Tests basados en la distribución Binomial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tests basados en la distribución Binomial"

Transcripción

1 Métd N aamétc I 8 Elea J. Matíez d cuat. 004 et baad e la dtbucó Bmal et bmal: E ua heameta útl e mucha alcace y també e utlza e ca que e quee btee u tet de lbe dtbucó. E mucha tuace e el tet má tete; e ta be hay t tet má tete e l uele efe u mlcdad. Sugam que e tee ua mueta aleata que cte e l eultad de eetce deedete e cada ua de la cuále hay d eultad ble y mutuamete ecluyete: E y F A y A c clae y clae S y N. Sea E ctate e tda la eetce y tal que 0. Se deea tetea algua de la guete hóte A. tet blateal: : v : B. tet ulateal: : v : < C. tet ulateal: : v : Sea... v.a...d c dtbucó B e dec 0 e la eetcó cue E e la eetcó cue F El tet e baaá e el etadítc que e el úme de ét e la eetce. Cm ~ B aa btee u tet de vel eact e debe aleatza utlza el vel adecuad. Ejeml: E ua cmudad ua emó de b e abada má del 65% del electad vta a fav de dcha medda. Se etevta a ea y e le eguta vtaía a fav e cta de la emó de b. 0 ea dce que vtaía a fav. E bae a eta evdeca eá azable ue que la emó de b eá abada? La hóte a tetea : 0.65 v : 0.65 La za de echaz cmatble c la alteatva cdeada cte e vale gade de úme de ea a fav de la emó de b. Baj ~ B0.65 S e elge cm za de echaz {} la babldad de u e t I e S e elge cm za de echaz {0} la babldad de u e t I e

2 Métd N aamétc I 9 Elea J. Matíez d cuat l tat e ble halla u tet aleatzad eact de vel Cóm hallaíam u tet aleatzad de vel 0.05? Φ γ 0 0 < 0 dde γ e elge de maea que el tet tega vel Cm 0.05 E 0.65 Φ γ γ γ 0.07 uuet que també e día tabaja c u tet de vel c egó de echaz {}. Ete e u tet cevatv. Vlved a la hóte lateada calmete e ufcetemete gade dem utlza tet de vel atótc. A. Φ 0 ó < dde y atface y +. ay fta elecce ble de y e bucam u tet egad IUM cm π E Φ aa td etce la devada e debe e 0. l tat bucaem y tale que π 0 l cual equvale a E Debem halla y tale que Φ - 0 E + Φ A El tet eultate eá IUM aa la hóte blateal. Ejecc: vefca que la eguda ecuacó e equvalete a

3 Métd N aamétc I 0 Elea J. Matíez d cuat. 004 B. B < Φ 0 dde t atface C. Φ 0 dde t atface L d tet aa hóte ulateale UM aa u vel. Cálcul del -val: dad u val bevad del etadítc b el -val e cada u de l tet atee e calcula e la fma A. -val m { } b b B. -val b C. -val b Al calcula el -val e el ca del tet de vel atótc e debe hace ceccó ctudad. Ejeml: Vlved al ejeml ate ugam que e hubee ecuetad a 0 ea de la cuále 85 etuve a fav de la emó de b. Dad que aa ufcetemete gade a ~ N0 el tet de vel atótc 0.05 aa la hóte : 0.65 v : 0.65 a ~ N - y l tat

4 Métd N aamétc I Elea J. Matíez d cuat. 004 tedá cm egó de echaz dde e elge de maea que Baj z etce + z 0.05 E uet ca Ademá z lueg echazaem aa vale de maye que val Φ Iteval de cfaza aa ua babldad có blacal: Dada ua m.a.... de ua dtbucó B ya abem cm ctu u teval de cfaza de vel atótc - aa. Veam cóm btee u teval de vel eact. Necetam vet la egó de acetacó del tet aa Recdem que el tet echaza : v : y l tat la egó de acetacó e ó A { < } dde y atface la cdce A. Sea etce y tale que 0 0 edad: aa fj y fuce cecete de e dec < < < < Dem: eulta de beva que < < be

5 Métd N aamétc I Elea J. Matíez d cuat. 004 Vlved a la egó de acetacó A { < } { < < } + y l tat I { < < + } { < < } Lueg el teval etá dad I ˆ ˆ L U dde ˆ L y ˆ U Cóm btee et teval? Métd A: 30 la abla A4 del lb de Cve vee teval de cfaza eact de vele y Métd B: 30 Cve ugee ua la amacó Nmal e cuy ca z y ˆ U + z ˆ L ed el úme bevad de ét. Métd C: utlzad ftwae ejeml S-LUS y hallad ˆ ˆ L U tal que tal que B ˆ B ˆ L U Ejeml: E cet etad e elecca 0 ecuela al aza aa ve alcazaba l tadae de eceleca uet la Cmó Nacal de Educacó. 7 ecuela l alcaza y fue clafcada cm ecelete. alla u teval de cfaza de vel 0.95 aa có de ecuela ecelete. Métd A: Uad la abla A4 de Cve c 0 7 y e btee

6 Métd N aamétc I 3 Elea J. Matíez d cuat. 004 Métd B: El teval de vel atótc bted e Métd C: El guete blque de tucce emte btee el teval equed uad S-LUS. La ecó del eultad deede del tamañ de la glla elegda e ete ca e dvdó el [0] e 000 ubteval de amltud 0.00 lm<-vectmde"umec"000 lm<-vectmde"umec"000 a<-eq00.00 alfa< <-7 <-0 f :00 { lm[]<-bm-a[] lm[]<-bma[] } f :00 { f lm[]<-alfa && lm[-]-alfa lw<-a[-] f lm[]<alfa && lm[-]alfa lu<-a[-] } lw y lu l límte del teval. E ete ca lw 0.53 y lu et aa cuatle: El tet bmal uede e adatad aa tetea hóte elacada c l cuatle de ua dtbucó. ejeml e día quee tetea la medaa de ua dtbucó e may que 0. Sea... ua m.a. veete de ua blacó c dtbucó F. Obevem que la hóte : el cuatl e e equvalete : y < [S la v.a. e ctua : ] Defam d v.a. Y 0 Z 0 < Y ~ B c F y Z ~ B ~ c ~ <. Aha la hóte atee equvalete a : y ~

7 Métd N aamétc I Elea J. Matíez d cuat Adataem etce el tet Bmal. Sea ~ ~ ~ B Z B Y Obevem que. Ccdá hay gua bevacó gual a Cdeem l te tet aa cuatle. A. : v : Eta hóte e el ca ctu equvalete a < ~ ó : v ~ y : Rechazaem a vel ó c + B B S e ufcetemete gade y uede bteee medate la amacó Nmal z z + B. < : v : Eta hóte e el ca ctu equvalete a ~ : v ~ : Rechazaem a vel c B S e ufcetemete gade e btee medate la amacó Nmal. + ó Z B Z c

8 B Métd N aamétc I 5 Elea J. Matíez d cuat. 004 C. : v : Eta hóte e el ca ctu equvalete a : < : v Rechazaem a vel c B S e ufcetemete gade e btee medate la amacó Nmal. qué decm que la hóte equvalete e el ca ctu?. Cdeem cm ejeml el ca B. S < < ~ Sea aha ~ 0 y ugam que < etce < < ~ ea <. Ademá F F etce ~ +. De ahí que e el ca ctu eá equvalete. Ejeml: Duate añ l geate a la uvedad ha dad u eame y e cdea que el cuatl ue de la ta e dch eame e U cleg evía 5 de u gaduad a ed el eame y l utaje bted l guete: Sued que l 5 alum ua m.a. de l etudate del cleg e deea tetea equvaletemete : v : < : y v : < ó 93 < 0.75 Baj y tee dtbucó B50.75

9 Métd N aamétc I 6 Elea J. Matíez d cuat. 004 B B etce tabajad c vel echazam E uet ca 4 ó { 93} 7 cad { < 93} cad etce echazam. 7 6 Cóm e calcula el -val? Cm el val bevad etá e el límte de la egó de echaz etce el -val ccde c el vel. O ea -val Iteval de cfaza aa u cuatl: Ya vm cóm halla u teval de cfaza aa ua babldad. U métd mla e utlza aa btee u teval de cfaza aa el ecetl. E ete ca el teval de cfaza eá de la fma Dat:... c e ua m.a. de ua dtbucó F y deada. Sea 0 < < y 0 < <. Bucam u teval de cfaza aa... la mueta. Métd A: e equeñ Cve ugee 0 uad ua tabla bmal ftwae e buca y tale que B B Sea + y etce + [ ] e u teval de cfaza aa de vel - vale el gual F e ctua. Métd B: e ufcetemete gade e ctuye u teval de vel atótc. Sea

10 Métd N aamétc I Elea J. Matíez d cuat z z + y [ ] [ ] y + + etce [ ] e u teval de vel atótc may gual que -. Obevacó: L teval ulateale e btedá e la fma [ c [ ] + y ] c [ ] +. Jutfcacó: Sea el ecetl etce < Sugam e c que F e ctua e etce F Cóm eeam <? mee guale que ' - a l um < Lueg < 0 Del mm md ' mee guale que l me Elged y tale que + B B etce < B y eta babldad equvale a

11 Métd N aamétc I 8 Elea J. Matíez d cuat. 004 y el teval [ ] tee vel -. S F e ctua e etce F < < 0 c F. Cm ea fucó e dececete e Del mm md e vefca que < etce el teval [ ] tee vel may gual que Obevacó: S la bevace tee dtbucó Nmal el tet aa la medaa 0.5 uede cmaae c el tet t. Su efceca atótca elatva ARE e S embag la vedadea dtbucó e dble eecal la cual e métca e c cla eada ARE. Límte de tleaca: vee u teval que ctee l me ua có q de la blacó c alta babldad -. Alcacó: e deea etae ua mueta... y e quee detema aa que c babldad 0.95 l me el 90% de la blacó eté ete y. blema geeal: Dad q m y - detema el tamañ de mueta aa que c babldad - el 00 q% de la blacó eté ete y +-m. ambé e uede habla de límte ulateale de tleaca. Sugam... v.a. d c dtbucó F S la blacó e fta y la eleccó e hace ecó udem que e muy equeñ e elacó a N. Sea 0 < < 0 < q < m y atuale. Ntaem Bucam de md que c babldad may gual que - el teval [ +-m ] ctega u cetaje 00 q de la blacó.

12 Métd N aamétc I 9 Elea J. Matíez d cuat. 004 Cdeem el ca ulateal. Bucam de md que c babldad may gual que - el 00 q % de la blacó ea +-m ea que c babldad may gual que - q +-m. l tat bucam de maea que e hem vt que + m q m + m q q etce bucam el me tal que q 0 B q m equvaletemete bucam el me tal que B q m Reect al t límte ulateal ceded de la mma fma e beva que e debe buca el me tal que B q uede demtae que aa l límte blateale cm aa amb límte ulateale el tamañ muetal deede de la lucó de B q + m e dec que la ecuacó deede ól de +m y del t de teval que bucam Nethe 967. ay tabla eecale aa +m y +m A5 y A6 de Cve y algua amace cm ua ueta Scheffe y uey q + + m 4 q dde - e el ecetl - de la dtbucó χ c +m gad de lbetad.

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º Calcula el ídce de efaccó elatvo del vdo al acete. Halla la velocdad de popagacó y la logtud de oda, e el acete y e el vdo de u ayo de

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AVANZADA Udad I: Prpedade y Leye de la ermdámca Prce reverble e tema cerrad Vlume de ctrl Cted Etrpía Degualdad de Clauu Defcó La ercera Ley de la ermdámca Prce ermdámc Dagrama -S Vlume de

Más detalles

Donde n 1 es el índice de refracción del primer medio y n 2 el den segundo medio.

Donde n 1 es el índice de refracción del primer medio y n 2 el den segundo medio. Dpt. Fíca y Químca ÓPTCA GEMÉTRCA - RESUMEN. Epej Pla. La caacteítca de la mage que ma l epej pla la guete: - La mage e empe vtual. Se ma detá del epej y a la mma dtaca que el bjet. - La mage e del mm

Más detalles

Cinemática del Robot Industrial

Cinemática del Robot Industrial Cemátca del Robot Idustal M.C. Mguel de J. Ramíe C. CMfgT Automatacó de Sstemas de Maufactua Adatacó: Glbeto Reoso Estuctua Mecáca del Robot Idustal Mecácamete u obot es ua cadea cemátca fomada de eslaboes

Más detalles

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar Matemátcas Aplcadas. SS. I -- I. E. S. Saba MATEMÁTIAS INANIERAS EN 1º BTO.. SS. 1. PORENTAJES 1.1 Aumetos y dsmucoes pocetuales. Ídce de vaacó 1.2 Aumetos y dsmucoes pocetuales ecadeados. Ídce de vaacó

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

TEMA 3 Filtros activos. Fundamentos

TEMA 3 Filtros activos. Fundamentos DEPTMENTO DE TEOÍ DE L EÑL Y COMUNICCIONE NÁLII Y ÍNTEI DE CICUITO TEM 3 Fltro actvo. Fudaeto INDICE. El lfcador Oeracoal..... El lfcador Oeracoal Ideal..... El lfcador Oeracoal eal...... Gaaca Deedete

Más detalles

Complementos del tema 6 (interferencias de origen interno) RUIDO EN LOS CIRCUITOS ELECTRÓNICOS. ESTABILIDAD DE LA FRECUENCIA

Complementos del tema 6 (interferencias de origen interno) RUIDO EN LOS CIRCUITOS ELECTRÓNICOS. ESTABILIDAD DE LA FRECUENCIA Cmpemet de tema 6 (teeeca de ge te) UIDO EN OS CICUITOS EECTÓNICOS. ESTBIIDD DE FECUENCI P. D. Jua Jé Gzáez de a a Gup de Ietgacó e Itumetacó Eectóca pcada y Técca de Fmacó. TIC68 Áea de Eectóca. Dpt.

Más detalles

Capitalización, actualización y equivalencia financiera en capitalización compuesta

Capitalización, actualización y equivalencia financiera en capitalización compuesta Captalzacó, actualzacó y equvaleca facera e captalzacó compueta 5 E eta Udad aprederá a: 2 3 4 5 Decrbr lo efecto eecale de la captalzacó compueta. Reolver problema facero e captalzacó compueta. Dferecar

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Santiago de la Fuente Fernández. Regresión Lineal Múltiple

Santiago de la Fuente Fernández. Regresión Lineal Múltiple atago de la Fuete Feádez egesó Leal Múltple atago de la Fuete Feádez egesó Leal Múltple EGEIÓN LINEAL MÚLTIPLE egesó Leal Múltple Las téccas de egesó leal múltple pate de (k+) vaables cuattatvas, sedo

Más detalles

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II Uvesdad Técca Fedeco Sata Maía Uvesdad Técca Fedeco Sata Maía Depatameto de Iomátca ILI-80 Capítulo Aálss de datos (Bvaados( Bvaados) Estadístca Computacoal I Semeste 006 Pate II Poesoes: Calos Valle (cvalle@.utsm.cl)

Más detalles

Diseño de Controladores PID. Sistemas de Control Prof. Mariela CERRADA

Diseño de Controladores PID. Sistemas de Control Prof. Mariela CERRADA Deño de Controladore PID Stema de Control Prof. Marela CERRADA Controlador del to PI: Mejorando la reueta etaconara Lo controladore del to PI olo ncororan la accone Proorconale Integrale, aumentando en

Más detalles

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos.

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos. Po Camen Recondo Coeccón toogáfca de la magen aa mejoa la clafcacone en zona montañoa. Modelo método. Jonada de Coeccón Toogáfca de mágene de Satélte Camu de Mee. Unvedad de Ovedo. 7 de dcembe de 009.

Más detalles

ESTADÍSTICA DESCRIPTIVA BIVARIADA

ESTADÍSTICA DESCRIPTIVA BIVARIADA ESTDÍSTIC DESCRIPTI IRID ESTDÍSTIC DESCRIPTI IRID No coepode tata ahoa el poblema de aalza multáeamete do vaable etadítca de ua poblacó paa lo cual la ceamo o tomamo ua mueta de ella etudado e bae a tal

Más detalles

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO: 6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la

Más detalles

0(=&/$6*$6(26$6. i = (3)

0(=&/$6*$6(26$6. i = (3) 0(&/$6$6(26$6,1752'8&&,21 E la erodáca, para poder realzar aál de prera eguda le, e ecearo coocer la propedade terodáca de la utaca de trabajo, coo o, por ejeplo, la eergía tera, la etalpía la etropía.

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

ascenso (Relato: 10 minutos)

ascenso (Relato: 10 minutos) Lecció d alcaza l d a Alcaza campamet bae (Actividad iicial: 5 miut) Qué e eceita: Tarjeta de la etia (hipa.imb.rg/freda) Tijera Cita adheiva de dble faz Ctr de l ctiete (hipa.imb.rg/freda) Pegamet Cartulia

Más detalles

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula 4. Vaables Agulaes Las vaables agulaes sve aa eeseta e foma mas smle e dóea al movmeto de otacó. La

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

TEMA 5 SISTEMAS DE N GRADOS DE LIBERTAD. Sistemas de N Grados de Libertad

TEMA 5 SISTEMAS DE N GRADOS DE LIBERTAD. Sistemas de N Grados de Libertad Sstemas de N Gados de Lbetad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 5. - ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 5. - 5. Plateameto matcal Se va a extede los esultados de gdl al caso geeal de N gdl. El estudo

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Diseño óptimo de un regulador de tensión en paralelo

Diseño óptimo de un regulador de tensión en paralelo Deño óptmo de un regulador de tenón en paralelo Federco Myara 1. egulador mple con un dodo de ruptura El cao má mple e el regulador con un dodo zener, ndcado en la fgura 1. S ben el crcuto parece muy encllo,

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES.

VARIABLES ESTADÍSTICAS BIDIMENSIONALES. CONTENIDOS: VARIABLES ESTADÍSTICAS BIDIMENSIONALES. Orgazacó de dato: tabla de frecueca de doble etrada. Frecueca margale. Dagrama de dperó. Regreó leal: recta de regreó. Coefcete de correlacó leal. Iterpretacó.

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

III Game Campori Online

III Game Campori Online 2015 14-16 d ag vã www.gam.ampl.m puguê III Gam Camp Ol Gua dl Ev A Equp Rad Wb Avdad y glam Cdad Publdad Tadu Rla x Rd Sal Epaldad dl Ev Pdu y vd Múa Dg Tx 2 Thag Sf Hla quad! C ga algía l v a hé d aha

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES 7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell

Más detalles

TEMA 2 MATEMÁTICAS FINANCIERAS

TEMA 2 MATEMÁTICAS FINANCIERAS Tema Matemáticas fiacieas 1 TEMA MATEMÁTICAS FINANCIERAS EJERCICIO 1 : Po u atículo que estaba ebajado u 1% hemos pagado, euos. Cuáto costaba ates de la ebaja? 1 Solució: El ídice de vaiació es: IV = 1

Más detalles

OPTICA REFLEXIÓN Y REFRACCIÓN

OPTICA REFLEXIÓN Y REFRACCIÓN OPTICA REFLEXIÓN Y REFRACCIÓN IES La Magdalea. Avlés. Astuas La eflexó se poduce cuado ua oda ecueta ua supefce cota la cual ebota. E la eflexó el ayo cdete y el eflejado se popaga e el msmo medo. La velocdad

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

7. Amplificadores RF de potencia

7. Amplificadores RF de potencia 7. Amplificadre RF de ptencia 7. ntrducción El amplificadr de ptencia (PA e la última etapa del emir. Tiene la miión de amplificar la ptencia de la eñal (n neceariamente la tenión y tranmitirla a la antena

Más detalles

Ecoart. Revestimientos Naturales. Paneles ecológicos

Ecoart. Revestimientos Naturales. Paneles ecológicos Ecoart Paneles ecológicos E coart Pr es e nt aci ó n C AS A S ECO ART.COM pr es e n ta u n a se l e ccion de n atua rle s, r eali zado s con n u e sv as te cn ol ogias, el re ve st i m i ento de par e

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II UED FUTD DE. EOÓIS Y ERESRIES TEÁTI DE S OERIOES FIIERS II URSO / l uevo Eme e JUIO Dí // l ho TERI UXIIR: lulo fe DURIÓ: ho. El bo X oee u pétmo hpoteo l S. Y. utí el ptl peto e el % el peo e tó el po

Más detalles

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS UNIVERIDAD de VALLADOLID ECUELA de INGENIERÍA INDUTRIALE INGENIERO TÉCNICO INDUTRIAL, EPECIALIDAD EN MECÁNICA PROYECTO FIN DE CARRERA ANÁLII ETADÍTICO DEL CONTROL DE CALIDAD EN LA EMPREA Autor: Galca Adrés,

Más detalles

TÉCNICAS MATEMÁTICAS DE MODELADO DEL COMPORTAMIENTO DE SISTEMAS INFORMÁTICOS

TÉCNICAS MATEMÁTICAS DE MODELADO DEL COMPORTAMIENTO DE SISTEMAS INFORMÁTICOS TÉCICAS ATEÁTICAS DE ODELADO DEL COPORTAIETO DE SISTEAS IFORÁTICOS or Rao Pugaer Agoto de 4 TABLA DE COTEIDOS. ITRODUCCIÓ..... PRESETACIÓ GEERAL..... CLASIFICACIÓ DE LOS PROCESOS ESTOCÁSTICOS...... Proceo

Más detalles

d e l a L e y 1 8. 3 8 4.

d e l a L e y 1 8. 3 8 4. D I A G N Ó S T I C O D E L A S I T U A C I Ó N E N E L S I S T E M A T E A T R A L E n e l c a m i n o d e p r o f u n d i z al r a c o n s o l i d a c i ó n d e l s e c t o r t e a t rsae l, r e s u

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Inteligencia de redes y comunicaciones. Celestino. Eduardo García Ballestero Julio F. Borreguero Ballesteros

Inteligencia de redes y comunicaciones. Celestino. Eduardo García Ballestero Julio F. Borreguero Ballesteros Iteligecia de rede y comuicacioe Celetio Eduardo García Balletero Julio F. Borreguero Balletero CELESTI 1. Itroducció Cuáta de la peroa que coocemo tiee pareja?, cuáta tiee dificultade para ecotrarla?...ya

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

Aplicación de Microsoft Excel a la Química Analítica: validación de métodos analíticos

Aplicación de Microsoft Excel a la Química Analítica: validación de métodos analíticos Aplcacó de Mcrooft Ecel a la Químca Aalítca: valdacó de método aalítco Joé Marco Jurado Departameto de Químca Aalítca 1 de abrl de 008 1 Etadítca báca 11 Cocepto de poblacó y muetra E etadítca, e defe

Más detalles

LAZOS DE AMARRE DE FASE

LAZOS DE AMARRE DE FASE LAZOS DE AMARRE DE FASE Maco Atoio Péez Ciseos *, Mak Readma * Divisió de Electóica Computació, CUCEI, Uivesidad de Guadalajaa, México. Cosulto Cotol Sstems Piciples RESUMEN: Este atículo peteece a la

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

ESTIMACION DEL HIDROGRAMA UNITARIO. ESTUDIO COMPARATIVO DE CUATRO METODOS LINEALES

ESTIMACION DEL HIDROGRAMA UNITARIO. ESTUDIO COMPARATIVO DE CUATRO METODOS LINEALES ESTIMACION DEL HIDROGRAMA NITARIO ESTDIO COMARATIVO DE CATRO METODOS LINEALES José Lus Ayuso, Adolfo eña y M a la Motesos Aea de oyectos de Igeeía ETS Igeeos Agóoos y de Motes vesdad de Códoba RESMEN:

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4 IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

Topología General Capítulo 0-2 -

Topología General Capítulo 0-2 - Topología Geeral Topología Geeral apítulo - - - - Topología Geeral apítulo - 3 - Breve reseña hstórca Sus orígees está asocados a la obra de Euler, ator y Möbus. La palabra topología había sdo utlzada

Más detalles

1. Propiedades molares y propiedades molares parciales

1. Propiedades molares y propiedades molares parciales erodáca. ea 9 Ssteas abertos y ssteas cerrados de coposcó varable. ropedades olares y propedades olares parcales Ua agtud olar se dee coo: Sepre está asocada a u sstea terodáco de u úco copoete (sstea

Más detalles

TEMA 5. OPERACIONES DE AMORTIZACIÓN

TEMA 5. OPERACIONES DE AMORTIZACIÓN TEMA 5 OPERAIONES DE AMORTIZAIÓN ocepto de operacó de amortzacó 2 Método de amortzacó 3 Operacoe de Prétamo e el Mercado, cálculo de tato efectvo 4 Ejercco tema 5 5 Ejercco de Repao ocepto de Operacó de

Más detalles

CAJA DE CAMBIOS. 3.1.- INTRODUCCIÓN. NECESIDAD DE LA CAJA DE CAMBIOS

CAJA DE CAMBIOS. 3.1.- INTRODUCCIÓN. NECESIDAD DE LA CAJA DE CAMBIOS CAJA DE CAMBIOS...- INTRODUCCIÓN. NECESIDAD DE LA CAJA DE CAMBIOS Paa omede meáiamete el ael de la aja de ambio e el tato e eeaio eoda el oeto de oteia exeado omo el tabajo ealizado e la uidad de tiemo,

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL Sitema Lineale II Unidad 4 EL MPLIFICDO OPECIONL Material de apy Indice 1. Intrducción.. Preentación. 3. Circuit equivalente. 4. Cnfiguración inverra. 4.1 Un circuit "ube y baja". 4. Ca de ganancia finita

Más detalles

UNIVERSIDAD SURCOLOMBIANA PLAN DE ACCIÓN A DICIEMBRE DE 2013 - RESOLUCION No. 179 DEL 12 DE NOVIEMBRE DE 2013 SALDOS POR EJECUCIÓN EN CDP

UNIVERSIDAD SURCOLOMBIANA PLAN DE ACCIÓN A DICIEMBRE DE 2013 - RESOLUCION No. 179 DEL 12 DE NOVIEMBRE DE 2013 SALDOS POR EJECUCIÓN EN CDP UDAD UCLMBAA LA D ACC A DCMB D 2013 - LUC o. 179 DL 12 D MB D 2013 LA D ACC 2013 JCUC CD JCUC ACC JCUTA CD JCUTA CU A UB AGAD GLA ACC ACT-Y--01 AC TAC YCT. JF FCA LAAC 70.711.424 44,70% 31.608.913 55,30%

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES L. GENERALIZACIÓN DEL A.F.C. : ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES 1. Itroducció Las «ecuestas» se

Más detalles

TEMA VII: SOLUBILIDAD

TEMA VII: SOLUBILIDAD TEMA VII: SOLUBILIDAD La fuerza que atiee a lo ioe e lo udo de ua red critalia, o uy itea por lo que eto copueto olo erá oluble e diolvete uy polare tale coo el agua, aoiaco líquido, ahídrido ulfuroo...

Más detalles

TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS

TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS Diapoitiva. Cocepto y caracterítica de lo activo fiaciero 2. Reta variable, tipo y criterio de valoració 3. Reta fija, tipo y criterio de valoració 4. Duratió y covexidad de u activo fiaciero de reta fija

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441 PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

±. C inicial = C inicial. Índice de variación

±. C inicial = C inicial. Índice de variación Aitmética mecatil: coteidos 2.1 Aumetos y dismiucioes pocetuales 2.2 Iteeses bacaios 2.3 Tasa aual equivalete ( T.A.E.) 2.4 Amotizació de péstamos 2.5 Pogesioes geométicas 2.6 Aualidades Pocetajes: C fial

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios. Programa COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.cl Programa XVI Conferencia Internacional de Bibliotecología Buenas

Más detalles

MODULO: MÉTODOS CUANTITATIVOS CURSO: 2011-2012

MODULO: MÉTODOS CUANTITATIVOS CURSO: 2011-2012 TEMA 2: La Tabla de otalidad: La otalidad coo feóeo disceto. Ideedecia, hoogeeidad, estacioaiedad. La tabla de otalidad y sus eleetos. Relació ete los eleetos de ua tabla de otalidad. Tios de seguo: Cálculo

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO TESIS DIVISIÓN DE CIENCIAS FORESTALES MÉTODOS DE MUESTREO LICENCIADO EN ESTADÍSTICA ROXANA IVETTE ARANA OVALLE

UNIVERSIDAD AUTÓNOMA CHAPINGO TESIS DIVISIÓN DE CIENCIAS FORESTALES MÉTODOS DE MUESTREO LICENCIADO EN ESTADÍSTICA ROXANA IVETTE ARANA OVALLE UIVRSIDAD AUTÓOMA CHAPIGO DIVISIÓ D CICIAS FORSTALS MÉTODOS D MUSTRO TSIS Que como requto parcal para Obteer el Título de: LICCIADO STADÍSTICA PRSTA: ROAA IVTT ARAA OVALL Capgo, Texcoco, do. de Méxco Juo,

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Sesión 4: Estadística descriptiva y exportación de resultados

Sesión 4: Estadística descriptiva y exportación de resultados Curs de trduccó a Stata Jrd Muñz (UAB) Sesó 4: Estadístca descrptva y exprtacó de resultads E esta sesó vams a trabajar c la estadístca descrptva e Stata. Prevamete, presetams ua pequeña trduccó de ls

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

TEMA 4: Transformadores para Rectificadores

TEMA 4: Transformadores para Rectificadores EMA : raforaore ara Rectfcaore EMA : raforaore ara Rectfcaore Íce EMA : raforaore ara Rectfcaore..... Revó e lo coceto e crcuto agétco..... raforaore: Coceto revo..... Cálculo el Área roucto ara raforaore:...

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

CONCIENCIA FONOLÓGICA

CONCIENCIA FONOLÓGICA sol sol s o l sol sol s o l sol sol s o l Ahora te toca a ti. playa pla ya p l a y a playa pla ya p l a y a playa pla ya p l a y a Ahora te toca a ti. calor ca lor c a l o r calor ca lor c a l o r calor

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Tem 5: Opecó de motzcó. Pétmo. Pltemeto geel de l opecó de motzcó co teee popgble. Recbe et deomcó tod opecó de petcó úc y cotpetcó múltple: Petcó: {(, t } otpetcó: {(, t, (, t,, (, t } El cptl de l petcó

Más detalles

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 Valuaió de u boo e ua feha etre uoes E lo que hemos isto hasta aquí sobre la determiaió del reio de u boo o uó hemos osiderado eriodos omletos, es deir, el úmero

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

UTILIZACIÓN DE LAS TIC EN EDUCACION INFANTIL. EL MÉTODO DOMAN

UTILIZACIÓN DE LAS TIC EN EDUCACION INFANTIL. EL MÉTODO DOMAN 1 Reflexione s y Experiencias e n Educación revistaclave21@g m ail.co m CEP de Villa m artín. ISSN: 1 9 8 9-9 5 6 4 UTILIZACIÓN DE LAS TIC EN EDUCACION INFANTIL. EL MÉTODO DOMAN Autoría: Bien v e nido

Más detalles

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles