1. Oscilador Armónico simple

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Oscilador Armónico simple"

Transcripción

1 1. Oscilador Armónico simple La ecuación de un oscilador armónico simple es una Ecuación Diferencial Ordinaria (EDO) lineal y tiene la forma: ÿ = ω 2 0 y (1) y(0) = y 0 ;ẏ(0) = v 0 (2) Donde y es la posición del oscilador ω 2 0 es la frecuencia angular de oscilación y 0,v 0 son las posiciones y velocidades a tiempo cero o condiciones iniciales (c.i.). La solución general de esta ecuación homogenea de puede expresar de tres formas equivalentes: 1. y(t) = Asin(ω 0 t + δ) (3) donde A es la amplitud y δ el ángulo de desfase y(t) = C 1 sin(ω 0 t) + C 2 cos(ω 0 t) (4) y(t) = A 1 exp(iω 0 t) + A 1 exp( iω 0t) (5) La solución en los tres casos depende de dos números reales 1.) A y δ 2.) C 1 y C 2 3.) Re(A 1 ), Im(A 1 ) que se puede calcular a partir de las c.i. También se pueden encontrar relaciones entre cada par de números reales. Ejemplo. 1.) 2.) Ejemplo. c.i) 2.) C 1 = Acos(δ) (6) C 2 = Asin(δ) (7) C 1 = v 0 /ω 0 (8) C 2 = y 0 (9) 2. Oscilador Armónico amortiguado Consideremos ahora la ecuación de un OA amortiguado. Supongamos ahora que sobre el oscilador actua una fuerza opuesta a la velocidad y proporcional a esta. F = ηẏ(t) (10) 1

2 Este es el modelo de OA con amortiguamiento viscoso. Existen otros modelos fenomenológicos de amortiguamiento como el amortiguamiento estructural y el histerético que podremos considerar más adelante. Para OA con amortiguamiento viscoso, la EDO es lineal y queda: ÿ + 2γẏ + ω 2 0 y = 0 (11) y(0) = y 0 ;ẏ(0) = v 0 (12) Donde γ = η 2m > 0. Sabemos que las EDO lineales con coeficientes constantes admiten soluciones del tipo y(t) = A exp(st) con s complejo. Sustituyendo en la ecuación obtenemos: s 2 Aexp(st) + 2γs Aexp(st) + ω 2 0 Aexp(st) = 0 (13) Luego en efecto existen soluciones de la forma y(t) = Aexp(st) siempre que s satisfaga: s 2 + 2γs + ω 2 0 = 0 (14) es decir si s ± = γ ± γ 2 ω0 2. La solución general cambia cualitativamente en función de los valores de γ y ω 0. Caso 1.) γ 2 > ω0 2. No existen oscilaciones: s + y s son números reales y no positivos la solución toma la forma y(t) = A + exp(s + t) + A exp(s t) (15) La solución general es la combinación lineal de dos exponenciales decrecientes y por tanto no hay oscilación. Caso 2.) Oscilaciones amortiguadas: γ 2 < ω 2 0 : s + y s son dos números complejos conjugados con parte real negativa. s ± = γ ± i ω 2 0 γ2 donde Ω = ω 2 0 γ2 Comentarios: y(t) = exp( γt)[c 1 sin(ωt) + C 2 cos(ωt)] (16) i.) En el Caso 1.) no hay oscilación, tenemos una solución que es combinación lineal de dos exponenciales decrecientes. ii.) En el Caso 1.) si ω 0 = 0 tendremos la ecuación ÿ + 2γẏ = 0 que tiene como solución y(t) = C 1 + C 2 exp( 2γt) iii.) El caso límite γ 2 = ω0 2 o de amortiguamiento crítico en el que la solución es: y(t) = C 1 exp( γt) + C 2 t exp( γt) iv.) En el Caso 2.) existe una frecuencia bien definida (constante en el tiempo) de oscilación que es mas pequeña que la frecuencia sin amortiguamiento. Ω = ω 2 0 γ2 < ω 0. v.) Observamos que las exponenciales complejas reducen la EDO a una ecuación algebraica. Veremos el porqué más adelante. 2

3 3. Oscilador Armónico forzado. Linealidad en el término inhomogeneo. Consideraremos ahora un OA al que se le aplica una fuerza exterior. Su posición viene descrita por la EDO no homogenea. ÿ + 2γẏ + ω0 2 y = f(t) (17) y(0) = y 0 ;ẏ(0) = v 0 (18) Donde f(t) = F(t)/m. Nuestro objetivo es por tanto resolver el problema Donde L es el operador diferencial lineal: L(y) = f (19) L = ( d2 d 2 t + 2γ d dt + ω2 0) (20) De la linealidad de la ecuación se deduce que si el término no homogeneo se descompone de la forma f(t) = N i=1 f i(t) la solución tomará la forma y(t) = N i=1 y i(t) donde y por tanto L(y) = L( y i (t)) = i=1 L(y i ) = i=1 f i (t) (21) i=1 L(y i ) = f i (t) (22) La solución es la suma de las soluciones para cada término homogeneo elemental. A continuación consideraremos distintas formas funcionales para el término no homogeneo. 4. Fuerzas armónicas. Consideraremos en primer lugar una fuerza armónica de la forma f(t) = F 0 exp(iωt) 1. Como veremos a continuación desde el punto de vista del cálculo es más sencillo analizar la respuesta del sistema a una fuerza compleja. Sin embargo la respuesta física del sistema ( la posición) tiene que ser real. Como obtenemos la respuesta real del sistema?. Podemos escribir el término no homogeno de la forma f(t) = F 0 exp(iωt) = F 0 (cos(ωt) + isin(ωt)) = F r + if i (23) Por tanto si descomponemos la incógnita de la misma forma y(t) = y r + iy i (24) y tenemos en cuenta que la EDO que hemos planteado es lineal. L(y) = L(y r ) + il(y i ) = F r + if i (25) 3

4 2. Notese que, en principio, ω es una frecuencia arbitraria distinta de las frecuencias naturales de oscilación ω 0 o Ω. La pregunta que surge es: A que frecuencia vibrará el oscilador? A la frecuencia natural (o propia) Ω? A la frecuencia de la fuerza armónica externa? 3. Las solución general de una ecuación no homogenea es la suma de la solución general de la homogenea y una solución particular de la no homogenea por tanto la solución de esta ecuación sera y(t) = y SGH (t) + y SPI (t) = A + exp(s + t) + A exp(s t) + y SPI (t) (26) para tiempos grandes comparados con el tiempo de amortiguamiento t Re(s 1 ) la SGH se ha amortiguado de tal manera que el movimiento estacionario del sistema viene determinado por la y SPI (t) 4. Nótese que en principio ω es una frecuencia arbitraria distinta de las frecuencias naturales de oscilación ω 0 o Ω. La pregunta que surge es: Será el movimiento del sistema armónico? A que frecuencia vibrará el oscilador en su régimen estacionario? Es decir cuando se ha amortiguado la SGH? A la frecuencia natural (o propia) Ω? A la frecuencia de la fuerza armónica externa? Supongamos que la solución particular de la no homogenea síes armónica y oscila a frecuencia ω. y SPI = Y exp(iωt) (27) donde Y es independiente del tiempo. Sustituimos en la ecuación ω 2 Y exp(iωt) + i2γωy exp(iωt) + ω 2 0 Y exp(iωt) = f 0 exp(iωt) (28) simplificando las exponenciales y despejando A obtenemos: Y = f 0 (ω 2 0 ω2 ) + i2γω (29) Y = f 0 (ω 2 0 ω 2 ) 2 + 4γ 2 ω 2 (30) φ = arctan (2γω) (ω 2 0 ω2 ) (31) Se define como Función Respuesta del OA a R(ω) = Y (ω)/f 0 Comentarios i.) La solución estacionaria de la EOA es armónica y oscila a la misma frecuencia que la fuerza exterior. ii.) Esta conclusión puede extenderse a otros sistemas linenales no homogeneos. Si tenemos la EDO lineal no homogenea general L(y) = f 0 exp(iωt) donde: L = 4 n=0 a n d n dt n (32)

5 La SGH sera y SGH (t) = N n=0 A n exp(s n t) donde los s n son la soluciones complejas de la ecuación algebraica. a n s n = 0 (33) n=0 Si todos las Re(s n ) son negativas la y SGH (t) 0 en un tiempo del orden de t mín(re(s 1 n )). Entonces la solución particular de la no homogenea será: y(t) = Y (ω) exp(iωt) (34) con Y (ω) = F 0 N n=0 in a n ω n = 0 (35) iii.) La amplitud de la respuesta depende de la frecuencia de la fuerza externa. La amplitud del movimiento Y (ω) depende de la frecuencia de la fuerza armónica y tiene un máximo a la frecuencia de resonancia. iv.) La posición del movil sera la parte real(o imaginaria) de y(t). La parte real e imaginaria de la solución representan las soluciones fisicas(el movimiento) en respuesta a una fuerza tipo seno o coseno. Ejemplo. Si f(t) = f 0 cos(ωt) = Re(f 0 exp(iωt)) entonces y(t) = Re(Y (ω)exp(iωt)) = cos(ωt + φ) donde φ = arctan (2γω)/(ω 2 0 ω2 ) v.) Los desfases y el porqué de utilizar números complejos Si γ = 0 no hay desfase φ = 0. La fuerza y la respuesta estan en fase, y por tanto son proporcionales para todo tiempo y con una constante de proporcionalidad real y(t) = R(ω)F 0 cos(ωt) = R(ω)F(t) donde 1 R(ω) = ω0 2 (36) ω2 Si γ 0 existirá (además de la fuerza externa) una fuerza de amortiguamiento que es proporcional a la velocidad ẏ(t) Ejemplo. Esto se puede ver intentando una solución tipo coseno y(t) = Y (ω)cos(ωt) sin permitir desfase en la ecuación con amortiguamiento: {}}{ ω 2 Y cos(ωt) 2γω Y sin(ωt) +ω0 Y 2 cos(ωt) = F 0 cos(ωt) (37) Aparentemente el término señalado hace que se pierda la proporcionalidad entre fuerza y respuesta. Es posible recuperarla? 5. Función Respuesta. SI, utilizando exponenciales complejas y permitiendo que la respuesta sea un número complejo. Así se incorporan de forma natural los desfases. De este modo es posible 5

6 definir la función de respuesta como la constante de proporcionalidad compleja entre una fuerza armónica y su respuesta R(ω) = y(t) f(t) = Y (ω) f 0 (38) a la función respuesta tambien se la denomina función de transferencia. Los polos de la función respuesta son excitaciones naturales del sistema. Se puede ver que existe una divergencia en la función respuesta para las frecuencias complejas ω = is = iγ ± ω0 2 γ. Estas divergencias se pueden interpretar como oscilaciones para intensidades arbitrariamente pequeñas de la fuerza externa (en el caso límite en ausencia de esta), es decir, de las oscilaciones naturales del sistema. La Función Respuesta compleja contiene información acerca de las oscilaciones naturales(o propias) del sistema, es decir, las que se producen en ausencia de fuerza exterior. 6

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Figura 1. Circuito RLC

Figura 1. Circuito RLC APLIAIÓN: EL IRUITO RL. Al comienzo del tema de las E.D.O lineales de segundo orden hemos visto como estas ecuaciones sirven para modelizar distintos sitemas físicos. En concreto el circuito RL. Figura

Más detalles

Determinación de la trasformada inversa mediante el uso de las fracciones parciales

Determinación de la trasformada inversa mediante el uso de las fracciones parciales 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones

Más detalles

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semana 7 - Clase 9 9// Tema 3: E D O de orden > Algunas definiciones previas Transformadas de Laplace En general vamos a definir una transformación integral, F (s), de una función, f(t) como F (s) = b

Más detalles

Funciones de Bessel.

Funciones de Bessel. Funciones de Bessel. 1. Función generatriz y desarrollo en serie. 1. Al igual que los polinomios de Legendre las funciones de Bessel de primera especie se pueden introducir a través de una función generatriz.

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada DINAMICA ESTRUCTURAL SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada Sistema sometido a cargas armónicas: Donde la carga p(t) tiene una forma senosoidal con amplitud P o y una frecuencia angular w Consideramos

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E

SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E T E O R Í A D E A I R Y TEMARIO INTRODUCCION CONSIDERACIONES MODELAMIENTO DE LA ECUACIÓN RESOLUCIÓN CONCLUSIÓN INTRODUCCION

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

TEMA 3 SISTEMAS DE 1 GRADO DE LIBERTAD. Sistemas de 1 Grado de Libertad

TEMA 3 SISTEMAS DE 1 GRADO DE LIBERTAD. Sistemas de 1 Grado de Libertad Sistemas de Grado de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 3. - ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 3. - 3. Introducción Se estudian aquí las vibraciones de sistemas con un grado de libertad,

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Terceras Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística, octubre de 1998

Terceras Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística, octubre de 1998 ECUACIONES DIFERENCIALES DE 1ER. ORDEN. APLICACIÓN DE DERIVE A LA RESOLUCIÓN DE UN PROBLEMA MICROECONÓMICO QUE RELACIONA EL VOLUMEN DE VENTAS DE UN BIEN Y EL PRECIO. Furno, Graciela Koegel, Liliana Sagristá,

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. 38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

Fisica III -09. Autoinducción. Cátedra de Física Experimental II. Prof. Dr. Víctor H. Rios

Fisica III -09. Autoinducción. Cátedra de Física Experimental II. Prof. Dr. Víctor H. Rios Autoinducción Cátedra de Física Experimental II Prof. Dr. Víctor H. Rios 2009 Contenidos Autoinducción. Corriente autoinducida Circuito RL. Energía del Campo Magnético Inducción mutua. Corriente inducida

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

2. Método de separación de variables

2. Método de separación de variables APUNTES DE AMPIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TEECOMUNICACIONES Elaborados por Arturo de Pablo, Domingo Pestana y José Manuel Rodríguez 2. Método de separación de variables 2.1. Separación

Más detalles

Unidad 5: Geometría Analítica

Unidad 5: Geometría Analítica Unidad 5 Geometría Analítica 5. Ecuaciones de una recta Los planos y las rectas son objetos geométricos que se pueden representar mediante ecuaciones. Encontraremos la ecuación vectorial de una recta r

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión TRANSFORMADA DE LAPLACE Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión L= = Se le llama Transformada de Laplace de la función f(t), si la integral existe. Notación:

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta:

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta: INSTITUTO TECNOLÓGICO DE COSTA RICA II SEMESTRE 2013 ESCUELA DE INGENIERIA EN ELECTRÓNICA CURSO: EL-5408 CONTROL AUTOMÁTICO MEDIO: Examen 3 PROF: ING. EDUARDO INTERIANO Nombre: Carné Ordinal Parte I preguntas

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Conversión Analógica a Digital

Conversión Analógica a Digital Índice Conversión analógica a digital Señales básicas de tiempo discreto Relación Exponencial Discreta con sinusoides Relación Exponencial discreta con sinusoides Propiedades exponenciales complejas continuas

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales 5 Ecuaciones diferenciales 5.1. Qué es una ecuación diferencial Una ecuación diferencial es una ecuación en la que la incógnita a despejar no es un número sino una función. Las operaciones que intervienen

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

PROBLEMAS ONDAS ESTACIONARIAS. Autor: José Antonio Diego Vives

PROBLEMAS ONDAS ESTACIONARIAS. Autor: José Antonio Diego Vives PROBLEMAS DE ONDAS ESACIONARIAS Autor: José Antonio Diego Vives Problema 1 Una cuerda de violín de L = 31,6 cm de longitud y = 0,065 g/m de densidad lineal, se coloca próxima a un altavoz alimentado por

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,

Más detalles

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial.

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Tema 3- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas Ingeniería Técnica Industrial Especialidad en Electrónica Industrial Índice General 1 Introducción 1 2 Sistemas lineales de primer orden

Más detalles

Proyecto Ecuaciones Diferenciales

Proyecto Ecuaciones Diferenciales Proyecto Ecuaciones Diferenciales Ing. Roigo Alejano Gutiérrez Arenas Semestre 2010-II Instrucciones El proyecto consiste de dos problemas con varios incisos. Se debe de entregar un reporte detallado de

Más detalles

Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli

Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli de aplicación económica Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

PÉNDULO FÍSICO FORZADO. Estudio de las curvas de resonancia para diferentes amortiguamientos.

PÉNDULO FÍSICO FORZADO. Estudio de las curvas de resonancia para diferentes amortiguamientos. PÉNDULO FÍSICO FORZADO 1. OBJETIVO Estudio de las curvas de resonancia para diferentes amortiguamientos. 2. FUNDAMENTO TEÓRICO Se denomina péndulo físico a cualquier sólido rígido capaz de oscilar alrededor

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles