Teoría de autómatas para investigadores en XML

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría de autómatas para investigadores en XML"

Transcripción

1 en XML Rafael C. Carrasco Jiménez Departamento de Lenguajes y Sistemas Informáticos Universidad de Alicante Febrero de enero de 2007

2 finitos de cadenas Un DFA (deterministic finite-state automaton) es una representación (grafo) de un procedimiento computable que requiere memoria finita.

3 finitos de cadenas Un DFA (deterministic finite-state automaton) es una representación (grafo) de un procedimiento computable que requiere memoria finita. Ejemplo: determinar la paridad de una cadena binaria. Contraejemplo: determinar si la entrada es paĺındroma.

4 Expresiones regulares Las expresiones regulares definen lenguajes usando símbolos, paréntesis y operadores de concatenación, elección y repetición. Comentarios de C: A [*] B [/] C [^*/] Comment {B}{A}{B}*({A}*{C}{B}*)*{A}*{A}{B}

5 Expresiones regulares La validación de cadenas con respecto a expresiones regulares puede hacerse mediante DFA.

6 Autómata de de una expresión regular Para cada expresión regular r, se construye el marcado E r sustituyendo los símbolos por posiciones. Por ejemplo r = BAB (A CB )A AB E r = 123 (4 56 ) Cada posición será un estado del autómata de. Para construir las transiciones se usan 4 funciones: empty, first, last, follow.

7 Autómata de de una expresión regular empty(e) es cierto si la subexpresión contiene la cadena vacía: empty(n) = FALSE empty(f G) = empty(f ) empty(g) empty(f, G) = empty(f ) empty(g) empty(f ) = TRUE empty(f +) = empty(f ) empty(f?) = TRUE

8 Autómata de de una expresión regular first(e) es el conjunto de símbolos por los que puede empezar una cadena de E: first(n) = {n} first(f G) = ) first(g) first(f { first(f, G) = first(f ) first(g) if empty(f ) first(f ) otherwise first(f ) = first(f ) first(f +) = first(f ) first(f?) = first(f )

9 Autómata de de una expresión regular last(e) es el conjunto de símbolos por los que puede terminar una cadena de E: last(n) = {n} last(f G) = last(f { ) last(g) last(f, G) = last(f ) last(g) last(g) last(f ) = last(f ) last(f +) = last(f ) last(f?) = last(f ) if empty(g) otherwise

10 Autómata de de una expresión regular follow(e) es el conjunto de pares de símbolos que pueden aparecer consecutivos en E: follow(n) = follow(f G) = follow(f ) follow(g) follow(f, G) = follow(f ) follow(g) last(f ) first(g) follow(f ) = follow(f ) last(f ) first(f ) follow(f +) = follow(f ) last(f ) first(f ) follow(f?) = follow(f )

11 Autómata de de una expresión regular El autómata de es (N, Σ, δ, 0, F ), con: Q = {0, 1,..., N} δ(0, a) = {n first(e r ) : Φ r (n) = a} δ(n, a) = {m Q : (n, m) follow(e r ) Φ r (m) = a} { {0} last(e r ) if empty(e r ) F = last(e r ) otherwise siendo N el número de símbolos de r y Φ el homomorfismo que genera r a partir de E r.

12 Autómata de de una expresión regular Construye el autómata de BAB (A CB )A AB

13 Autómata de de una expresión regular Si el autómata de es determinista, r es 1-inambigua y, por tanto, válida en el estándar SGML. Aunque todo autómata finito tienen un equivalente determinista, no todas las lenguajes regulares admiten una expresión regular con autómata de determinista.

14 Medidas probabiĺısticas En un autómata probabiĺıstico, cada transición (y cada estado de aceptación) tiene una probabilidad asociada. Algunas distancias Cuadrática: x (p Ax) p B (x)) 2. Kullback-Leibler: x p A(x) log p A(x) p B (x). La distancia cuadrática es más suave, pero menos sensible a los valores pequeños.

15 Medidas probabiĺısticas La probabilidad de coemisión C(A, B) = x p A(x)p B (x) permite calcular la distancia cuadrática: d 2 (A, B) = C(A, A) + C(B, B) 2C(A, B)

16 Medidas probabiĺısticas C(A, A ) = a i Q j Q c ij p(i, a)p(j, a) Los coeficientes c ij son el número esperado de pasos por i y j. c ij = (i == 0)(j == 0) + c kl p(k, a)p(l, a) a k:δ(k,a)=i l:δ(l,a)=j Demostración en: Carrasco 1997.

17 Árboles Dado un alfabeto Σ = {σ 1,..., σ Σ }: Todos los símbolos de Σ son de T Σ. Dado σ Σ y m > 0 t 1,..., t m, σ(t 1 t m ) es un árbol de T Σ.

18 Lenguajes de A cualquier subconjunto de se le llama lenguaje. En particular, el lenguaje sub(t) de sub de t es { {σ} if t = σ Σ sub(t) = {t} m k=1 sub(t k) if t = σ(t 1... t m ) T Σ Σ XHTML es un lenguaje de sobre el alfabeto: {html, head, body, p, a, ul, ol, li, th, tr, td...}

19 Un autómata finito de es A = (Q, Σ,, F ), Q = {q 1,..., q Q } es un conjuntoestados; Σ = {σ 1,..., σ Σ } es el alfabeto; F Q es un subconjunto de estados de aceptación, m=0 Σ Qm+1 es un conjunto finito de transiciones.

20 Los de pueden ser indeterministas :- deterministas ascendentes :-) deterministas descendente :-( Debemos valorar capacidad expresiva y complejidad de análisis.

21 Evaluador de expresiones lógicas: = {(F, 0), (T, 1), (, 1 +, 1), (, (0 1) 0(0 1), 0) (, 0 +, 0), (, (0 1) 1(0 1), 1)} T F T F F F T F

22 Evaluador de XPath /a[a]/b//a (indeterminista). ={ (a,q,/a), (b,q,/b), (a, Q,//a), (b,q //aq,/b//a), (a,q /aq /b//aq,/a[a]/b//a),... } a a b a b /a[a]/b//a /a /b//a //a /b

23 ascendentes de Cada transición (σ, i 1,..., i m, q) de tiene argumento (σ, i 1,..., i m ) y salida q. El autómata es determinista si no hay más de una salida por cada argumento: { q if q Q such that (σ, i 1,..., i m, q) δ m (σ, i 1,..., i m ) = if no such q exists es el estado de absorción

24 ascendentes de El resultado de A en t es A(t): { δ 0 (σ) A(t) = δ m (σ, A(t 1 ),..., A(t m )) if t = σ Σ if t = σ(t 1 t m ) T Σ Σ

25 ascendentes de Si δ 0 (a) = q 1, δ 0 (b) = q 2, δ 2 (a, q 1, q 2 ) = q 2 y δ 1 (a, q 2 ) = q 1, a a b a q 2 q 1 q 2 q 2 a b q 1 q 2

26 ascendentes de El lenguaje L A (q) aceptado por q Q es L A (q) = {t T Σ : A(t) = q} y el lenguaje L(A) aceptado por A es L(A) = L A (q). q F

27 Minimización de ascendentes de Eliminación de estados inaccesibles: L A (q) =. I Q Mientras existen q I, m 0, σ Σ y (i 1,..., i m ) (Q I ) m tales que δ m (σ, i 1,..., i m ) = q, elimínese q de I.

28 Minimización de ascendentes de Dos estados i y j son equivalentes si 1 i F y j F o viceversa. 2 Existen m > 0, k m y (σ, r 1,..., r m ) Σ Q m tales que δ m (σ, r 1,..., r k 1, i, r k+1..., r m ) δ m (σ, r 1,..., r k 1, j, r k+1.

29 Minimización de ascendentes de Sea P τ la partición de Q en la iteración τ y E τ [i] la clase de P τ que contiene a i. i τ j si existe m > 0, k m y (σ, r 1,..., r m ) Σ Q m tales que E τ [δ m (σ, r 1,..., r k 1, i, r k+1..., r m )] E τ [δ m (σ, r 1,..., r k 1, j, r k+

30 Minimización de ascendentes de Algorithm minimizedta Input: a DTA A = (Q, Σ,, F ) with no inaccessible states. Output: a minimal DTA A mín = (Q mín, Σ, mín, F mín ). Method: 1 Create the initial partition P 0 = (F, Q F ) and make τ 0. 2 While there exist i, j Q such that E τ [i] = E τ [j] and i τ j Build the subset N = {k E τ [i] : k τ i}. Create P τ+1 from P τ by splitting class E τ [i] into N and E τ [i] N. Make τ τ Output (Q mín, Σ, mín, F mín ) with Q mín = {E τ [i] : i Q}; F mín = {E τ [i] : i F }; δ mín m (σ, E τ [i 1 ],..., E τ [i m ]) = E τ [δ m (σ, i 1,..., i m )] for all m 0, σ Σ, and (i 1,..., i m ) Q m.

31 Gramáticas regulares de Son equivalentes a los de. G = (N, T, S, P): Σ es un alfabeto de símbolos terminales; N es un conjunto finito de variables; S es el símbolo inicial; P es un conjunto de reglas del tipo X ar, con X N, a T y r una expresión regular sobre N (content model).

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

Computabilidad y Lenguajes Formales: Autómatas Finitos

Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas Tema 3.1: Autómatas Finitos Deterministas Luis Peña luis.pena@urjc.es http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos

Más detalles

Convertir un AFND a un AFD

Convertir un AFND a un AFD Convertir un AFND a un AFD Existe una equivalencia entre los AFD y AFN, de forma que un autómata M es equivalente a un autómata M' si L(M) ) L(M'). Ejemplo: Los autómatas de la siguiente figura son equivalentes.

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Un autómata con pila no determinista (APND) es una septupla Q A B F en la que

Un autómata con pila no determinista (APND) es una septupla Q A B F en la que AUTÓMATAS CON PILA Un autómata con pila no determinista (APND) es una septupla Q A F en la que δ q 0 Q es un conjunto finito de estados A es un alfabeto de entrada es un alfabeto para la pila δ es la función

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011 6, 7 y 13 de abril de 2011 Analizadores sintácticos (repaso) Los analizadores descendentes: Corresponden a un autómata de pila determinista. Construyen un árbol sintáctico de la raíz hacia las hojas (del

Más detalles

XML. María Consuelo Franky. Universidad Javeriana 2009

XML. María Consuelo Franky. Universidad Javeriana 2009 XML María Consuelo Franky Universidad Javeriana 2009 1 XML: meta-lenguaje para definir lenguajes de etiquetas 2 Origen de XML SGML: Standard Generalized Markup Language: demasiado complejo para definir

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

El Autómata con Pila

El Autómata con Pila El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b*

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b* UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

Sentido de recorrido. q i

Sentido de recorrido. q i Sentido de recorrido σ Cinta Cabeza de lectura γ Pila i Unidad de control de estados Componentes básicos de un autómata con pila. σ i 1 σ i j σ i j+1 σ i p Z (a) γ l 1 γ l 2 γ l σ i 1 σ i j σ i j+1 σ i

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

Computabilidad y Lenguajes Formales: Autómatas de Pila

Computabilidad y Lenguajes Formales: Autómatas de Pila 300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

Índice. HTML HyperText Markup Language. Conceptos básicos. Qué es HTML? Diseño de servicios Web HTML 1

Índice. HTML HyperText Markup Language. Conceptos básicos. Qué es HTML? Diseño de servicios Web HTML 1 Índice HTML HyperText Markup Language Conceptos básicos Historia y evolución de HTML XHTML vs. HTML HTML dinámico Hojas de estilo (CSS) DOM Diseño de servicios Web 2 DATSI Qué es HTML? Lenguaje de publicación

Más detalles

Tema: Autómata de Pila

Tema: Autómata de Pila Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas

Más detalles

DIVISIBILIDAD: Resultados

DIVISIBILIDAD: Resultados DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:

Más detalles

Tema 5 Lenguajes independientes del contexto. Sintaxis

Tema 5 Lenguajes independientes del contexto. Sintaxis Tema 5 Lenguajes independientes del contexto. Sintaxis 1 Gramáticas independientes del contexto Transformación de gramáticas independientes del contexto Autómatas de pila Obtención de un autómata de pila

Más detalles

Electrónica. Tema 6 Circuitos Secuenciales. Tema 1 Fundamentos de semiconductores

Electrónica. Tema 6 Circuitos Secuenciales. Tema 1 Fundamentos de semiconductores Electrónica Tema 6 Circuitos Secuenciales Tema 1 Fundamentos de semiconductores 1 Lógica secuencial Un circuito secuencial es aquel cuyas salidas dependen no sólo de las entradas actuales, sino también

Más detalles

PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07

PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07 PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07 1. En qué método de análisis sintáctico puede suceder que en la construcción del árbol de derivación de las posibles expansiones de un símbolo no terminal

Más detalles

Ejercicios de Lógica Proposicional *

Ejercicios de Lógica Proposicional * Ejercicios de Lógica Proposicional * FernandoRVelazquezQ@gmail.com Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos

Más detalles

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales 6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

PHP: Lenguaje de programación

PHP: Lenguaje de programación Francisco J. Martín Mateos Carmen Graciani Diaz Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Tipos de datos Enteros Con base decimal: 45, -43 Con base octal: 043, -054

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)

Más detalles

Introducción a los códigos compresores

Introducción a los códigos compresores Introducción a los códigos compresores Parte I de la Lección 2, Compresores sin pérdidas, de CTI Ramiro Moreno Chiral Dpt. Matemàtica (UdL) Febrero de 2010 Ramiro Moreno (Matemàtica, UdL) Introducción

Más detalles

Problemas en P y NP. Marcos Kiwi. Semestre Otoño U. Chile

Problemas en P y NP. Marcos Kiwi. Semestre Otoño U. Chile Problemas en P y NP Marcos Kiwi U. Chile Semestre Otoño 2012 Problemas en P Path = { G, s, t : Existe un dicamino de s a t en el digrafo G} Conexo = { G : G grafo conexo} { } A Q PL = A, b, c, k : m n,

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc.

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc. Formales Tema 4: Autómatas finitos deterministas Holger Billhardt holger.billhardt@urjc.es Sumario: Bloque 2: Autómatas Finitos 4. Autómatas Finitos Deterministas 1. Concepto y Definición 2. Autómata finito

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES (TALF) BLOQUE II: LENGUAJES REGULARES Tema 2: Autómatas Finitos Parte 2 (de 3). Autómatas Finitos No Deterministas (AFNDs) Grado en Ingeniería Informática URJC

Más detalles

LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas.

LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas. LEX Estructura de un programa en LEX { definiciones { reglas { subrutinas del usuario Las definiciones y subrutinas son opcionales. El segundo es opcional pero el primer indica el comienzo de las reglas.

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

Modelos Computacionales

Modelos Computacionales Análisis y Complejidad de Algoritmos Modelos Computacionales Arturo Díaz Pérez El circuito lógico La máquina de estados finitos La máquina de acceso aleatorio La máquina de Turing Compuertas Lógicas Compuerta

Más detalles

Relaciones binarias. Matemática discreta. Matemática discreta. Relaciones binarias

Relaciones binarias. Matemática discreta. Matemática discreta. Relaciones binarias Relaciones binarias Matemática discreta 1 Relación binaria en A Dados dos conjuntos A y B, una relación R binaria es cualquier subconjunto de AxB Dados a A y b B, a está relacionado con b por R si (a,b)

Más detalles

Introducción a la Probabilidad

Introducción a la Probabilidad Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento

Más detalles

Lenguaje de programación C. Introducción

Lenguaje de programación C. Introducción Lenguaje de programación C Introducción 1 Elementos del lenguaje C Colección de funciones Estas funciones contienen declaraciones, sentencias, expresiones y otros elementos que en conjunto indican a la

Más detalles

Teoría de la Computabilidad

Teoría de la Computabilidad Teoría de la Computabilidad Módulo 7: Lenguajes sensibles al contexto 2016 Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina Es este programa en Pascal sintácticamente

Más detalles

Herramientas. 1 FormaLex, Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

Herramientas. 1 FormaLex, Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina 1 Sergio Mera 1 1 FormaLex, Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina Introducción al Análisis Formal de Normas Legales, segundo cuatrimestre de 2014 (2)

Más detalles

Autómatas Finitos y Lenguajes Regulares

Autómatas Finitos y Lenguajes Regulares Autómatas Finitos y Lenguajes Regulares Problema: Dado un lenguaje L definido sobre un alfabeto A y una cadena x arbitraria, determinar si x L o x L. Cadena x AUTOMATA FINITO SI NO Lenguaje Regular Autómatas

Más detalles

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo Algoritmos En general, no hay una definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un número finito de pasos convierten

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Complejidad de la Comunicación

Complejidad de la Comunicación Complejidad de la Comunicación Juan Sebastian Navarro 08 de Mayo de 2012 1 / 50 Introducción Complejidad de la Comunicación Determinística Determinación de Cotas Complejidad de la Comunicación No Determinística

Más detalles

Introducción a la Geometría Computacional. Análisis de Algoritmos

Introducción a la Geometría Computacional. Análisis de Algoritmos Introducción a la Geometría Computacional Análisis de Algoritmos Geometría Computacional La Geometría Computacional surgió a finales de los 70s del área de diseño y análisis de algoritmos. Estudio sistemático

Más detalles

TEMA 5. GRAMÁTICAS REGULARES.

TEMA 5. GRAMÁTICAS REGULARES. TEMA 5. GRAMÁTICAS REGULARES. 5.1. Gramáticas Regulares. 5.2. Autómatas finitos y gramáticas regulares. 5.2.1. Gramática regular asociada a un AFD 5.2.2. AFD asociado a una Gramática regular 5.3. Expresiones

Más detalles

GUÍA BÁSICA DE SCHEME v.4

GUÍA BÁSICA DE SCHEME v.4 Esta guía básica pretende ser una introducción elemental al lenguaje de programación Scheme. Se presenta como una guía de comienzo rápido de tal forma que permita conocer de una forma muy esquemática los

Más detalles

Traductores Push Down para Gramáticas LL

Traductores Push Down para Gramáticas LL Push Down para Gramáticas LL Extensión de Autómatas Universidad de Cantabria Outline El Problema 1 El Problema 2 3 4 El Problema Podemos resolver el problema de la palabra para lenguajes generados por

Más detalles

Clase 17: Autómatas de pila

Clase 17: Autómatas de pila Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata de pila Definición

Más detalles

C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e]

C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e] Análisis y Diseño de Algoritmos Introducción Análisis y Diseño de Algoritmos Concepto de algoritmo Resolución de problemas Clasificación de problemas Algorítmica Análisis de la eficiencia de los algoritmos

Más detalles

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales Se prohíbe la reproducción total o parcial de este documento, excepto para uso privado de los alumnos de la asignatura Teoría de Autómatas I de la UNED y los alumnos de asignaturas equivalentes de otras

Más detalles

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Matemática Discreta y Lógica 2 1. Árboles Árboles Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Como un lazo es un ciclo de longitud 1, un árbol

Más detalles

SENA Distrito Capital Centro de Electricidad, Electrónica y Telecomunicaciones ADSI - Ing. Espec. Javier Vaquiro

SENA Distrito Capital Centro de Electricidad, Electrónica y Telecomunicaciones ADSI - Ing. Espec. Javier Vaquiro SENA Distrito Capital Centro de Electricidad, Electrónica y Telecomunicaciones ADSI - Ing. Espec. Javier Vaquiro 1. Sintaxis básica 2. Tipos de datos 3. Variables 4. Constantes 5. Expresiones y operadores

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3041 GRADO: ING. EN COMPUTACIÓN, CUARTO SEMESTRE TIPO DE TEÓRICA/PRÁCTICA ANTECEDENTE CURRICULAR: 3033.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

Bases de Datos XPath - XQuery 1. XML: XPath - XQuery. Jorge Pérez Rojas Universidad de Talca, II Semestre 2006

Bases de Datos XPath - XQuery 1. XML: XPath - XQuery. Jorge Pérez Rojas Universidad de Talca, II Semestre 2006 Bases de Datos XPath - XQuery 1 XML: XPath - XQuery Jorge Pérez Rojas Universidad de Talca, II Semestre 2006 Bases de Datos XPath - XQuery 2 XPath - XQuery Ambos son estándares para acceder y obtener datos

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N:

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N: R no es enumerable Por contradicción, supongamos que existe una biyección f : N! R. I Vamos a obtener una contradicción usando el método de diagonalización de Cantor. Para cada i 2 N: f (i) = n i.d i,0

Más detalles

ALGORITMOS GENÉTICOS: ALGUNOS RESULTADOS DE CONVERGENCIA

ALGORITMOS GENÉTICOS: ALGUNOS RESULTADOS DE CONVERGENCIA Mosaicos Matemáticos No. 11 Diciembre, 23. Nivel Superior ALGORITMOS GENÉTICOS: ALGUNOS RESULTADOS DE CONVERGENCIA Mario Alberto Villalobos Arias Departamento de Matemáticas Centro de Investigación y de

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

Teoría de Lenguajes. Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 8 Propiedades de Lenguajes Independientes de Contexto y su Lema de Pumping Primer cuartimestre 2014 Estas notas están basadas en el material compilado por el Profesor

Más detalles

Teoría de Lenguajes. Gramáticas incontextuales

Teoría de Lenguajes. Gramáticas incontextuales Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.

Más detalles

4. Operadores Operador asignación

4. Operadores Operador asignación Programación orientada a objetos con Java 43 4. Operadores Objetivos: a) Describir los operadores (aritméticos, incrementales, de relación, lógicos y de asignación) y los tipos de dato primitivos sobre

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

Introducción a Autómatas Finitos

Introducción a Autómatas Finitos Introducción a e. Universidad de Cantabria Esquema 1 Introducción 2 3 Grafo de λ Transiciones Eliminación de las λ-transiciones 4 El Problema Podemos interpretar un autómata como un evaluador de la función

Más detalles

06 Análisis léxico II

06 Análisis léxico II 2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios

Más detalles

Introducción a los Autómatas Finitos

Introducción a los Autómatas Finitos Teoría de Introducción a los Un modelo de Computación. Universidad de Cantabria Esquema Introducción Teoría de 1 Introducción 2 Teoría de 3 4 5 El Problema Introducción Teoría de Nuestro objetivo en este

Más detalles

ANÁLISIS SEMÁNTICO. Especificación formal: Semántica Operacional, semántica denotacional, semántica Axiomática, Gramáticas con Atributos.

ANÁLISIS SEMÁNTICO. Especificación formal: Semántica Operacional, semántica denotacional, semántica Axiomática, Gramáticas con Atributos. ANÁLISIS SEMÁNTICO El análisis semántico dota de un significado coherente a lo que hemos hecho en el análisis sintáctico. El chequeo semántico se encarga de que los tipos que intervienen en las expresiones

Más detalles

2: Autómatas finitos y lenguajes regulares.

2: Autómatas finitos y lenguajes regulares. 2: Autómatas finitos y lenguajes regulares. Los autómatas finitos son el modelo matemático de los sistemas que presentan las siguientes características: 1) En cada momento el sistema se encuentra en un

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3 TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 3 1. Equivalencia entre autómatas 1.1. Equivalencia entre AFD y AFN 1.1. Equivalencia entre AFD y AFλ 2. Ejercicios propuestos 1. Equivalencia entre autómatas

Más detalles

PROGRAMACION CONCURRENTE Y DISTRIBUIDA

PROGRAMACION CONCURRENTE Y DISTRIBUIDA PROGRAMACION CONCURRENTE Y DISTRIBUIDA V.2 Redes de Petri: Análisis y validación. J.M. Drake 1 Capacidad de modelado y capacidad de análisis El éxito de un método de modelado es consecuencia de su capacidad

Más detalles

Universidad Capitán General Gerardo Barrios. Facultad de Ciencia y Tecnología

Universidad Capitán General Gerardo Barrios. Facultad de Ciencia y Tecnología Universidad Capitán General Gerardo Barrios Facultad de Ciencia y Tecnología Guía práctica de Base de Datos I Sentencias básicas de SQL, utilizadas en Mysql, con la base de datos Northwind. Docente: Lic.Ms.

Más detalles

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. UNIDAD 1.- CONCEPTOS REQUERIDOS CONJUNTOS. AXIOMAS DE PERTENENCIA, PARALELISMO, ORDEN Y PARTICIÓN. 1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. 1.1 Determinaciones de un conjunto. Un conjunto queda determinado

Más detalles

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]* Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,

Más detalles