Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico"

Transcripción

1 Teoría Espectral Stephen B. Sontz Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Mini-curso impartido en Colima 29 septiembre Tercer día

2 Introducción Hay dos dichos populares a propósito de la mecánica cuántica. Primero: Para aprender bien la mecánica cuántica, hay que resolver quinientos problemas. Segundo: Nadie comprende la mecánica cuántica. Pero no hay contradicción. El primero quiere decir que podemos resolver problemas en la mecánica cuántica a partir de unas reglas dadas, que podemos aprender con la práctica. El segundo quiere decir que no hay explicación de las reglas de la mecánica cuántica (hasta la fecha). Hoy vamos a ver las reglas de la mecánica cuántica en un modelo sencillo que se llama un modelo de dos niveles.

3 Sistemas de Dos Niveles He aquí una lista de varios ejemplos de sistemas de dos niveles. Moléculas al dentro de un laser. (Siempre y cuando solamente son importantes dos niveles de su energia.) Sistemas con spin 1/2. (Como electrones, quarks, protones, neutrones, algunos átomos y algunos núcleos. Spin es un tipo de momento angular. Con spin 1/2 hay exactamente los valores 1/2, 1/2 en una dirección dada. Fotones. (Un fotón tiene spin 1 y masa cero. Tiene dos valores 1, 1 en una dirección dada. Qubits. El qubit es el objeto básico de la computación cuántica y la información cuántica. Efectivamente, no es otro ejemplo, sino una aplicación posible de todos los ejemplos anteriores.)

4 Un Espacio Vectorial Un espacio vectorial de dimensión 2 sobre el campo C es { ( ) } C 2 α := : α, β C. β Definiciones: Para un par de elementos de este espacio ( ) ( ) α ψ = C 2 γ y φ = C 2, β δ definimos un producto interior por ψ, φ := α γ + β δ (donde α es la conjugación compleja) y una norma por ( ψ := ψ, ψ 1/2 = α 2 + β 2) 1/2. Se dice que ψ, φ C 2 son ortogonales si ψ, φ = 0. Se dice que ψ C 2 es un estado si ψ = 1.

5 Observables Identificamos dos estados ψ, φ C 2 si existe λ C tal que ψ = λφ. (Por lo tanto, λ = 1.) Un estado es la descripción completa en nuestro modelo matemático del sistema físico en un instante de tiempo. Los observables son ciertas matrices 2 2 que vemos también como operadores lineales que mandan C 2 a C 2. ( ) ( ) ( ) µ C 2 α β µ C 2 ν γ δ ν donde se trata del producto matricial de una matriz 2 2 por una matriz 2 1. El resultado siguiente viene en todo buen texto de álgebra lineal. (Por ejemplo, véase [1].) Teorema: Para cada matriz A, existe una matriz única A tal que φ, Aψ = A φ, ψ para todos vectores φ, ψ en C 2.

6 Observables Definiciones: La matriz A del teorema anterior se llama la matriz adjunta de la matriz A. Si A = A se dice que la matriz A es auto-adjunta. En la mecánica cuántica si A es auto-adjunta, también se dice que A es observable. En breve, una cantidad medible en el laboratorio, que tiene exactamente dos valores posibles σ y τ (reales), tiene una representación por una matriz 2 2 que es un operador auto-adjunto o un observable: A = A. La relación entre el observable A y los números medidos σ y τ es la siguiente: Hay dos estados ψ, φ C 2 tales que Aψ = σψ y Aφ = τφ.

7 Si A = ( α β γ δ Matrices de Pauli ) (, entonces A α = γ ) β δ que implica que α, δ R y β = γ. Entonces, ( ) a b ic A = b + ic d donde a, b, c, d R. O sea, {A = A } es un espacio vectorial sobre R de dimensión 4. Una base es la matriz identidad I con las matrices de Pauli: σ 1 = ( ) σ 2 = ( 0 i i 0 ) σ 3 = ( ) Se sigue que σ 2 1 = σ2 2 = σ2 3 = I σ 1 σ 2 = iσ 3 = σ 2 σ 1 σ 2 σ 3 = iσ 1 = σ 3 σ 2 σ 3 σ 1 = iσ 2 = σ 1 σ 3

8 Un Teorema Definición: Si Aψ = κψ para algún 0 ψ C 2 y κ C, se dice que κ es un eigenvalor de A y que ψ es un eigenvector de A. Teorema: Los eigenvalores de una matriz auto-adjunta A son reales. Demostración: Supongamos que κ C es un eigenvalor de A, es decir, Aψ = κψ con ψ 0. Entonces se tiene que ψ, Aψ = ψ, κψ = κ ψ, ψ = κ ψ 2. Además, usando A = A, se sigue que A ψ, ψ = Aψ, ψ = κψ, ψ = κ ψ, ψ = κ ψ 2. Pero ψ, Aψ = A ψ, ψ por la definición de A. Entonces (κ κ ) ψ 2 = 0. Usando ψ 0 (que implica que ψ 0), se sigue que κ = κ. Por lo tanto, el eigenvalor κ es real. QED.

9 Sobre Eigenvalores y Eigenvectores Teorema: Eigenvectores que corresponden a dos eigenvalores distintos de una matriz auto-adjunta A son ortogonales. Demostración: Supongamos que Aψ = κψ, Aφ = λφ, y A = A con κ λ, ψ 0 y φ 0. Ya sabemos por el teorema anterior que κ y λ son números reales. De un lado Del otro lado, usando A = A, φ, Aψ = φ, κψ = κ φ, ψ. A φ, ψ = Aφ, ψ = λφ, ψ = λ φ, ψ. De la definicíon de A (que implica φ, Aψ = A φ, ψ ), se sigue que (κ λ) φ, ψ = 0. Pero, por hipótesis, κ λ 0. Por lo tanto, se tiene que φ, ψ = 0, que quiere decir que φ y ψ son ortogonales. QED.

10 Mediciones Un resultado que necesitamos del álgebra lineal es: Teorema: Si A es una matriz auto-adjunta, entonces existe una base ortonormal de C 2 cuyos elementos son eigenvectores de A. Se llama el teorema espectral para matrices auto-adjuntas. Supongamos que un sistema físico de dos niveles se encuentra en un estado φ C 2, o sea φ = 1, y que queremos medir la cantidad que corresponde a un observable A que tiene eigenvalores λ 1 λ 2 y eigenvectores correspondientes que son estados ψ 1, ψ 2 C 2. Es decir, Aψ 1 = λ 1 ψ 1 Aψ 2 = λ 2 ψ 2 (1) Qué pasará? Un principio básico de la mecánica cuántica es que la medición nos dará precisamente uno de los dos eigenvalores λ 1, λ 2. Cuál?

11 Mediciones Notemos que ψ 1, ψ 2 es una base ortonormal del espacio C 2. Además, φ C 2. Entonces, podemos escribir el estado φ como una combinación lineal de los dos elementos de la base, es decir existen α 1, α 2 C tales que φ = α 1 ψ 1 + α 2 ψ 2 Se sigue que α α 2 2 = 1. Una regla de la mecánica cuántica es que la medición dará el valor λ j con probabilidad α j 2 = ψ j, φ 2 para j = 1, 2 En tal caso, despues de la medición el sistema se quedará en el estado ψ j. Se dice que ha sucedido una transición φ ψ j. Además, se dice que el número complejo α j = ψ j, φ es la amplitud de probabilidad para la transición φ ψ j. En cambio, como ya hemos visto, el número real α j 2 es la probabilidad de la transición φ ψ j para j = 1, 2.

12 Valor Esperado Resulta que el número real φ, Aφ tiene una interpretación probabilista importante. Usando que ψ 1, ψ 2 es una base ortonormal, calculamos que φ, Aφ = α 1 ψ 1 + α 2 ψ 2, α 1 λ 1 ψ 1 + α 2 λ 2 ψ 2 = α 1 2 λ 1 + α 2 2 λ 2. La última expresión es la probabilidad α 1 2 de medir λ 1 (a saber, la fracción de veces que medimos λ 1 ) por el valor λ 1 y luego más la probabilidad α 2 2 de medir λ 2 (a saber, la fracción de veces que medimos λ 2 ) por el valor λ 2. Entonces, φ, Aφ es el valor esperado (en el sentido de la teoría de probabilidad) de las mediciones de A en el estado φ. La diferencia entre la mecánica clásica y la mecánica cuántica consta más que nada en el uso de probabilidad en una manera fundamental en la mecánica cuántica.

13 Dinámica Para H auto-adjunta dada, la ecuación de evolución temporal es i dψ t = Hψ t, dt donde ψ t C 2 es el estado del sistema en el tiempo t R. Además, i = 1. Es una ecuación diferencial ordinaria lineal de primer orden. Para tener un problema con solución única, vamos a dar una condición inicial ψ 0 = φ C 2, donde φ es un estado. Por EDO la solución para todo tiempo t R es ψ t = e ith/ φ La definición de la exponencial de una matriz M es la usual: e M := I + M + 1 2! M ! M n! Mn + = k! Mk k=0

14 Dinámica Entonces, la solución del problema de la dinámica depende del conocimiento de la matriz e ith/, que podemos calcular usando el álgebra lineal. También por un resultado del álgebra lineal, se tiene que H auto-adjunta implica que e ith/ preserva la norma. Entonces, ψ t = e ith/ φ = φ = 1 para cada t R. Esto quiere decir que ψ t C 2 es un estado para cada tiempo t. Es la razón física por tomar H auto-adjunta. Ejemplo: H = ω σ 1. e itωσ 1 = I iωtσ ! ( iωt)2 σ ! ( iωt)3 σ ! ( iωt)4 σ = I 1 2! (ωt)2 I + 1 4! (ωt)4 + i ( ωtσ 1 1 3! (ωt)3 σ ! (ωt)5 σ 1 + = cos(ωt)i i sin(ωt)σ 1

Física Cuántica Partículas idénticas.

Física Cuántica Partículas idénticas. Física Cuántica Partículas idénticas. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/18 Partículas idénticas Qué son varias partículas idénticas? Las que tienen

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Tema 5: Elementos de geometría diferencial

Tema 5: Elementos de geometría diferencial Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Tema IV: Operadores lineales

Tema IV: Operadores lineales Tema IV: Operadores lineales José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, marzo de 2011 Representaciones de un operador. Operador inverso. Operador

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Cuantización del campo electromagnético

Cuantización del campo electromagnético Cuantización del campo electromagnético Física Contemporanea 1. Descomposición espectral del campo electromagnético Consideremos el campo electromagnético dentro una cavidad cubica de lado L y volumen

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Diagonalización simultánea de formas cuadráticas.

Diagonalización simultánea de formas cuadráticas. Diagonalización simultánea de formas cuadráticas Lucía Contreras Caballero 14-4-2004 Dadas dos formas cuadráticas, si una de ellas es definida positiva, se puede encontrar una base en la que las dos diagonalizan

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

23. Ecuaciones de onda relativistas: Dirac

23. Ecuaciones de onda relativistas: Dirac Mecánica Cuántica Avanzada Carlos Pena 23-1 23. Ecuaciones de onda relativistas: Dirac [Sch 5.3, Sak 3.1-2] Motivación La ecuación de Dirac se puede introducir siguiendo dos grandes líneas: el desarrollo

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

dt Podemos verificar que la velocidad definida de esta forma no transforma como un vector bajo una T.L. En clases mostramos que el intervalo

dt Podemos verificar que la velocidad definida de esta forma no transforma como un vector bajo una T.L. En clases mostramos que el intervalo 1 Cuadrivectores Hasta ahora hemos hablado de las transformaciones de Lorentz, y cómo estas afectan tanto a las coordenadas espaciales como al tiempo. El vector que define un punto en el espacio-tiempo

Más detalles

Algebra lineal de dimensión finita

Algebra lineal de dimensión finita Algebra lineal de dimensión finita Métodos para calcular autovalores Pseudoinversa Algebra lineal númerica 1 Teorema:[Teorema 1.6] Sea A es una matriz real simétrica. Si Q(x) =< Ax, x > entonces: λ 1 =

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

2 Ondas superficiales

2 Ondas superficiales 513430 - Sismología 6 2 Ondas superficiales En las interfases que separan medios elásticos de diferentes características, las ondas del cuerpo (P, S) se interfieren constructivamente para producir ondas

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD V: ESPACIOS VECTORIALES Estamos acostumbrados a representar un punto en la recta como un número real; un punto en el plano como un par ordenado y un punto en el espacio tridimensional como una terna

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS Cambios de base 3 3. CAMBIOS DE BASE Dada una aplicación lineal : y la base,,, se ha definido matriz en bases canónicas de la aplicación lineal a la matriz,, cuyas columnas son las coordenadas de en la

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

El método de súper y sub soluciones en el espacio de funciones casi periódicas.

El método de súper y sub soluciones en el espacio de funciones casi periódicas. El método de súper y sub soluciones en el espacio de funciones casi periódicas. Universidad de Buenos Aires - IMAS (CONICET) UMA - Bahía Blanca - 2016 Super y sub soluciones Problema periódico asociado

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Física cuántica I - Colección de ejercicios cortos

Física cuántica I - Colección de ejercicios cortos Física cuántica I - Colección de ejercicios cortos http://teorica.fis.ucm.es En las siguientes cuestiones una y sólo una de las cuatro respuestas ofrecidas es correcta. Dígase cuál. Es conveniente hacer

Más detalles

FÍSICA MATEMÁTICA I. Espacios de Hilbert y Operadores Lineales. María Cruz Boscá Dpto. Física Atómica y Nuclear Universidad de Granada

FÍSICA MATEMÁTICA I. Espacios de Hilbert y Operadores Lineales. María Cruz Boscá Dpto. Física Atómica y Nuclear Universidad de Granada FÍSICA MATEMÁTICA I Espacios de Hilbert y Operadores Lineales María Cruz Boscá Dpto. Física Atómica y Nuclear Universidad de Granada Para qué? Principios del s. XX: -diversos fenómenos (cuerpo negro, espectroscopía,

Más detalles

Construcción de bases en la suma y la intersección de subespacios (ejemplo)

Construcción de bases en la suma y la intersección de subespacios (ejemplo) Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés)

Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés) Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés) R. Baquero Departamento de Física Cinvestav setiembre 2008 amarre fuerte 1 Por qué estudiamos el método de amarre fuerte? Uno

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 15-16 Problema 1 Calcule la probabilidad de que un electrón 1s del H se encuentre entre r r. La probabilidad

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelos ARMA Definición: Ruido blanco. Se dice que el proceso {ɛ t } es ruido blanco ( white noise ) si: E(ɛ t ) = 0 Var(ɛ t ) = E(ɛ 2 t ) = σ 2 Para todo

Más detalles

3.3. Número de condición de una matriz.

3.3. Número de condición de una matriz. 96 33 Número de condición de una matriz Consideremos el sistema Ax = b, de solución u Queremos controlar qué cambios se producen en la solución cuando hacemos pequeños cambios en las componentes de b o

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Estados cuánticos para átomos polielectrónicos y espectroscopía atómica

Estados cuánticos para átomos polielectrónicos y espectroscopía atómica Estados cuánticos para átomos polielectrónicos y espectroscopía atómica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 3 de febrero de 205 Índice. Aproximación

Más detalles

EXTRUCTURA ATOMICA ACTUAL

EXTRUCTURA ATOMICA ACTUAL ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.

Más detalles

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES Ignacio López Torres. Reservados todos los derechos. Prohibida la reproducción total o parcial de esta obra, por cualquier medio electrónico

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

Sistemas de Ecuaciones Lineales y Determinantes. Sistemas de Ecuaciones Lineales y Determinantes. Molecular BásicaB. Fisicoquímica. Clase en Titulares

Sistemas de Ecuaciones Lineales y Determinantes. Sistemas de Ecuaciones Lineales y Determinantes. Molecular BásicaB. Fisicoquímica. Clase en Titulares Sistemas de Ecuaciones Lineales Fisicoquímica Molecular BásicaB Tercer Semestre Carrera de Químico Tema 8 Si tenemos un sistema de n ecuaciones lineales con n incógnitas, podemos resolverlo recurriendo

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

Ángulos formados por dos rectas paralelas y una secante

Ángulos formados por dos rectas paralelas y una secante Ángulos formados por dos rectas paralelas y una secante Cuando dos rectas paralelas son cortadas por una tercer recta que no es paralela a ellas, se forman varios ángulos de interés. La secante a una curva

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Operaciones elementales

Operaciones elementales Operaciones elementales Objetivos Conocer y justificar operaciones elementales con ecuaciones de un sistema de ecuaciones lineales, conocer su forma matricial (operaciones elementales con renglones de

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante:

EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante: EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante: 3 7 1 2 0 1 1 3 6 a) Usando la Regla de Sarrus. b) Desarrollando por los elementos de la primera columna. 2º/ Obtén el valor del determinante

Más detalles

Una topología de los números naturales*

Una topología de los números naturales* Una topología de los números naturales* Divulgación Gabriel Ruiz Hernández Instituto de Matemáticas, UNAM 1 de septimebre de 1997 resumen En este trabajo vamos a describir un espacio topológico X con las

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo. Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Tensores cartesianos.

Tensores cartesianos. Tensores cartesianos. Transformación de coordenadas. Consideremos dos sistemas de coordenadas cartesianas ortogonales en el plano, identificados como σ y σ. Supongamos que ambos tienen un origen común,

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ. RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Comportamiento Electrónico de los Materiales. Tema 1. Fundamentos Físicos de la Estructura Electrónica del Átomo

Comportamiento Electrónico de los Materiales. Tema 1. Fundamentos Físicos de la Estructura Electrónica del Átomo Comportamiento Electrónico de los Materiales Tema 1. Fundamentos Físicos de la Estructura Electrónica del Átomo 1.1 Fundamentos de la Estructura Atómica de la Materia1. 1.1.1 Historia: Se tiene conocimiento

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA PROGRAMA DE LA ASIGNATURA DE: ÁLGEBRA IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Fases Cuánticas Geométricas. Gutiérrez Mesías, Juan Moisés.

Fases Cuánticas Geométricas. Gutiérrez Mesías, Juan Moisés. Capitulo 5 La Computación Cuántica La computación cuántica usa fenómenos cuánticos, tal como la interferencia y el enredo, para el procesamiento de información. Feynman planteó la primera pregunta en este

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles