PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA"

Transcripción

1 Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA INTRODUCCIÓN En la actualdad es común el uso de técncas de control estadístco del proceso (SPC) para el montoreo de una únca característca de caldad. Los gráfcos utlzados con este fn son los SHEWHART, CUSUM, EWMA, etc.. Con la aparcón de modernos equpos tomadores de datos y de computadoras conectadas en línea, resulta factble montorear smultáneamente varas característcas de caldad correlaconadas. Este control se hace posble medante el SPC multvarante usando gráfcos como el T 2 de HOTELLING, el MCUSUM y el MEWMA. El más utlzado y desarrollado hasta el momento es el T 2. Sn embargo, exsten otras propuestas que ncorporando la nformacón pasada del proceso, permten aumentar la potenca del gráfco ante saldas de control. GRÁFICO MULTIVARIADO DE PROMEDIOS MÓVILES PONDERADOS EXPONENCIAL- MENTE (MEWMA) Este gráfco, a dferenca del T 2 de Hotellng, es un gráfco ponderado en el tempo, en el cual cada punto grafcado contene nformacón no sólo del últmo período sno tambén de los anterores. A cada período se le da un peso que decrece en forma exponencal a medda que se aleja del actual. Fue desarrollado por C.Lowry y colaboradores en el año 1992, quenes lo defneron como una extensón del EWMA unvarado. El nterés se centra en el control smultáneo de p característcas de caldad correlaconadas entre sí. En este caso X 1,X 2,... son vectores de longtud p. Estos vectores pueden representar observacones ndvduales o medas de subgrupos tomados del proceso. Para estudar la performance de este gráfco se supone que los vectores aleatoros X son ndependentes y están déntcamente dstrbudos según una normal p-varante con vector de medas µ y matrz de covarancas x. Por smplcdad se supone que x es conocda. En la práctca es necesaro recolectar datos durante un certo tempo en el que el proceso está bajo control, para estmar x. Estos datos tambén pueden usarse para chequear los supuestos de normaldad e ndependenca. S éstos no se cumplen, las propedades del gráfco pueden verse afectadas y las señales de fuera de control podrían carecer de sgnfcado.. Sn pérdda de generaldad se supone que el vector de medas cuando el proceso está 4

2 bajo control es µ 0 = (0,0,0...,0). S µ = µ 0 el proceso está bajo control. S µ µ 0 el proceso está fuera de control. Tomando como vector de partda a Z 0 = 0, los vectores MEWMA se defnen como : Z = R X + (I R) Z -1 para N; R = dag (r 1, r 2,..., r p ); 0 < r j 1 ; j = 1, 2,..., p S todos los r j son guales, los vectores MEWMA pueden reescrbrse de la sguente forma: Z = rx + (1 r) Z -1 Los r j marcan la profunddad de la memora para cada varable. Cuanto mayor sea r j menor será la profunddad, es decr menor peso tendrán las observacones anterores. Se pueden usar valores de r j específcos para cada varable. Aquí es donde se dferenca un análss drecconal de uno sn dreccón específca. S se usa el msmo peso r j para todas las varables, el gráfco es de dreccón nvarante, debdo a que una señal fuera de control no podrá ser atrbuda a alguna varable en especal ya que todas tenen gual peso. S se da dstnto peso a las varables, el gráfco será de dreccón específca y en ese caso, una señal de fuera de control será atrbuda a los valores específcos de aquella varable a la que se le otorgó el mayor peso.cuando se utlza un r común y éste es gual a 1, se obtene el gráfco T 2 de Hotellng. En cualquer caso el estadístco MEWMA que se grafca es: 2 T = z 1 z z donde 1 es la nversa de la matrz de covarancas de Z Z que se obtene como: z r = r ( r) 2 x La señal de salda de control se produce cuando T 2 supera un certo valor h (h > 0), sendo h el límte de control elegdo para consegur un valor determnado de ARL cuando el proceso está bajo control (ARL 0 ). Con las sglas ARL se representa a la longtud de corrda promedo, la cual es una característca usada con frecuenca para evaluar el comportamento de un dagrama de control. Es el número de puntos que en promedo deberán grafcarse entre saldas de control dentfcadas por el gráfco. Cuando los r j son guales a r, la performance del ARL del MEWMA depende solamente del parámetro de no centraldad λ y no de la dreccón del cambo que se desea detectar; sendo 5

3 λ = n( ) ( ) Prevamente a la utlzacón de un gráfco MEWMA, es necesaro defnr los parámetros h y r menconados anterormente, que lo caracterzan. Dferentes autores han propuesto métodos para su obtencón. 1) Propuesta de C. Lowry y colaboradores Lowry y col. (1992) obtuveron medante smulacón dversas tablas que permten hallar valores adecuados de r y de h. Ellos están en funcón del número p de varables consderadas, del ARL bajo control (ARL 0 ) y del cambo d que se desea detectar en el vector de medas. Además, las tablas proporconan el ARL correspondente al cambo d que se desea detectar. Estas tablas no son completas pues están dadas para determnados valores de p (2, 3, 4, 5, 10 y 20 ) y para determnados valores de ARL 0 ( 50; 100, 200, 500, 1000). Para el ejemplo publcado en Technometrcs por estos autores, donde se consderan datos de 10 subgrupos de tamaño n = 1, sendo p = 2 el número de varables analzadas, se obtendrían h = 8,79 y r = 0,10 cuando se desea un ARL 0 = 200. El valor de ARL d = 7,76. 2) Propuesta de García-Díaz y Apars Otra sugerenca para la obtencón de los parámetros óptmos del gráfco MEWMA, es la de García-Díaz y Apars (2.003), quenes desarrollaron un programa que puede ser utlzado en cualquer stuacón. El software propuesto fue programado en entorno Wndows y está basado en el concepto de Algortmos Genétcos. Estos son algortmos de optmzacón en los cuales la búsqueda del óptmo global se realza al pasar de una poblacón ncal de ndvduos (generacón), a otra poblacón nueva (generacón sguente) medante la aplcacón de operadores genétcos. La funcón Z(x) a optmzar es del tpo: Z(x) = K w k z k (x) k= 1 donde K es el número de objetvos a satsfacer y w k 0 es el peso o ponderacón correspondente al objetvo z k (x), que puede nterpretarse como la mportanca que el msmo tene, en comparacón con los demás. Este procedmento converte un problema de objetvos múltples, en un problema de optmzacón con un únco objetvo. Al determnar la funcón, los autores se basaron en la propuesta de Woodall quen defne tres regones de nterés para el dseño estadístco de los gráfcos de control: regón bajo control, regón de ndferenca y regón de fuera de control. Las msmas toman como base la magntud del cambo d que desea detectarse en el vector de medas y están delmtadas por dos valores A y B, de acuerdo a lo sguente:. Regón bajo control [ 0, A ] : en esta regón, el cambo en el vector de medas del 6

4 proceso varía de d = 0 a d = A. Este cambo no se consdera de nterés y por tanto no se lo desea detectar. En esta zona se requere un ARL máxmo, ya que s el gráfco mostrara una señal de fuera de control, correspondería a una falsa alarma.. Regón de ndferenca ( A, B): cubre los valores de A < d < B. En esta regón es ndferente detectar o no, el cambo en el proceso.. Regón fuera de control [ B, ): cubre los valores de d > B. En esta área se requere la máxma potenca para detectar el cambo, necestando un ARL mínmo. Relaconando estas regones con la funcón a optmzar, se tene que los dos objetvos a consderarr son: 1) z 1 (x) : se refere a la dferenca entre el ARL del proceso bajo control que corresponde al gráfco selecconado (ARL 0 ) y el ARL mínmo que se desea cuando d= 0 (ARL mín ). Este es un objetvo a maxmzar, ya que se desea obtener gráfcos de control que satsfagan la relacón ARL 0 ARL mín. 2) z 2 (x) : se refere al valor del ARL para un punto d = B (ARL B ). Este es un objetvo a mnmzar, ya que ARL B debe ser mínmo. Con estos dos objetvos, el problema de optmzacón consste en: Maxmzar Z(x) = K w k z k (x) = w 1 z 1 (x) + w 2 z 2 (x) k= 1 = w 1 ( ARL 0 - ARL mín ) - w 2 ARL B Los valores de w 1 y w 2 son subjetvos. En su publcacón, García-Díaz y Apars dan a w 1 valores comprenddos entre 1 y 10 y a w 2 valores comprenddos entre 5 y 400. S ben el programa admte cualquer relacón entre w 1 y w 2, los autores menconados tomaron sempre en cada aplcacón, valores de w 1 nferores a los de w 2. Para la utlzacón del programa propuesto, es necesaro dar los sguentes datos:. ARL deseado cuando el proceso se encuentra bajo control. número de varables consderado. tamaño de muestra o subgrupo del gráfco de control. dstanca d. datos realaconados con el Algortmo Genétco, entre ellos los valores de w 1 y w 2. El programa proporcona valores por default, los que pueden modfcarse. A partr de estos datos, el programa proporcona los valores del límte superor de control h, la constante de suavzamento o profunddad de la memora r óptma y los valores de ARL obtendos cuando el proceso está bajo control y cuando el msmo se aparta en una magntud d. García-Díaz y Apars compararon los valores que se obtenen con el programa propuesto, con los determnados por Lowry y col.(1992) y por Prabhu y Ranger ( 1997). Hallaron que los msmos son muy smlares y que, al gual que lo habían ndcado esos autores, 7

5 el parámetro r aumenta, a medda que lo hace el tamaño del cambo que desea detectarse. Para el ejemplo menconado en el punto anteror, se obtendría h = 9,18 y r = 0,14 cuando se utlzan ponderacones w 1 = 10 y w 2 = 50. El valor de ARL d = 10,08. La ventaja de esta propuesta, es que la msma se adapta a cualquer valor de ARL deseado y cualquer número de varables nvolucrado, lo que la hace más general al momento de su aplcacón. 3) Propuesta de Lau Meng Cheng y colaboradores Los autores sugeren estmar el límte superor de control en los gráfcos MEWMA a través de : M + 3S, como el usado en la dstrbucón normal tradconal, sendo: M M : promedo de los M con M = S M : desvío estándar de los M 2 T = Z 1 Z ' ; z Proponen un dagrama de flujo para el cálculo y trazado de la estadístca MEWMA según se consderen observacones ndvduales o datos agrupados. Los algortmos comenzan con un conjunto de datos multvarados con subgrupos en un número: m 10: El tamaño muestral es n y decde el tpo de gráfco, ya sea con datos agrupados A u observacones ndvduales B. El sguente dagrama de flujo (adaptado del artículo orgnal) ndca la posble seleccón del gráfco de control multvarado: 8

6 Dagrama para n > 1 9

7 Dagrama de flujo para n=1 10

8 Obsérvese que para ambos algortmos A y B se necesta el cálculo de la nversa de la matrz de varancas y covarancas de los datos orgnales y además el de 1 z ( matrz nversa de varancas y covarancas de los vectores MEWMA Z). = r 2 x El ( k, l ) - ésmo elemento de ( k, l) z [ 1 (1 r) ] 2 r ; s r 1 = r 2 =...= r p = r. Los algortmos propuestos en B se verfcaron con los datos presentados por Lowry y col., para facltar comparacón con las opcones dadas anterormente.suponendo un valor de r = 0,10 (dato), se obtene un h = 16,36. S ben los autores no lo menconan explíctamente en su artículo, es de suponer que este límte se utlzaría como valor de referenca para futuros procesos. El valor de r no se determna a través de este procedmento sno que tene que haber sdo prevamente fjado. Tampoco se hace mencón al valor de ARL 0 n al de la magntud del cambo d de que se desea detectar. CONSIDERACIONES FINALES En la lteratura centífca se han presentado dstntas alternatvas, pero no todas ellas conducen a los msmos resultados. El programa desarrollado por Gómez-Díaz y Apars proporcona resultados smlares a los ndcados en las tablas de Lowry y colaboradores. En cambo la metodología propuesta por Lau Meng Cheng y colaboradores, basada en datos del proceso, conduce a valores dferentes para límtes de control. Por lo expuesto, y dada la mportanca que tene la defncón del límte de control a la hora de mplementar una estratega MEWMA, se evdenca la necesdad de profundzar el tratamento de este tema. REFERENCIAS BIBLIOGRÁFICAS o Apars, F y García-Díaz, J.C. (2004): A Multobjectve Optmzaton for the Ewma and Mewma Qualty Control Charts. Inverse Problems. Desgn and Optmzaton Symposum. Ro de Janero, Brazl, o García-Díaz, J.C. y Apars, F. (2003): Optmzacón de los Gráfcos de Control Esdadístco de Procesos Ewma y Mewma medante Algortmos Genétcos. 27 Congreso Naconal de Estadístca e Investgacón Operatva. Lleda, 8-11 de abrl de o Lau Meng Cheng, Yuwald Away, Mohammad Khatm Hasa. Department of Industral Computng. Faculty of Informaton Scence and Technology. Natonal Unversty of Malaysa. o Lowry, C.A.; Woodall,W.H.; Champ, C.W. and Rgdon, S.E. (1992): A Multvarate Exponentally Weghted Movng Average Control Chart. Technometrcs, 34(1), o Prabhu, S.S. and Runger, G.C. (1997): Desgnng a Multvarate EWMA Control Chart. Journal of Qualty Technology, 29(1),

9 12

Octavas Jornadas "Investigaciones en la Facultad" de Ciencias Económicas y Estadística, noviembre de 2003

Octavas Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística, noviembre de 2003 Octavas Jornadas "Investgacones en la Facultad" de Cencas Económcas y Estadístca, novembre de 3 Crstna Barbero. () María I.Flury.() Alberto Pagura () Marta Quaglno () Marta Rugger () () Insttuto de Investgacones

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx Tasas de Caducdad - Guía de Apoyo para la Construccón y Aplcacón - Por: Act. Pedro Agular Beltrán pagular@cnsf.gob.m 1. Introduccón La construccón y aplcacón de tasas de caducdad en el cálculo de utldades

Más detalles

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS Explcacón de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS EMBARGO: 21 de agosto de 2012, 15:00 (CEST) Objetvo angular de 24 mm, con zoom óptco 30x (PowerShot SX500 IS) Desarrollado usando

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Circuito Monoestable

Circuito Monoestable NGENEÍA ELETÓNA ELETONA (A-0 00 rcuto Monoestable rcuto Monoestable ng. María sabel Schaon, ng. aúl Lsandro Martín Este crcuto se caracterza por presentar un únco estado estable en régmen permanente, y

Más detalles

Análisis de Sistemas Multiniveles de Inventario con demanda determinística

Análisis de Sistemas Multiniveles de Inventario con demanda determinística 7 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 00 Análss de Sstemas Multnveles de Inventaro con demanda determnístca B. Abdul-Jalbar, J. Gutérrez, J. Scla Departamento de

Más detalles

INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO

INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS HUMANISTICAS Y ECONOMICAS INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO Resumen: Las decsones de

Más detalles

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Avances en Medcón, 5, 9 26 2007 ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Resumen Jame Arnau Gras ** Unverstat de Barcelona, España Las estructuras de dseño, así como

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia Scenta Et Technca ISSN: 0122-1701 scenta@utp.edu.co Unversdad Tecnológca de Perera Colomba OSPINA GUTIÉRREZ, LUZ MARÍA; ZAPATA RAMÍREZ, GEISON ALEXIS; RODAS RENDON, PAULA ANDREA PRUEBA DE NO LINEALIDAD

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS

OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS 27 Congeso Naconal de Estadístca e Investgacón Opeatva Lleda, 8- de abl de 2003 OPTIMIZACIÓN DE LOS GRÁFICOS DE CONTROL ESTADÍSTICO DE PROCESOS EWMA Y MEWMA MEDIANTE ALGORITMOS GENÉTICOS J.C. Gacía-Díaz,

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Un enfoque de inventarios para planear capacidad en redes de telecomunicaciones

Un enfoque de inventarios para planear capacidad en redes de telecomunicaciones Un enfoque de nventaros para planear capacdad en redes de telecomuncacones arlos Alberto Álvarez Herrera, Maurco abrera Ríos Dvsón de Posgrado en Ingenería de Sstemas, FIME-UANL carlos@yalma.fme.uanl.mx,

Más detalles

Proyecto CONICYT/BID 51/94. Desarrollo de metodologías orientadas al control de calidad e imputación de datos faltantes en parámetros meteorológicos

Proyecto CONICYT/BID 51/94. Desarrollo de metodologías orientadas al control de calidad e imputación de datos faltantes en parámetros meteorológicos Proyecto CONICYT/BID 51/94 Desarrollo de metodologías orentadas al control de caldad e mputacón de datos faltantes en parámetros meteorológcos Informe fnal Julo 1999 INDICE 1 - RESUMEN...1 1.2- RESUMEN

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

Estimación del consumo diario de gas a partir de lecturas periódicas de medidores

Estimación del consumo diario de gas a partir de lecturas periódicas de medidores Nota técnca Estmacón del consumo daro de gas a partr de lecturas peródcas de meddores Por Salvador Gl, Gerenca de Dstrbucón del Enargas, A. azzn, Gas Natural Ban y R. Preto, Gerenca de Dstrbucón del Enargas

Más detalles

ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO

ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO GOBIERNO DE CHILE MINISTERIO DE HACIENDA Dreccón de Presupuestos ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO Dvsón de Control de Gestón Santago, Mayo 2009 CHILE PRESENTACIÓN * El anexo que a contnuacón se

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

Marinelly Álvarez Departamento de Refinación y Comercio, INTEVEP PDVSA Caracas 1070-A, Apdo. 76343, Venezuela.

Marinelly Álvarez Departamento de Refinación y Comercio, INTEVEP PDVSA Caracas 1070-A, Apdo. 76343, Venezuela. Cuál es el mejor software de smulacón para la logístca petrolera? Gladys Rncon, Mara Perez, Lus E. Mendoza LISI, Departamento de Procesos y Sstemas, Unversdad Smón Bolívar Caracas 1080-A, Apdo. Postal

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

PORTAL MAYORES. Métodos de cálculo de la gravedad de la discapacidad. Palabras clave Discapacidad; Estadísticas; Encuestas; Evaluación; Metodología.

PORTAL MAYORES. Métodos de cálculo de la gravedad de la discapacidad. Palabras clave Discapacidad; Estadísticas; Encuestas; Evaluación; Metodología. INFORMES PORTAL MAYORES ISSN: 15-67 Juno 21 Métodos de cálculo de la gravedad de la dscapacdad Cecla Esparza Catalán Consejo Superor de Investgacones Centífcas (CSIC). Centro de Cencas Humanas y Socales

Más detalles

INSYS Advanced Dashboard for Enterprise

INSYS Advanced Dashboard for Enterprise Enterprse Enterprse INSYS Advanced Dashboard for Enterprse Enterprse, es un tablero de control para llevar a cabo la Gestón de la Segurdad de la Informacón, Gestón de Gobernabldad, Resgo, Cumplmento (GRC)

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA *

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA * CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN * INTRODUCCIÓN Helmuth Yesd Aras Gómez ** Álvaro Hernando Chaves Castro *** El efecto de la educacón sobre el desarrollo económco tradconalmente

Más detalles

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción A t f l E D T A C l f l N UMITAS ACUERDO DE ACREDITACIÓN IST 184 Programa de Magster en Cencas mencón Oceanografía Unversdad de Concepcón Con fecha 10 de octubre de 2012, se realza una sesón del Consejo

Más detalles

Tutorial sobre Máquinas de Vectores Soporte (SVM)

Tutorial sobre Máquinas de Vectores Soporte (SVM) Tutoral sobre Máqunas de Vectores Soporte SVM) Enrque J. Carmona Suárez ecarmona@da.uned.es Versón ncal: 2013 Últma versón: 11 Julo 2014 Dpto. de Intelgenca Artcal, ETS de Ingenería Informátca, Unversdad

Más detalles

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL 27 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 2003 YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL J. Guad, J. Larrañeta, L. Oneva Departamento de Organzacón Industral

Más detalles

Índice de Precios de Consumo. Base 2006

Índice de Precios de Consumo. Base 2006 NSTTUTO NACONAL DE ESTADÍSTCA Índce de Precos de Consumo. Base 2006 Metodología Madrd, Subdreccón General de Estadístcas de Precos y Presupuestos Famlares Índce 1. ntroduccón 2. Defncón del ndcador 3.

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI Undad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI 3.1. DINÁMICA DE LA GESTIÓN DE PROYECTOS. 3.1.1. GESTIÓN DE PROYECTOS. La gestón

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

Breve Estudio sobre la Aplicación de los Algoritmos Genéticos a la Recuperación de Información

Breve Estudio sobre la Aplicación de los Algoritmos Genéticos a la Recuperación de Información Breve Estudo sobre la Aplcacón de los Algortmos Genétcos a la Recuperacón de Informacón O. Cordón, F. oya 2,.C. Zarco 3 Dpto. Cencas de la Computacón e I.A. Unv. de Granada. Ocordon@decsa.ugr.es 2 Dpto.

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

sergion@fing.edu.uy Centro de Cálculo, Instituto de Computación Facultad de Ingeniería. Universidad de la República, Uruguay.

sergion@fing.edu.uy Centro de Cálculo, Instituto de Computación Facultad de Ingeniería. Universidad de la República, Uruguay. Una Versón Paralela del Algortmo Evolutvo para Optmzacón Multobjetvo NSGA-II y su Aplcacón al Dseño de Redes de Comuncacones Confables Sergo Nesmachnow sergon@fng.edu.uy Centro de Cálculo, Insttuto de

Más detalles

ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA.

ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA. ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA. SEGUNDA PARTE. (TRABAJO PRESENTADO EN EL CONGRESO DE LA SOCIEDAD ARGENTINA DE ESTADISTICA)

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

APLICACIÓN DE MODELOS IRT AL ANÁLISIS DE LA OFERTA DE EQUIPAMIENTO DE LOS ALOJAMIENTOS RURALES EXTREMEÑOS

APLICACIÓN DE MODELOS IRT AL ANÁLISIS DE LA OFERTA DE EQUIPAMIENTO DE LOS ALOJAMIENTOS RURALES EXTREMEÑOS APLICACIÓN DE MODELOS IRT AL ANÁLISIS DE LA OFERTA DE EQUIPAMIENTO DE LOS ALOJAMIENTOS RURALES EXTREMEÑOS Marcelno Sánchez Rvero Departamento de Economía Aplcada y Organzacón de Empresas Unversdad de Extremadura

Más detalles

Profesor: Rafael Caballero Roldán

Profesor: Rafael Caballero Roldán Contendo: 5 Restrccones de ntegrdad 5 Restrccones de los domnos 5 Integrdad referencal 5 Conceptos báscos 5 Integrdad referencal en el modelo E-R 53 Modfcacón de la base de datos 53 Dependencas funconales

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles