Resumen TEMA 3: Cinemática del movimiento plano

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resumen TEMA 3: Cinemática del movimiento plano"

Transcripción

1 TEM 3: Cinemática del movimiento plano Resumen TEM 3: Cinemática del movimiento plano 1. Condiciones del movimiento plano Definición: un sólido rígido se mueve con un movimiento plano si todos sus puntos describen trayectorias planas, contenidas en planos paralelos a un plano fijo π. Cuando esto sucede: a) la sombra del sólido sobre π es también una figura indeformable b) la velocidad y la aceleración de un punto de la sombra son las mismas que las velocidades y aceleraciones de todos los puntos que se proyectan en él (demuestre estas dos afirmaciones) Por tanto, para estudiar el movimiento del sólido basta con estudiar el movimiento de la sombra (que puede considerarse como una placa indeformable) en su propio plano π.. Campo de velocidades y v Como la placa es un sólido indeformable: v = v + v Si n fuera un vector perpendicular al plano π: n v = n v + n ) ( y de aquí: x n ( ) = 0 ( por qué?) Por tanto y n deben ser paralelos ( por qué?) Para calcular atamos en un triedro trirrectangular a la placa (XYZ). El vector 3 E es unitario y perpendicular al plano de la placa (saliente, en este caso). TECNUN, 011

2 TEM 3: Cinemática del movimiento plano y Y E E1 ϕ X Como: de de3 de1 = ( E ) E + ( E ) E + ( E ) E du du du Operando (haga las operaciones pertinentes) se llega a que: x = ϕ E = ϕ k 3 Como el vector es perpendicular al plano del movimiento: τ= v = El movimiento es degenerado. 0 Como 0 (que es el caso más general) el movimiento es una rotación instantánea. hora bien, como esto sucede siempre: El movimiento de una placa es su plano es una sucesión temporal de rotaciones instantáneas alrededor de ejes perpendiculares al plano. 3. Polo de velocidades. Curvas polares. Cinema de velocidades a) Por ser: τ= v = 0 la velocidad de deslizamiento ( recuerda qué es esta velocidad?) es nula, luego existe un punto de la placa cuya velocidad en el instante considerado es nula. Este punto es el polo de velocidades o centro instantáneo de rotación, I, y su posición viene dada por la ecuación: I 1 = ( ) v ( demuéstrelo!) Esta ecuación define un punto I de la placa. Como v I = 0, v I ( 0 placa) = y en consecuencia: las normales a las trayectorias de todos los puntos de la placa se cortan, en cada instante, en el polo de velocidades ( por qué?). Para determinar la posición del polo de velocidades basta con conocer las direcciones de las velocidades de dos puntos cualesquiera ( por qué?) ( cómo se hallaría la posición de I?). TECNUN, 011

3 TEM 3: Cinemática del movimiento plano b) Se denomina polar móvil (o ruleta) al lugar geométrico de los puntos de la placa que a lo largo del movimiento han sido polo de velocidades. Polar fija (o base) es la curva del plano lugar geométrico de las posiciones ocupadas por los sucesivos polos de velocidades. Las ecuaciones analíticas de estas curvas son: Polar fija: OI 1 = O + I = O + ( ) v si: OI = x i + y j dy x = x dx y = y + Polar móvil: I 1 = ( ) v y de aquí si: I = X E1+ Y E dx dy = ϕ ϕ X sen cos dx dx = ϕ + ϕ y cos sen En todas las expresiones (x, y ) son las coordenadas del punto en los ejes (Oxy). c) Cinema de velocidades es la figura que se obtiene al llevar a un origen común vectores equipolentes a las velocidades de todos los puntos materiales de la placa. (Demuestre que el cinema y la placa son siempre dos figuras directamente semejantes) TECNUN, 011

4 4. Velocidad de cambio de polo de velocidades. TEM 3: Cinemática del movimiento plano 4.1. Introducción En el contacto entre polar fija y polar móvil coexisten tres puntos: El punto I de la polar móvil que es el polo de velocidades El punto de la polar fija en contacto con la móvil, I Y el punto matemático de contacto S, que: - recorre la polar móvil a medida que se mueve la placa - cuya velocidad, v s, representa la velcocidad con que cambia de posición en el plano el polo de velocidades: es la velocidad de cambio de polo I I Polar móvil Polar fija Por otra parte: vs = va + v r (con la placa). Y como v a = 0 ( por qué?): vs = v r. Esta ecuación manifiesta que el punto matemático de contacto se mueve con idéntica velocidad sobre ambas curvas polares. En consecuencia, si transcurrido un intervalo el nuevo polo de velocidades de la placa fuera el punto material I, este punto ocupará entonces la posición ' ' ' I, de modo que los arcos II sobre la ruleta e II en la base tienen la misma longitud ds: I I Polar móvil ds I ' ds I Polar fija Por lo que: v s ds = 4.. Velocidad de cambio de polo Criterio de signos: construimos en I el triedro cartesiano siguiente: Iz, paralelo a de modo que: =k ( > 0) Iy, la recta normal positiva a la polar fija ( IC 1 > 0 ) Ix, el eje que completa la terna cartesiana TECNUN, 011

5 TEM 3: Cinemática del movimiento plano y C (Centro de curvatura de la ruleta) IC=Radio de curvatura de la ruleta (Centro de curvatura de la base) Polar fija Polar móvil C 1 dθ IC1=Radio de curvatura de la base dθ 1 ds x I ds ( R b y R r son los radios de curvatura de la base y la ruleta respectivamente, R r con su signo) Rb > 0 y ds ds 1 1 ds = dθ d θ = = = v ( ) Dado que: v = R R R R 1 s s b r b r Con esta ecuación hallamos el módulo de criterio de signos adoptado resulta: v s, velocidad de cambio de polo. Por el v s = 1 1 R R b r i TECNUN, 011

6 Se sugiere aplicar esta ecuación a los casos siguientes: TEM 3: Cinemática del movimiento plano ase ase Ruleta Ruleta Ruleta ase Ruleta ase R = Radio circunferencia grande r = Radio circunferencia pequeña 5. Campo de aceleraciones Partiendo de la expresión general del campo de aceleraciones en un sólido rígido: d ap = a + P+ ( P) (siendo y P dos puntos cualesquiera del sólido) se llega a que: d ap = a + P P ( por qué?) En esta ecuación todos los términos son vectores contenidos en el plano de la placa. d Si llamamos α= (vector perpendicular al plano - por qué? -): TECNUN, 011

7 TEM 3: Cinemática del movimiento plano αp P P a = a + α P P P, α a 6. Polo de aceleraciones. Cinema de aceleraciones a) Hay algún punto de la placa que en este instante tiene aceleración nula? Supongamos que C fuera ese punto. En consecuencia: Y de aquí: a = a + α C C = 0 C α a + α ( α C) ( α C) = 0 a + α a C = 4 α + ( obténgalo!) Qué condiciones deben cumplirse para que es punto C exista? C es el punto de la placa que en ese instante tiene aceleración nula: es el polo de aceleraciones. b) Si partimos del polo de aceleraciones, C, las aceleraciones de, y D de tres puntos cualesquiera de la placa serán: a C a a D D a = α C C a = α C C a = α CD CD D Y sus respectivos módulos son: 4 1/ 4 1/ 4 1/ = α + = α + D = α + a C ( ) ; a C ( ) ; a CD ( ) demás se deduce que el ángulo formado por C y a o CD y a D. a es el mismo que forman C y TECNUN, 011

8 TEM 3: Cinemática del movimiento plano Si se llevan a un origen común vectores equipolentes a las aceleraciones de los puntos de la placa se obtiene el cinema de aceleraciones, que a partir de la figura siguiente, se puede demostrar que es una figura directamente semejante a la placa (homotética). D a D a (Demuestre que los triángulos D y D de estas dos figuras son semejantes) a 7. celeración del polo de velocidades Si es un punto cualquiera de la placa e I es el polo de velocidades en este instante: v = I a dv d di I = = + Pero: di = v v s ( por qué?) a = d I+ ( v vs) Y cuando se identifica con el polo de velocidades: ai = vs FIN DEL TEM 3 TECNUN, 011

CINEMATICA DE MAQUINAS

CINEMATICA DE MAQUINAS CINEMATICA DE MAQUINAS 4.1.- CAMPO DE VELOCIDADES EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.2.- ACELERACION DE UN PUNTO EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.3.- EJE INSTANTANEO

Más detalles

Capítulo II. Movimiento plano. Capítulo II Movimiento plano

Capítulo II. Movimiento plano. Capítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

Instituto de Física, Facultad de Ciencias, Universidad de la República Mecánica clásica 2015. Mecánica clásica

Instituto de Física, Facultad de Ciencias, Universidad de la República Mecánica clásica 2015. Mecánica clásica Mecánica clásica Práctico I Cinemática de la Partícula y Movimiento Relativo Parte : Ejercicios de Cinemática de la Partícula Ejercicio 1 H C B v B Una cuerda flexible, inextensible y sin peso 1 de longitud

Más detalles

De acuerdo con sus características podemos considerar tres tipos de vectores:

De acuerdo con sus características podemos considerar tres tipos de vectores: CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren

Más detalles

1.3 Concepto de vector fijo, ligado o localizado

1.3 Concepto de vector fijo, ligado o localizado Capítulo 1 VECTORES 1.1 Magnitud escalar Magnitud escalar es aquella cuya determinación solo requiere el conocimiento de un número real y de una unidad de medida. El número indica la cantidad de veces

Más detalles

asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia.

asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia. CAP. 4: CINEMÁTICA DE LA PARTÍCULA. Modelo de partícula: se aplica a cuerpos muy pequeños comparados con el diámetro de la menor esfera donde cabe la trayectoria completa del cuerpo. Equivale a considerar

Más detalles

TEORÍA DE MÁQUINAS 2.- CINEMÁTICA DE MECANISMOS. Universidad Carlos III de Madrid Departamento de Ingeniería Mecánica

TEORÍA DE MÁQUINAS 2.- CINEMÁTICA DE MECANISMOS. Universidad Carlos III de Madrid Departamento de Ingeniería Mecánica TEORÍ DE MÁQUINS 2.- CINEMÁTIC DE MECNISMOS Cinemática de máquinas Capítulo II: CINEMÁTIC Y DINÁMIC DE LOS MECNISMOS Y MÁQUINS Tema 2.- Cinemática de los mecanismos Lección 2.- Estudio cinemático de mecanismos

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores.

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores. J.A DÁVILA BAZ - J. PAJÓN PERMUY CÁLCULO VECTORIAL 29 UNIDAD DIDÁCTICA I: CÁLCULO VECTORIAL. TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS 2.1.- Definicion, notacion y clasificacion de los vectores. Un vector

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

Cinemática de Sistemas

Cinemática de Sistemas Capítulo 4 Cinemática de Sistemas Rígidos Antes de comenzar con el estudio de la dinámica de sistemas, conviene profundizar en la descripción geométrica del movimiento o cinemática. Podríamos definir la

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

e 2 (S ) e 1 E 2 (S)

e 2 (S ) e 1 E 2 (S) 4.2 Capítulo 4. CINEMÁTICA DE SISTEMAS RíGIDOS E 3 E 1 u e v 3 e 2 (S ) e 1 (S) E 2 Figura 4.1: Sistemas de referencia fijo (S) y móvil (S ). tema móvil 1. Distinguiremos ambas velocidades denominándolas

Más detalles

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler Campillo IES Ruiz de Alda Isaac Peral s/n 30730 San Javier (Murcia) solivare@fresno.pntic.mec.es

Más detalles

Javier Junquera. Vectores

Javier Junquera. Vectores Javier Junquera Vectores Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas Un sistema de coordenadas que permita especificar posiciones consta de: Un punto de referencia fijo,

Más detalles

a. Dibujar los paralelogramos completos, señalar los vértices con letras.

a. Dibujar los paralelogramos completos, señalar los vértices con letras. PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO Estudiar el movimiento es importante: es el fenómeno más corriente y fácil de observar en la Naturaleza. Todo el Universo está en constante

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición

Más detalles

Física I. Curso 2010/11. Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca

Física I. Curso 2010/11. Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 1. Cinemática Índice 1. Introducción 3 2.

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA AÑO 2014 I. FUNDAMENTACIÓN En esta disciplina se estudian las operaciones

Más detalles

BIOMECÁNICA I.N.E.F.

BIOMECÁNICA I.N.E.F. I.N.E.F. NSTITUTO NACIONAL DE EDUCACIÓN FÍSICA BIOMECÁNICA DE LA ACTIVIDAD FÍSICA Y DEL DEPORTE UNIVERSIDAD POLITÉCNICA DE MADRID Dimas Carrasco Bellido David Carrasco Bellido D3 2 ÍNDICE TEMA 1 TEMA 2

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles

Tema 7. Geometría en plano. Vectores y rectas

Tema 7. Geometría en plano. Vectores y rectas Tema 7. Geometría en plano. Vectores y rectas. Vectores y puntos en el plano. Coordenadas.... Operaciones con vectores... 5.. Suma y resta de vectores... 5.. Producto de un número real por un vector....

Más detalles

INTRODUCCIÓN ESCUELA DE INGENIERÍA CIVIL Parte de la matemática útil para físicos, matemáticos, ingenieros y técnicos. Permite presentar mediante las ecuaciones de modelo matemático diversas situaciones

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra

INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra ADVERTENCIA: manuscrito en estado de preparación muy preliminar, particularmente en lo que respecta a la secuencia temática, orden y terminación

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN 1.. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN 1..1. 1..1. Supuesto el vector de posición de un punto en el espacio: r = i-j+4k, la mejor representación de dicho vector de todas las dadas es la: a) A

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2 Los vectores Los vectores Distancia entre dos puntos del plano Dados dos puntos coordenados del plano, P 1 = (x 1, y 1 ) y P = (x, y ), la distancia entre estos dos puntos, d(p 1,P ), se calcula de la

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

POTENCIAL ELECTRICO. W q. B o

POTENCIAL ELECTRICO. W q. B o POTENCIAL ELECTRICO Un campo eléctrico que rodea a una barra cargada puede describirse no solo por una intensidad de campo eléctrico E (Cantidad Vectorial) si no también como una cantidad escalar llamada

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO TRANSFORMACIONES EN EL PLANO Conceptos teóricos Una transformación del plano es una aplicación del plano en el mismo. Esto significa que es un procedimiento que, a todo punto M del plano, asocia un punto

Más detalles

UNIVERSIDADE DA CORUÑA

UNIVERSIDADE DA CORUÑA UNIVERSIDADE DA CORUÑA E.T.S.I CAMINOS, CANALES Y PUERTOS GUIA DOCENTE DE LA ASIGNATURA: MECANICA CURSO ACADÉMICO: 2009/2010 UNIVERSIDADE DA CORUÑA E.T.S.I CAMINOS, CANALES Y PUERTOS DATOS DE LA ASIGNATURA

Más detalles

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.

Más detalles

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias: Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

INTEGRAL DE SUPERFICIE

INTEGRAL DE SUPERFICIE INTEGRAL E UPERFICIE 1. Geometría de las superficies. Entendemos por superficie el lugar geométrico de un punto que se mueve en el espacio R 3 con dos grados de libertad. También podemos pensar una superficie

Más detalles

TEMA 1. MAGNITUDES Y UNIDADES

TEMA 1. MAGNITUDES Y UNIDADES TEMA 1. MAGNITUDES Y UNIDADES 1.1 Unidades Toda magnitud física debe llevar asociadas sus unidades. Es fundamental para el método científico que las medidas sean reproducibles y, para que esto sea posible,

Más detalles

La presente nomenclatura se ha organizado por capítulos.

La presente nomenclatura se ha organizado por capítulos. Nomenclatura La presente nomenclatura se ha organizado por capítulos. Nomenclatura Capítulo 3 Letras Latinas a Radio disco móvil generador trocoide b Radio círculo base fijo trocoide c v Capacidad volumétrica

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

TEORÍA DE MECANISMOS 3.- CINEMÁTICA DE MECANISMOS

TEORÍA DE MECANISMOS 3.- CINEMÁTICA DE MECANISMOS TEORÍ DE MECNISMOS 3.- CINEMÁTIC DE MECNISMOS Departamento de Ingeniería Mecánica 1 Cinemática de máquinas Estudio cinemático: determinación de Trayectorias Velocidades celeraciones Métodos analíticos

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

Sistemas de Locomoción de robots móviles. Automatización y Robótica Industrial 5 Ing Industrial

Sistemas de Locomoción de robots móviles. Automatización y Robótica Industrial 5 Ing Industrial Sistemas de Locomoción de robots móviles Consideraciones de diseño Maniobrabilidad Controlabilidad Tracción Capacidad de subir pendientes Estabilidad Eficiencia Mantenimiento Impacto ambiental Consideraciones

Más detalles

4. LA ENERGÍA POTENCIAL

4. LA ENERGÍA POTENCIAL 4. LA ENERGÍA POTENCIAL La energía potencial en un punto es una magnitud escalar que indica el trabajo realizado por las fuerzas de campo para traer la carga desde el infinito hasta ese punto. Es función

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

1. SISTEMAS DE FUERZAS

1. SISTEMAS DE FUERZAS 1. SISTEMS DE UERZS 1.1 MGNITUDES VECTRILES 1.1.1 Unidades Toda magnitud, sea escalar o vectorial, posee unidades, que constituen una información fundamental siempre deben indicarse (cuánto de qué). Sin

Más detalles

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Relación. Geometría en el espacio (II) 1. Estudiar la posición relativa de los siguientes conjuntos de planos: (a)

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009 Cálculo III (05) Semestre -009 TEMA FUNCIONES VECTORIALES DE UNA VARIABLE REAL Semestre -009 Octubre 009 UCV FIUCV CÁLCULO III (05) - TEMA Las notas presentadas a continuación tienen como único fin, el

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

TRANSFORMACIONES EN EL PLANO (3º E.S.O.) I.E.S. Cartuja 2010/2011 LAS TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO (3º E.S.O.) I.E.S. Cartuja 2010/2011 LAS TRANSFORMACIONES EN EL PLANO 1.-INTRODUCCIÓN: LAS TRANSFORMACIONES EN EL PLANO 2.-LOS VECTORES: HERRAMIENTA CON QUE SE EXPRESA LA NATURALEZA a) Definición. b) Operaciones e interpretación geométrica. c) Definición de un vector a partir

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

4. Resolver eliminando signos de agrupación: -3, * ( ) + - 5. Demostrar la propiedad conmutativa de la suma con:

4. Resolver eliminando signos de agrupación: -3, * ( ) + - 5. Demostrar la propiedad conmutativa de la suma con: GUIA DE EJERCICIOS DE MATEMÁTICA PRIMER AÑO APELLIDOS NOMBRES 1-La suma de dos números consecutivos es 61. cuáles son los números? 2. La suma de dos números pares consecutivos es 146. cuáles son los números?

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

1. Propiedades de la Presión Hidrostática.

1. Propiedades de la Presión Hidrostática. Tema. Hidrostática. ropiedades de la resión Hidrostática.. Ecuación fundamental de la Hidrostática.. resión Hidrostática en los líquidos. Ecuación de equilibrio de los líquidos pesados. ota pieométrica.

Más detalles

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)

Más detalles

TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada.

TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada. TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada. 1. Introducción. Las aplicaciones del GPS dependen en gran medida del conocimiento de las órbitas de los satélites. La determinación precisa de

Más detalles

Introducción a la geometría. del plano y del espacio. Curvas.

Introducción a la geometría. del plano y del espacio. Curvas. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción a la geometría del plano y del espacio. Curvas. Ramón Bruzual Marisela Domínguez

Más detalles

Puente Golden Gate. San Francisco, EEUU.

Puente Golden Gate. San Francisco, EEUU. Puente Golden Gate. San Francisco, EEUU. Inecuaciones en el plano Veamos la siguiente situación: Una compañía productora de contrachapados usa una máquina prensadora para pegar chapas. Las chapas son de

Más detalles

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es. 1. Introducción 1 Teorema de Green ISABEL MAEO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Teorema de Green en regiones simplemente conexas 1 2.1. urvas de Jordan.........................................

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

un coche está parado en un semáforo implica v 0 =0.

un coche está parado en un semáforo implica v 0 =0. TEMA 1 CINEMÁTICA DE LA PARTÍCULA CONSEJOS PREVIOS A LA RESOLUCIÓN DE PROBLEMAS Movimiento con aceleración constante Al abordar un problema debes fijar el origen de coordenadas y la dirección positiva.

Más detalles

UN IVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA PROGRAMA DE ESTUDIO INGEN IERIA EN MARKETING PLAN 2006

UN IVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA PROGRAMA DE ESTUDIO INGEN IERIA EN MARKETING PLAN 2006 UN IVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA PROGRAMA DE ESTUDIO INGEN IERIA EN MARKETING PLAN 2006 I. - IDENTIFICACIÓN 1. Materia : Geometría Analítica y Vectores 2. Semestre : Primer 3. Horas

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Se considera el triángulo de vértices A(1, 3); B(2, 5); C(3, -1). Calcular las coordenadas del ortocentro.

Se considera el triángulo de vértices A(1, 3); B(2, 5); C(3, -1). Calcular las coordenadas del ortocentro. TEMAS DE MATEMÁTICAS REVÁLIDA GRADO SUPERIOR (5º Y 6º CURSO DE BACHILLERATO AÑOS 60) Eamen para estudiantes de 16 años de edad (El problema 4 puntos, cada cuestión puntos) 1 Se considera el triángulo de

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles