsor uniform y alta d aguja d scción transvrsal constant La alta anular d spsor constant La alta d prfil triangular Efctividad d la alta Las

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS UNDD HDRÚL. ENERLDDES apítulo PRESONES EN LOS LÍQUDOS : HDROSTT SEÓN : EPUJES SORE SUPERFES PLNS Y URVS ÁLULO DEL EPUJE EN SUPERFES PLNS Una suprfici plana sumrgida n un líquido con pso spcífico γ s ncuntra

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS Aljandro Luis Hrnándz aljohr65@gmail.com Gracila Lsino lsino@gmail.com Univrsidad Nacional

Más detalles

EQUILIBRIO QUIMICO. aa + bb cc + Dd

EQUILIBRIO QUIMICO. aa + bb cc + Dd EQUILIBRIO QUIMICO Una racción rvrsibl s aqulla n qu los productos d la racción intractúan ntr sí y forman nuvamnt los raccionants. En la siguint rprsntación d una racción rvrsibl aa + bb cc + Dd los raccionants

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

Embrague de fricción (Consideraciones de diseño) INGENIERO HUGO L. AGUERO ALVA

Embrague de fricción (Consideraciones de diseño) INGENIERO HUGO L. AGUERO ALVA Embragu d fricción (Considracions d disño) Embragus 1. Plato conductor 2. Plato conducido Son acoplamintos tmporals utilizados para solidarizar dos pizas qu s ncuntran n js coaxials, para transmitir l

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS PLÁSTICAS

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Nueva directiva ErP de diseño ecológico y eld de etiquetado energético

Nueva directiva ErP de diseño ecológico y eld de etiquetado energético Nuva dirctiva ErP d disño cológico y ld d tiqutado nrgético El 26 d sptimbr d 2015 ntra n vigor la nuva Dirctiva ErP d Ecodisño y ELD d Etiqutado nrgético. Enrgy-rlatd Products Esta nuva normativa ErP,

Más detalles

Prof: Bolaños D. Electrónica

Prof: Bolaños D. Electrónica Elctrónica Introducción a línas d transmisión Dfinición Es un sistma d conductors capacs d transmitir potncia léctrica dsd una funt a una carga. D acurdo a sta dfinición tanto la lína d alta tnsión provnint

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA BAJO PRESIÓN

KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA BAJO PRESIÓN 40 KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA balón, masa, balanza, bomba, prsión, as idal, colisión lástica, coficint d rstitución f ísica, matmáticas, TIC

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h INERCAMBIO DE CALOR ENRE DOS FLUIDOS El calor tranfrido d un fluido a otro a travé d la pard d un tubo : πl( - ln( r / r + + hr k h r ( Eta cuación la ba dl diño d intrcambiador d calor tubular. Si dfin

Más detalles

SECRETARIA DE ENERGIA

SECRETARIA DE ENERGIA Juvs 8 d octubr d 0 DIARIO OFICIAL (Primra Scción) 8 SECRETARIA DE ENERGIA NORMA Oficial Mxicana NOM-04-ENER-0, Caractrísticas térmicas y ópticas dl vidrio y sistmas vidriados para dificacions. Etiqutado

Más detalles

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión.

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión. Factors d longitud fctiva para l cálculo d la rsistncia d lmntos somtidos a comprsión. Existn difrncias ntr las rcomndacions dl NTCEM-004 y las rcomndacions ISC 005. El rglamnto ISC 005 stablc qu l valor

Más detalles

FIZIKA SPANYOL NYELVEN

FIZIKA SPANYOL NYELVEN Fizika spanyol nylvn középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Los xámns

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles

Capítulo XX. Filtración.

Capítulo XX. Filtración. Capítulo XX Filtración. Introducción. En los procsos industrials nos ncontramos a mnudo con la ncsidad d la sparación d los sólidos contnidos n una suspnsión sólido fluido. Para llo s utiliza con frcuncia

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA 4 ANALISIS IENSIONAL Y SIILITU ISICA www.rivra-001.com Contnido 4.1. Introducción 4.. Qué s un parámtro adimnsional? 4.3. Naturalza adimnsional dl flujo fluido 4.4. El torma d Pi d Buckingham 4.5. Cómo

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

Para reciclar hay 5 contenedores y cada uno con una función básica: -Azul: Papel,cartón -Verde: vidrios, -Amarillo:Envases(plástico..

Para reciclar hay 5 contenedores y cada uno con una función básica: -Azul: Papel,cartón -Verde: vidrios, -Amarillo:Envases(plástico.. s o m Có? r a l c i c r b d Para rciclar hay 5 contndors y cada uno con una función básica: -Azul: Papl,cartón -Vrd: vidrios, -Amarillo:Envass(plástico..) -Ngro:rstos y orgánico -Pilas. l u z A r o d n

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Practica 9: Tipo de cambio y paridad de poder adquisitivo

Practica 9: Tipo de cambio y paridad de poder adquisitivo Practica 9: Tipo d cambio y paridad d podr adquisitivo 1 Practica 9.1: Ejrcicio 1, capitulo 13, pag. 355 En Munich un bocadillo d salchicha custa 2, n l parqu Fnway d Boston un prrito calint val 1$. Con

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

Calderas murales a gas

Calderas murales a gas Cadras muras a gas Nuva gnración d cadras muras d condnsacion wifi. Con conxión via wifi dsd Smart Phon, Tabt o PC BLUEHELIX TECH WIFI. Intrcambiador d Pacas. Microacumuación Enrgy-ratd Products ata ficincia

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD II. HIDROSTÁTICA Introducción. La stática d fluidos studia las condicions d quilibrio d los fluidos n rposo, y cuando s trata sólo

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

ESTUDIO COMPARATIVO DE 7 DIFERENTES INSTALACIONES DE ENERGÍA SOLAR TÉRMICA PARA MULTIVIVIENDAS SEGÚN NUEVO CTE/HE4

ESTUDIO COMPARATIVO DE 7 DIFERENTES INSTALACIONES DE ENERGÍA SOLAR TÉRMICA PARA MULTIVIVIENDAS SEGÚN NUEVO CTE/HE4 ESTUDIO COMPARATIVO DE 7 DIFERENTES INSTALACIONES DE ENERGÍA SOLAR TÉRMICA PARA MULTIVIVIENDAS SEGÚN NUEVO CTE/HE4 0. OBJETIVO DEL ESTUDIO El CTE-HE4 ha impulsad un rt imprtant para ls prfsinals d la indústria

Más detalles

de la Edificación DB-HE Ahorro de Energía

de la Edificación DB-HE Ahorro de Energía Colegio Oficial de Aparejadores y Arquitectos Técnicos de CádizC Curso Código C Técnico T de la Edificación DB-HE Ahorro de Energía Septiembre - Octubre de 2006 1 Colegio Oficial de Aparejadores y Arquitectos

Más detalles

SOCIEDAD. % en peso 48 % 19% 12% Compost o abono Maceteros o bolsas de basura Nuevos embalajes Nuevos tarros o botellas

SOCIEDAD. % en peso 48 % 19% 12% Compost o abono Maceteros o bolsas de basura Nuevos embalajes Nuevos tarros o botellas T C l sr humano simpr ha gnrado rsiduos, pro n la antigüdad, éstos volvían a rintroducirs n los ciclos naturals. sd la rvolución industrial, hmos multiplicado varias vcs la producción d rsiduos, aumntando

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

ANÁLISIS DE LA COMPRESIBILIDAD DE LOS RELLENOS SANITARIOS, COMPARACIÓN DE MODELOS TEÓRICOS

ANÁLISIS DE LA COMPRESIBILIDAD DE LOS RELLENOS SANITARIOS, COMPARACIÓN DE MODELOS TEÓRICOS ANÁLII DE LA COMPREIBILIDAD DE LO RELLENO ANITARIO, COMPARACIÓN DE MODELO TEÓRICO Turcumán, María (1) Instituto d Matrials y ulos, Facultad d Ingniría, Univrsidad Nacional d an Juan. Ingnira Civil. Espcilización

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

(máxima) (mínima) (máxima) (mínima)

(máxima) (mínima) (máxima) (mínima) Ejrcicios d componnts lctrónicos. En l circuito d la figura, l amprímtro marca µa con la LD tapada y 4 ma con la LD compltamnt iluminada. Si la rsistncia d la bombilla s d 0 Ω, calcula la rsistncia máxima

Más detalles

X2500. Caja Estandár POTENCIAS. Tensión s. kw e 415/24 400/23 380/22

X2500. Caja Estandár POTENCIAS. Tensión s. kw e 415/24 400/23 380/22 X25 Rf. Motor 16V4G63F Rf. Altrnador LSA 51.2 VL9 Clas d ralizacións G3 CARACTERISTICAS GENERALES Frcuncia (Hz) 5 Tnsion (V) 4/23 Sncilla rglta d borns M8 TELYS APM82 Caja Estandár POTENCIAS DESCRIPTIVO

Más detalles

La función gamma. en la disciplina Matemática para las carreras de ingeniería

La función gamma. en la disciplina Matemática para las carreras de ingeniería La función gamma n la disciplina Matmática para las carrras d ingniría Antonio Mazón Ávila INTRODUCCIÓN Por todos s conocido qu la formación Matmática s bas part sncial n la formación dl ingniro, d sto

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS. Ondas Electromagnéticas en medios guiados

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS. Ondas Electromagnéticas en medios guiados Ondas Elctromagnéticas n mdios guiados Introducción Capítulo 8 Son mdios guiados aqullos qu proporcionan un camino para qu las ondas lctromagnéticas s propagun d una manra más fácil d un punto a otro.

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1

MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 MANUAL DE BUENAS PRÁCTICAS PARA EL DESARROLLO DE OBJETOS DE APRENDIZAJE VERSIÓN 1 Chil, agosto d 2005 El prsnt manual rprsnta la visión dl quipo d profsionals prtncints al Proycto FONDEF Aprndindo con

Más detalles

CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS. Nunca hace mucho el que reflexiona demasiado. Johann Fridich Vonchiller

CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS. Nunca hace mucho el que reflexiona demasiado. Johann Fridich Vonchiller CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS Nunca hac mucho l qu rflxiona dmasiado. Johann Fridich Vonchillr 3.1 Orign d la nrgía dl vinto La nrgía dl vinto procd n sncia dl sol. La Tirra rcib 1.74x10 17 Watts

Más detalles

Aspectos Fiscales Venezolanos Cross-Border de las Inversiones en el Sector del Gas. Luis Eduardo Ocando B. (luis.ocando@ve.ey.com)

Aspectos Fiscales Venezolanos Cross-Border de las Inversiones en el Sector del Gas. Luis Eduardo Ocando B. (luis.ocando@ve.ey.com) Intrnational Tax Srvics Aspctos Fiscals Vnzolanos Cross-Bordr d las Invrsions n l Sctor dl Gas Luis Eduardo Ocando B. (luis.ocando@v.y.com) Tabla d Contnidos Introducción Planificación Fiscal n Vnzula

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

Eliminación de compuestos organoclorados para potabilización de aguas mediante un proceso de adsorción - regeneración en carbón activado

Eliminación de compuestos organoclorados para potabilización de aguas mediante un proceso de adsorción - regeneración en carbón activado Eliminación d compustos organoclorados para potabilización d aguas mdiant un procso d adsorción - rgnración n carbón activado Sotlo, J.L., Ovjro, G., Dlgado, J.A. y Martínz, I. Dpto. d Ingniría Química,

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10 IES Al-Ándalus. Dpto d Física y Química. Curso 9/ - - UNIVESIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO OPCIÓN A. a) Expliqu qué s ntind por vlocidad d scap y dduzca razonadamnt su xprsión. b) azon

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Grupos térmicos a gasóleo (hierro fundido)

Grupos térmicos a gasóleo (hierro fundido) Grupos térmicos a gasólo (hirro fundido) ATLAS D 32 CONDENS K 130. Condnsación. Digital. Mixta con acumulador vitrificado d 130 l ficincia 386000322 ATLAS D 32 CONDENS K 130 Gama con vaso d xpansión A.C.S.

Más detalles

FÍSICA II. Guía De Problemas Nº4:

FÍSICA II. Guía De Problemas Nº4: Univrsidad Nacional dl Nordst Facultad d Ingniría Dpartanto d Físico-Quíica/Cátdra Física II FÍSIC II Guía D roblas Nº4: rir rincipio d la Trodináica 1 ROBLEMS RESUELTOS 1- S dsa calcular l trabajo ralizado

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PERO VRGS UNEFM PO ENERGÉIC isponibl n: wwwopracionswordprsscom INERCMBIORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIERCIONES GENERLES nts d scribir las cuacions qu rgulan

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles