APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal."

Transcripción

1 Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción linel sí como el cálculo de l expresión mtricil de un plicción linel respecto de ls bses del dominio y codominio de dich plicción. Utilizremos esto pr l obtención del núcleo y l imgen, y, prtir de ellos, clsificr los morfismos de espcios vectoriles en epimorfismos, monomorfismos o isomorfismos de un form más sencill. 1.- APICACIÓN INEA. Ddos V y V dos espcios vectoriles sobre un cuerpo K, un plicción f: V V se dice que es un plicción linel si verific: 1. f(u + v) = f(u) + f(v), u, v V. 2. f(αu) = αf(u), α K, u V. En Mthemtic trbjremos con ls coordends de los vectores respecto de un bse y no con los vectores. Pr definir un plicción linel debemos de seguir ls regls hbitules de Mthemtic: nombre[vrible_]:= expresión Teniendo en cuent que en este cso tendremos como vrible un vector y como expresión otro vector: Ejemplo 1. Definir en Mthemtic l plicción linel f: 3 4 dd por f(x, y, z) = (2x, x + y, 3x + y z, y + 5z) y clculr f(3,2,1): I

2 f[{x_,y_,z_}]:={2x,x+y,3x+y-z,y+5z}; f[{3,2,1}] Out[]:= {6, 5, 10, 7} En l práctic pr estudir si f es plicción linel se suele usr l definición l siguiente crcterizción: plicción f: V V es linel si, y solo si, f(αu + βv) = αf(u) + βf(v), α, β, u, v V. Ejemplo 2. Estudir si l plicción del ejemplo nterior es linel. Out[]:= f[{x_,y_,z_}]:={2x,x+y,3x+y-z,y+5z}; Simplify[f[*{x1,y1,z1}+b*{x2,y2,z2}]]== Simplify[*f[{x1,y1,z1}]+b*f[{x2,y2,z2}]] True Ejemplo 3. Estudir si l plicción g: 3 2 dd por g(x, y, z) = (xy, x + y) es linel. g[{x_,y_,z_}]:={x*y,x+y}; Simplify[g[*{x1,y1,z1}+b*{x2,y2,z2}]] == Simplify[*g[{x1,y1,z1}] + b*g[{x2,y2,z2}]] Out[]:= {(x + b x1), (x + b x1 + y + b y1)} == { x + b x1, x + b x1 + y + b y1} 2. EXPRESIÓN MATRICIA DE UNA APICACIÓN INEA. Se f: V V un plicción linel y se B = {e 1, e 2,..., e n } un bse de V. Entonces f está totlmente determind por ls imágenes de los vectores de B, es decir, f(e 1 ), f(e 2 ),..., f(e n ), pues ddo un vector x de V de coordends x (x 1,...,x n ) B, entonces, f(x) = f(x 1 e x n e n ) = x 1 f(e 1 ) x n f(e n ) Se hor B ={u 1,..., u m } bse de V y consideremos ls coordends de los vectores f(e 1 ),..., f(e n ) respecto de B : f(e 1 ) ( 11,, m1 ) B f(e 2 ) ( 12,, m2 ) B f(e n ) ( 1n,, mn ) B II

3 De est form se tiene: f(x) ( 11 x n x n, 21 x n x n,..., m1 x mn x n ) B Ahor bien, si denotmos ls coordends de f(x) por f(x) (y 1,..., y m ) B, entonces se obtiene: y 1 = 11 x n x n y 2 = 21 x n x n o mtricilmente: y m = m1 x mn x n y1 y2 = M M ym m M m2 O 1 n x1 2n x2 M M mn xn Est expresión recibe el nombre de ecución mtricil de un plicción linel f respecto de ls bses B y B. mtriz A = M m M m2 O 1n 2n M mn recibe el nombre de mtriz socid f respecto de ls bses B y B que denotremos por A = M B,B (f). (Notr que el número de columns es igul l dimensión de V y su número de fils igul l dimensión de V ). Así, pr clculr l mtriz socid podemos dividirlo en los siguientes psos: Pso 1: Clculmos ls imágenes de los vectores de l bse B de V: f(e 1 ),..., f(e n ). Pso 2: Clculmos ls coordends de lo obtenido en el pso nterior respecto de l bse B de V. Pso 3: Construimos l mtriz A, por columns Recordemos que si f es un endomorfismo, V =V, l bse B de V se tom como B. Ejemplo 4. Clculr l expresión mtricil de l plicción linel f: 3 4 dd por f(x, y, z) = (2x, x + y, 3x + y z, y + 5z) respecto de ls bses B = {(1, 1, 1), (1, 1, 0), (1, 0, 0)} y B = {(1, 2, 3, 0), (2, 4, 6, 1), (1, 0, 0, 0), (0, 1, 0, 0)}. III

4 f[{x_,y_,z_}]:={2x,x+y,3x+y-z,y+5z} B= {{1,1,1},{1,1,0},{1,0,0}}; Bp={{1,2,3,0},{2,4,6,1},{1,0,0,0},{0,1,0,0}}; A= Trnspose[Tble[ inersolve[trnspose[bp], f[b[[i]]]],{i,1,3}]]; MtrixForm[A] Out[]:= REACIÓN ENTRE MATRICES ASOCIADAS A DISTINTAS BASES. Se f: V V un plicción linel con n = dim(v), m = dim(v ), y consideremos B y B bses de V y B y B bses de V, si A es l mtriz socid f respecto de B y B y C es l mtriz socid f respecto de B y B, se tiene que C y A son mtrices equivlentes, demás C = Q -1 AP, donde P es l mtriz del cmbio de bse en V de B B y Q es l mtriz del cmbio de bse en V de B B. En el cso prticulr de un endomorfismo y tomndo l mism bse en el espcio de prtid y en el de llegd, l relción entre A y C es C = P -1 AP. Dos mtrices cudrds A y C pr ls que existe un mtriz regulr P de form que C = P -1 AP se dice que son semejntes. Proposición. 1. Dos mtrices son equivlentes si, y solo si, son mtrices socids l mism plicción linel respecto de distints bses. 2. Dos mtrices son semejntes si, y solo si, son mtrices socids l mismo endomorfismo respecto de distints bses. Ejemplo 5. Comprobr l relción entre l mtriz socid f respecto de ls bses nteriores y l mtriz socid f respecto de ls bses cnónics. f[{x_,y_,z_}]:={2x,x+y,3x+y-z,y+5z} Bc3= IdentityMtrix[3]; Bc4=IdentityMtrix[4]; c= Trnspose[Tble[ inersolve[trnspose[bc4], f[bc3[[i]]]],{i,1,3}]]; B= {{1,1,1},{1,1,0},{1,0,0}}; Bp={{1,2,3,0},{2,4,6,1},{1,0,0,0},{0,1,0,0}}; A= Trnspose[Tble[ inersolve[trnspose[bp], f[b[[i]]]],{i,1,3}]]; IV

5 Out[]:= P=Trnspose[Tble[inerSolve[Trnspose[B],Bc3[[i]]],{i,3}]]; Q=Trnspose[Tble[inerSolve[Trnspose[Bp],Bc4[[i]]],{i,4}]]; Inverse[Q].A.P==c True 4. OPERACIONES CON APICACIONES INEAES Y REACIÓN CON AS MATRICES ASOCIADAS. Ddos V y V dos espcios vectoriles sobre un cuerpo K, denotremos por Hom K (V, V ) l conjunto de tods ls plicciones lineles de V en V. En este conjunto se podemos definir operciones sum y producto por esclr de l form: Dds f, g Hom K (V, V ) y λ K se define ls plicciones lineles: f + g: V V ; (f + g)(u) = f(u) + g(u) λf: V V ; (λf)(u) = λf(u) Dds plicciones lineles f: V V y g: V V, su composición g ë f: V V definid por (gë f)(x) = g(f(x)) es tmbién linel. Vemos cómo l signción un plicción linel de su mtriz socid se comport bien respecto ls operciones con plicciones lineles: Proposición. Sen V, V y V espcios vectoriles sobre K de dimensiones finits, B, B y B bses de V, V y V respectivmente y f, g: V V y h: V V plicciones lineles, entonces se tiene: 1. M B,B (f + g) = M B,B (f) + M B,B (g). 2. M B,B (λf) = λm B,B (f), pr todo λ K. 3. M B,B (h ë f) = M B,B (h) M B,B (f). Ejemplo 6. Clculr ls mtrices socids f, g y h respecto de ls bses cnónics y comprobr l proposición nterior, siendo: f: 3 3 dd por f(x, y, z) = (x + y, 3x + y z, y + 5z). g: 3 3 dd por g(x, y, z) = (2x, y + z, x + y). h: 3 4 dd por h(x, y, z) = (2x, x + y, 3x + y z, 2y + z). f[{x_,y_,z_}]:={x+y, 3x+y-z, y+5z} g[{x_,y_,z_}]:={2x, y+z, x+y} h[{x_,y_,z_}]:={2x-z, x+y, 3x+y-z, 2y+z} s[{x_,y_,z_}] = f[{x,y,z}] + g[{x,y,z}]; p[{x_,y_,z_}] = 3*f[{x,y,z}]; V

6 c[{x_,y_,z_}] = h[f[{x,y,z}]]; B= IdentityMtrix[3]; Af = Trnspose[Tble [f[b[[i]]],{i,1,3}]]; Ag = Trnspose[Tble [g[b[[i]]],{i,1,3}]]; Ah = Trnspose[Tble [h[b[[i]]],{i,1,3}]]; As = Trnspose[Tble [s[b[[i]]],{i,1,3}]]; Ap = Trnspose[Tble [p[b[[i]]],{i,1,3}]]; Ac = Trnspose[Tble [c[b[[i]]],{i,1,3}]]; Out[]:= Out[]:= Out[]:= Af + Ag ==As True 3*Af ==Ap True Ah.Af ==Ac True 5.- NÚCEO E IMAGEN DE UNA APICACIÓN INEA. Ddos V y V dos espcios vectoriles sobre K y f: V V un plicción linel, se definen el núcleo de f como el subespcio de V ddo por: Ker(f) = {x V / f(x) = 0} y se define l imgen de f como el subespcio de V ddo por: Im (f) = {f(x) / x V}. Un primer método pr clculr el núcleo, conocid l expresión mtricil de f, es decir, Y = AX, consistirí en resolver el sistem homogéneo que result de plnter f(x) = 0, es decir, AX = 0. Si el sistem nterior es S.C.D. entonces Ker(f)={0} y si es un S.C.I. entonces Ker(f) = ({u 1, u 2,..., u r }) siendo {u 1, u 2,..., u r }un bse del subespcio vectoril de soluciones del sistem AX = 0. orden NullSpce nos permite obtener est bse directmente. Ejemplo 7: Clculr bse, dimensión, ecuciones prmétrics e implícits del núcleo de l plicción linel f: 3 4 dd por f(x, y, z) = (2x-z, x+y, 3x+y-z, 2y+z). SOUCIÓN: En primer lugr clculemos l mtriz socid l plicción linel respecto de ls bses cnónics: f[{x_,y_,z_}]:={2x-z, x+y, 3x+y-z, 2y+z} B= IdentityMtrix[3]; Bp= IdentityMtrix[4]; A= Trnspose[Tble[inerSolve[Trnspose[Bp], f[b[[i]]]],{i,1,3}]]; MtrixForm[A] VI

7 Out[] = i 2 0 1y j 1 1 z k { Ahor l bse del núcleo: bsenucleo=nullspce[a] Out[] = {{1,-1,2}} En este cso deducimos que l dimensión del núcleo es 1 y por tnto necesitmos un prámetro,, pr el cálculo de ls prmétrics. Como el núcleo es un subespcio de 3, escribiremos un list con tres coordends {x,y,z} y formremos un ecución de ests coordends, con l list formd por ls coordends de los vectores de l bse del núcleo, multiplicd mtricilmente por l list de los prámetros. Por último, l función ogiclexpnd igulrá término término ls lists implicds, dndo lugr ls ecuciones prmétrics en l form hbitul. prm={}; coord={x,y,z}; prmnucleo=ogiclexpnd[coord == Trnspose[bseNucleo].prm] Out[] = x = = && y = = - && z = = 2 orden Eliminte[prmNucleo, prm] hce que se elimine el único prámetro que hy en este cso, obteniendo ls ecuciones implícits: Eliminte[prmNucleo, prm] Out[] = x = = -y && 2y = = - z Recordemos que el número de ecuciones implícits de un subespcio U de un espcio vectoril V, es igul dim(v) - dim(u). En nuestro ejemplo, efectivmente, nos hn slido 3-1=2 ecuciones implícits del núcleo de f. Pr clculr l imgen de l plicción linel, buscremos un sistem de generdores, que según vimos en un proposición, puede obtenerse prtir de los trnsformdos medinte f de culquier sistem de generdores del dominio. Teniendo en cuent esto, sbemos que ls columns de l mtriz socid f, permiten obtener un sistem generdor de Im (f). Así, un bse no será más que el conjunto formdo por el VII

8 myor número de columns que sen linelmente independientes y que podemos obtenerls prtir de l form norml de Hermite de l mtriz socid f. Ejemplo 8: Clculr bse, dimensión, ecuciones prmétrics e implícits de l imgen de l plicción linel f: 3 4 dd por f(x, y, z) = (2x-z, x+y, 3x+y-z, 2y+z). SOUCIÓN: Como se trt de l mism plicción linel del ejemplo nterior, y tenemos l mtriz socid l plicción linel respecto de ls bses cnónics, A. generdorimgen=trnspose[a]; RowReduce[generdorImgen] Out[]= {{1,0,1,-1},{0,1,1,2},{0,0,0,0}} Como vemos, en este cso los linelmente independientes son ls dos primers fils, por tnto l bse será: bseimgen=tble[%[[i]],{i,2}] Out[]= {{1,0,1,-1},{0,1,1,2}} Ahor tendremos que introducir dos prámetros {,b} y coordends {x,y,z,t} pues l imgen es subespcio vectoril de V = 4. s ecuciones correspondientes son: prm={,b}; coord={x,y,z,t}; prmnucleo=ogiclexpnd[coord == Trnspose[bseNucleo].prm] Out[]= t = = -+2b && x = = && y = = b && z = = +b Eliminte[prmNucleo, prm] Out[]= t = = -x+2y && x = = -y+z En este cso hemos obtenido dim(v )-dim(im(f))=4-2=2 ecuciones implícits del subespcio imgen de l plicción linel f. Como fácilmente se puede observr, el método nterior no es totlmente progrmble, pues es necesrio intervenir ñdiendo los prámetros y coordends necesrios pr ls ecuciones prmétrics, o eliminndo ls fils nuls pr l bse de l imgen. Vemos como l form norml de Hermite nos fcilit el cálculo del núcleo y l imgen de f. VIII

9 Si l clculr l form de Hermite por columns de A relizmos ls operciones A C elementles sobre, obtenemos donde P es l mtriz regulr de orden n tl que I P C = A.P, pues bien se tiene que ls columns no nuls de C form un bse de Im (f) y ls columns de P que están bjo ls columns de ceros de C (si ls hy) formn un bse de Ker (f). Recordemos que en el Mthemtic l orden RowReduce[A] nos clcul l form norml de Hermite por fils, luego l hcer lo nterior con el Mthemtic A nosotros trbjremos por fils trnsponiendo l mtriz ntes de clculr l form I de Hermite y l finl trnsponiendo el resultdo (C P). Ejemplo 9: Clculr el núcleo y l imgen de l plicción linel f: 3 4 dd por f(x, y, z) = (2x-z, x+y, 3x+y-z, 2y+z) usndo pr ello l form norml de Hermite. SOUCIÓN: f[{x_,y_,z_}]:={2x-z,x+y,3x+y-z,2y+z} B= IdentityMtrix[3]; Bp= IdentityMtrix[4]; A= Trnspose[Tble[inerSolve[Trnspose[Bp], f[b[[i]]]],{i,1,3}]]; Join[A,B]; AI=Trnspose[%]; CP=RowReduce[AI]; MtrixForm[Trnspose[CP]] Out[]= Por tnto, un bse de l imgen es {(1,0,1,1),(0,1,1,-2)} y un bse del núcleo es {(1,-1,2)}. 6.- TIPOS DE APICACIONES INEAES. Un plicción linel pueden ser monomorfismo, epimorfismo o isomorfismo si como plicción es inyectiv, sobreyectiv o biyectiv, respectivmente. Proposición IX

10 Dd un plicción linel f:v V, dim(v)=n, dim(v )=m, se verific: 1. f es inyectiv Ker(f) = 0 rng(a) = n. 2. f es sobreyectiv Im(f) = V rng(a) = m. 3. f es biyectiv A es cudrd y regulr. Según l proposición nterior l plicción f del ejemplo no es ni inyectiv pues dim(ker (f)) =1, ni sobreyectiv, pues dim(im (f)) =2. Por tnto f tmpoco es biyectiv. X

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Aplicaciones Lineales Entre Espacios Vectoriales

Aplicaciones Lineales Entre Espacios Vectoriales Aplicciones lineles Bloque 2 Lección 2.2.- Aplicciones Lineles Entre Espcios Vectoriles Progrm: 0.- Concepto de Homomorfismo. Propieddes. Homomorfimos de grupos, nillos y cuerpos. 1- Concepto de plicción

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

4 Aplicaciones lineales

4 Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 4 Aplicaciones lineales 4. Aplicación lineal Sean V y W dos espacios vectoriales sobre el mismo cuerpo K (en general, R o C. Una aplicación

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009)

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) ÁLGEBRA Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) I. Se considera el homomorfismo f : P 2 (IR) P 2 (IR) definido por las siguientes condiciones: (1) Los polinomios sin

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

Tema VII: Plano afín y espacio afín

Tema VII: Plano afín y espacio afín Tem VII: Plno fín y espcio fín Hst hor el contexto en el que hemos trbjdo h sido fundmentlmente el de los espcios IR n, y de estos espcios nos h interesdo su estructur vectoril, es decir, por decirlo con

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

ÁLGEBRA LINEAL I Soluciones a la Práctica 6

ÁLGEBRA LINEAL I Soluciones a la Práctica 6 ÁLGEBRA LINEAL I Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos,

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Teorema de la Función Inversa

Teorema de la Función Inversa Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1 APLICACIONES LINEALES El objetivo de este capítulo es el estudio de las aplicaciones lineales u homomorfismos entre espacios vectoriales Este tipo de aplicaciones respeta la estructura de espacio vectorial

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES ) Resolver el siguiente sistem de ecuciones lineles t t z emplendo el método de Guss utilizndo trnsformciones elementles de fils En qué csos es comptible? b) Relcionr ls mtrices

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales.

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales. Clse del Miércoles 3 de Junio de 22: Ecuciones Integrles. Introducción En est clse estudiremos ls ecuciones integrles de Fredholm y de Volterr. -+ - Empezremos por considerr l ecución de Fredholm de segund

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES Sistems de ecuciones lineles Tem 2 SISTEMAS DE ECUACIONES LINEALES Los sistems de ecuciones lineles tienen muchs plicciones en todos los cmpos y ciencis y y desde. C. se tenín métodos pr resolver los sistems.

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

DETERMINANTES. Determinantes

DETERMINANTES. Determinantes Determinntes DETERMINANTES Autores: Jun Alberto Rodríguez Velázquez (jrodriguezvel@uoc.edu), Cristin Steegmnn Pscul (csteegmnn@uoc.edu), Ángel Alejndro Jun Pérez (junp@uoc.edu). ESQUEMA DE CONTENIDOS Definición

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3 . DEFINICIÓN. http://mtemticsconsole.wikispces.com/ TE trices TRICES Un mtriz de m fils n columns es un serie ordend de m n números ij, i=,,...m; j=,,...n, dispuestos en fils columns, tl como se indic

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1 TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA Est metodologí es plicble ls ctividdes de proyecto que conllevn un cmbio de flot de vehículos pesdos en el trnsporte de mercncís

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina MTRICES Mtrices de números reles. Definimos mtriz rel de elementos pertenecientes R y de dimensión n fils por m columns, quel conjunto de números reles escritos de l form siguiente: n n mtriz nxm m m nm

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidd de Cádiz Deprtmento de Mtemátics MATEMÁTICAS pr estudintes de primer curso de fcultdes y escuels técnics Tem 1 Nociones mtemátics básics. Los números. Operciones Elbordo por l Profesor Doctor

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

Vectores en el espacio. Producto escalar

Vectores en el espacio. Producto escalar Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

Algoritmo Tipo «Estrella» Para Resolver en Paralelo un Sistema de Ecuaciones Lineales Utilizando el Método de Householder

Algoritmo Tipo «Estrella» Para Resolver en Paralelo un Sistema de Ecuaciones Lineales Utilizando el Método de Householder Algoritmo Tipo «Estrell» Pr Resolver en Prlelo un Sistem de Ecuciones Lineles Utilizndo el Método de Householder M. en C. Héctor Smuel Grcí Sls Profesor Investigdor del CIDETEC- IPN M. en C. Teodoro Alvrez

Más detalles