BOLETÍN DE EJERCICIOS DE FÍSICA DEL ESTADO SÓLIDO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "BOLETÍN DE EJERCICIOS DE FÍSICA DEL ESTADO SÓLIDO"

Transcripción

1 BOLETÍN DE EJERCICIOS DE FÍSICA DEL ESTADO SÓLIDO TEMA 1. ESTRUCTURA CRISTALINA 1) Que estructuras monoatómicas dan lugar a índices de coordinación 4, 6, 8, 1?. ) Estructura del diamante: a) Cuántos átomos hay en la celda primitiva del diamante?. Y en la convencional?. b) Cuántos átomos más próximos tiene un átomo dado?. c) Calcular la fracción de empaquetamiento?. d) Probar que el ángulo entre los enlaces tetraédricos es 109 8?. 3) Demuéstrese que la proporción máxima de espacio que se puede llenar con esferas sólidas acomodadas en varias estructuras es la siguiente: a) Cúbica simple π 6 5%. b) Hexagonal compacta π 1/ 6 74%. c) Cúbica centrada en el cuerpo π3 1/ 8 68%. d) Cúbica centrada en las caras π 1/ 6 74%. 4) Argumentar que los únicos ejes de simetría compatibles con una red bidimensional son los de orden 1,, 3, 4 y 6. 1

2 TEMA. ESTUDIO EXPERIMENTAL DE LA RED CRISTALINA 1) Calcular los vectores base de la red recíproca de una red sc de vectores base primitivos a 1 =a i, a =a j, a 3 =a k, de una fcc de vectores base primitivos a 1 =(a/) (j+k), a =(a/) (i+k), a 3 =(a/) (i+j) y de una red bcc de vectores base primitivos a 1 =(a/) (j+k-i), a =(a/) (k + i -j), a 3 =(a/) (i+j-k). Denotando por i, j, k a los versores de las tres diagonales del cubo convencional de arista a. ) Determinar el factor de estructura (S G ) para una red cúbica simple monoatómica y para una fcc con base monoatómica (considerar la fcc monoatómica como una sc con base tetraatómica). Que implica S G = 0?. 3) La aleación CuAu 3 tiene una estructura ordenada por debajo de 400ºC, que consiste en átomos de cobre en los vértices de los cubos y átomos de oro en los centros de las caras de los cubos. Por encima de esa temperatura la estructura está desordenada. Determínese las máximas reflexiones no comunes a ambas estructuras en un diagrama de difracción de rayos X. 4) En un diagrama de polvo de rayos X de una sustancia cúbica, obtenido con la radiación k α del cobre (λ = nm) aparecen líneas para ángulos de Bragg de:1.3, 14.1, 0., 4.0, 5.1, 9.3, 3., Asignar índices a estas líneas. Decidir si es cúbica simple, centrada en el cuerpo o en las caras y calcular la constante de red. 5) Calcular el factor de estructura (S G ) del diamante si se considera como una celda unidad una celda cúbica simple, la base de esta estructura es de ocho átomos. Encontrar, si los hay, los ceros del factor de estructura. 6) Determinar el factor de forma atómica (f) cuando la distribución de electrones en el átomo es esféricamente simétrica. Calcular el valor de f para radiación sin cambio de dirección. 7) Determinar la distancia L a la que hay que colocar un cristal de Au de la placa fotográfica para obtener el patrón de difracción mostrado. Considérese la red fcc del Au como una sc con base tetraatómica: a = 4.08 amstrongs, OA = 50.0 mm, OB = 58.0 mm, OC = 81.5 mm. Plano en la placa fotográfica:

3 B A A C O C A A B 3

4 TEMA 3 ENLACE CRISTALINO. 1) Considérese una fila con N iones de carga ±q alternante con una energía potencial repulsiva entre vecinos más próximos de A/R n. Demostrar que a la distancia de equilibrio: Nq U(R 0 ) = ln (1 4πε R ) n ) Un conjunto de funciones de onda, normalizadas y mutuamente ortogonales, del estado p para un átomo pueden escribirse de la forma p x = x f(r); p y = y f(r); p z = z f(r). Considerando la combinación lineal de la función de onda p: ψ= a x p x + a y p y + a z p z, encontrar cuatro conjuntos de coeficientes (a x, a y, a z ) que den funciones de onda normalizadas del estado p, con lóbulos apuntando hacia los vértices de un tetraedro regular. 3) Considérese la combinación lineal φ= bs + cψ, donde ψ es cualquiera de la d funciones de onda del problema anterior, y s una función de onda del estado s, normalizada y ortogonal a p x, p y, p z. Encontrar los valores de b y c que hagan que las cuatro funciones de onda φ resultantes ortogonales entre sí y normalizadas. Escribir cuatro funciones de onda φ en términos de p x, p y, p z y s (estos son los híbridos sp 3 ). 4) Utilizando r ρ U ( r) = λe como potencial repulsivo entre átomos a distancia r y r 0 =3.147 Å, B 0 = N/m, siendo respectivamente r 0 y B 0 la distancia entre átomos vecinos más próximos y el módulo de compresibilidad en equilibrio. Calcular la energía de cohesión del KCl con la estructura cúbica (ZnS). Compararla con el valor que se obtendría si se calcula en la estructura ClNa (Constantes de Madelung, α fcc 1.75, α diamante 1.64). 5) La energía de red de un cristal de ClNa es 6 ev por par de iones Na + Cl -. La energía de ionización del Na es 5 ev y la afinidad electrónicadel Cl es 3.75 ev. Despreciando la energía de repulsión, calcular el espaciado interatómico del ClNa. 6) La energía potencial de un par de átomos en un cristal de estructura ClCs es de la forma A/r 9 -B/r cuando la separación es r. La separación en equilibrio es 0.8 nm y la energía de disociación J. Calcular A, B yb el módulo de compresibilidad por par de átomos. Calcular la presión que se necesitaría para reducir el espaciado interatómico en un 5%. 7) El siguiente es un modelo cuántico sencillo de la interacción dipolo- dipolo. Considerar dos osciladores lineales idénticos 1 y a distancia R con cargas 4

5 puntuales ±Ze y con elongaciones x 1 y x en la dirección x. Construir el Hamiltoniano y encontrar en la aproximación x 1, x << R, las frecuencias propias de los osciladores acoplados. Verificar que entonces la energía del punto cero decrece en una cantidad proporcional a 1/R 6. 5

6 TEMAS IV Y V. DINÁMICA DE REDES Y PRODPIEDADES TÉRMICAS RETICULARES. 1) Demostrar que la siguiente suma de red R e ikr = Nδ siendo N el número de puntos de red y k cualquier vector de onda que verifique las condiciones de contorno periódicas. K,0 ) Calcúlese el momento lineal total de un cristal (unidimensional) de N átomos de masa m en el que hay excitado un modo de vector de onda k. 3) Encontrar la relación de dispersión de un cristal bidimensional monoatómico de red cuadrada con interacción entre vecinos más próximos. 4) Considerar un sólido tridimensional isótropo para el que se admite la relación de dispersión ω = sin(ka / ) en todas direcciones. Si las velocidades de ω m propagación de las onda longitudinales y transversales son muy próximas, probar que la densidad de estados total en frecuencia es: g( ω ) = 1 arcsin( ω ) ω m 3 π a ω 1 ( ) ω m ω m 0.5 5) Probar que la ley de dispersión de una cadena lineal monoatómica con interacción hasta los vecinos p-ésimos es: Analizar los casos límite. p ω = c n= 1 n sin ( nka ) n 0.5 6) Calcular La energía del punto cero de un cristal a partir del modelo de Debye. Estimar dicho valor para el helio sólido, suponiendo una temperatura de Debye de 4 K (valor comparable al de otros gases nobles). 6

7 7) Encontrar la dependencia con la temperatura del calor específico de un cristal bidimensional a bajas temperaturas (T 0). 8) El criterio de Lindeman sugiere que la mayor parte de los metales se funden cuando la amplitud cuadrática media de vibración de sus átomos, medida en unidades de distancia interatómica, excede un cierto valor crítico. Utilizando un modelo de Debye, estúdiese la validez de este criterio para los metales cúbicos centrados, en los casos siguientes: Cu Au Al Ni Pd a(å) T PF (K) θ D (K) Masa Atómica ) La θ D de Debye del diamante es del orden de 000 K Calcular la relación entre le conductividad térmica a 50 K y a 4 K, suponiendo que la difusión de los bordes es la dominante en ambos casos. Sabiendo además que la densidad d= Kg/m 3, P atómico =1 y a=0.15 nm, calcular la velocidad del sonido y hacer una estimación de la longitud de onda fonónica dominante a 300 K. 10) Estimar la importancia relativa de los procesos U para la resistividad térmica a 100 K y 0 K, para un cristal θ D =300 K. 7

8 TEMA VI. GAS DE FERMI DE ELECTRONES LIBRES EN METALES. 1) Suponer que el Na tiene una expansión térmica lineal entre 0 K y 300 K de K -1. Cuál es el cambio porcentual entre esas temperaturas de ε F, T F, v F y k F?. A 300 K cuántos y que fracción de los electrones están por encima de ε F?. ) Sea un metal en el que los iones positivos se reemplazan por una distribución uniforme de carga positiva que neutraliza los electrones libres. Supóngase una perturbación en la carga electrónica que produce un campo eléctrico E. a) Despreciando el efecto de las colisiones y linealizando la ecuación de continuidad, demostrar que la ecuación de dicha perturbación es la de un MAS de frecuencia ω p. b) Es lógico despreciar las colisiones, dado el valor de ω p. 3) Un conductor orgánico resulta tener una frecuencia de plasma ω p = s - 1, obtenida a partir de estudios ópticos, y τ = s a temperatura ambiente. Calcular la conductividad eléctrica. 4) A temperatura T 0 el calor específico de un gas de electrones libres supera al calor específico de la red?. Expresar esta temperatura en función de θ D. 5) Determínese en un modelo de electrones libres el desplazamiento de la esfera de Fermi cuando se aplica un campo eléctrico de 500 V/cm en una muestra de cobre cuyo tiempo de relajación es de s. 6) Con objeto de observar la resonancia ciclotrón de los electrones libres en el Cu, qué campo magnético se debe usar si tu aparato de microondas opera a 30 Hz?. Cuál es el valor de ω c τ?. 7) El átomo de 3 He tiene spin ½. La densidad del 3 He líquido es de g/cm 3 cerca del cero absoluto. Calcular la energía y la temperatura de Fermi. 8

9 TEMA VII. BANDAS DE ENERGÍA. 1) Utilizando la aproximación de electrones libres, determínese el número de electrones libres por átomo que hay en un cristal cuando la esfera de Fermi es tangente a la PZB en las estructuras sc, fcc y bcc. ) Determinar la anchura de los dos primeros intervalos de energía prohibida en la aproximación de electrones cuasilibres para un potencial unidimensional en forma de escalón de amplitud 1eV y anchura 4 Å. 3) Sea un cristal unidimensional de parámetro de red a = π Å y supongamos que el potencial creado por los iones puede expresarse por U(x) = 0. cos(x), donde x se mide en Å y U en ev. a) Determinar la red recíproca del cristal. b) Suponiendo que el potencial es pequeño, determinar el intervalo prohibido de energías. c) determinar la función de onda de un electrón cuyo momento cristalino es k = 1 Å -1. 4) El potencial periódico de un cristal bidimensional puede expresarse de forma aproximada por U(x,y) = 0.6 cos(πx) +0.6 sen (πx), donde x e y están en Å y en ev. a) Determinar la simetría de celda y los parámetros cristalinos correspondientes. b) En la aproximación de electrones cuasilibres, hacer un esquema de la banda de energía más baja a lo largo de las direcciones [10] y [11], hasta volver al origen de la zona de Brillouin. Calcular las brechas de energía en las fronteras de zona correspondientes. 5) El modelo de Kronig-Penney es un modelo unidimensional resoluble para el problema de un electrón en un potencial periódico. El potencial supuesto para los átomos es: a = cte de red V 0 b a>>b a distancia De resolver la ecuación de Schrödinguer para el electrón se encuentra para la relación de dispersión ε = ε(k): cos(ka) = cos(αa) + P sen(αa)/ αa donde α =(mε/h) 1/ y P = bv 0 m a/h. Sacar todas las consecuencias posibles de la expresión anterior. Por ejenplo: 9

10 a) Hay bandas de energía?, hay bandas prohibidas? b) Qué pasa para P tendiendo a 0 y P tendiendo a infinito?, qué significa? c) Qué se puede decir de la velocidad de los electrones?, es v = 0 en los bordes de zona?. d) Qué influencia tiene a?. 6) Los metales alcalinos tienen iones +e con la configuración, muy estable de los gases nobles (ejemplos Li: 1s 1 s 1, Na: [Ne] 3s 1, Cs: [Xe] 6s 1 ), por fuera de los cuales se mueve un electrón de conducción por átomo. Tratando a estos electrones como libres, determinar el radio de la superficie de Fermi y compararla con el tamaño de la PZB. La estructura es bcc. Razonar de ahí por qué los metales alcalinos se ajustan bien, como vimos, al modelo de electrones libres. Datos: Li: a = 3.49 Å, Na: a = 4. Å y Cs: a = 6.05 Å 10

11 TEMA VIII. DINÁMICA SEMICLÁSICA DE ELECTRONES BLOCH. 1) Considerar un cristal unidimensional para el que la energía varía con el vector de onda según la expresión: ε = ε 1 + ( ε - ε 1 ) sen (k x a/) Suponer un solo electrón en esta banda y sin sufrir dispersión. a) Discutir el comportamiento de la masa efectiva, la velocidad electrónica y la posición en el espacio real bajo la influencia de un campo eléctrico uniforme. b) Si a = 1 Å, cuánto tiempo se debe aplicar un campo de 100 V/m para que el electrón ejecute una oscilación completa en el espacio?. Si la banda tiene una anchura de 1 ev, qué distancia se recorre en esa oscilación?. ) Considerar un electrón con la energía de Fermi del Na moviéndose en el plano xy. Probar que una inducción magnética B z = 1T prducirá una resonancia ciclotrón con un radio de órbita de 6 µm. Cómo está relacionada el área en el espacio real con el área en el espacio k?. 3) La superficie de fermi de un sólido cúbico tiene por ecuación: ε = h m ( k + k k ) F x y + Determínese la relación entre las tres componentes a x, a y, a z de la aceleración de un electrón en la superficie de Fermi cuando se aplica un campo eléctrico según la dirección (111). Determínese la trayectoria que sigue un electrón del cristal en el espacio k cuando se aplica un campo B. 4) En el Si, cerca del borde de la banda de conducción, las superficies equienergéticas en el espacio k son elipsoides de ecuación: ε h h ( k x + k ) + = ε 0 + y k z m t m l para determinar m t y m l, es decir, lo forma de los elipsoides, se realizan experimentos de resonancia ciclotrón aplicando un campo magnético B en el plano xz formando un ángulo α con el eje z. Encuéntrese la relación entre la masa ciclotrónica m c *, el ángulo α y las masas m t y m l. 5) Explicar por que hay sólo dos picos electrónicos de resonancia ciclotrón si se sabe que el Si presenta seis bolsillos elipsoidales de electrones en la banda de conducción. Determinar las masas efectivas del Si. z 11

Física del Estado Sólido Práctico 2 Red Recíproca y Difracción de Rayos X

Física del Estado Sólido Práctico 2 Red Recíproca y Difracción de Rayos X Física del Estado Sólido Práctico Red Recíproca y Difracción de Rayos X 1. Considere una red de Bravais con los tres vectores primitivos { a 1, a, a 3 } (figura 1). Un plano de una red cristalina queda

Más detalles

Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores

Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores Física del Estado Sólido Práctico 8 Estructura Electrónica de Bandas y Semiconductores 1. Origen de las Bandas de Energía Considere un potencial cristalino unidimensional y sinusoidal U(x) = U 0 cos( π

Más detalles

MATERIA CONDENSADA. Práctica 6: Electrones en un potencial periódico Teoría de bandas

MATERIA CONDENSADA. Práctica 6: Electrones en un potencial periódico Teoría de bandas MATERIA CONDENSADA Práctica 6: Electrones en un potencial periódico Teoría de bandas Potencial periódico débil NFE (Nearly free electrons) 1- Modelo unidimensional Analizar la estructura de bandas de un

Más detalles

Hoja de Problemas 6. Moléculas y Sólidos.

Hoja de Problemas 6. Moléculas y Sólidos. Hoja de Problemas 6. Moléculas y Sólidos. Fundamentos de Física III. Grado en Física. Curso 2015/2016. Grupo 516. UAM. 13-04-2016 Problema 1 La separación de equilibrio de los iones de K + y Cl en el KCl

Más detalles

Problemas resueltos de Física de los sólidos

Problemas resueltos de Física de los sólidos Problemas resueltos de Física de los sólidos Editorial: Paraninfo Autor: JUAN JOSÉ MELÉNDEZ MARTÍNEZ Clasificación: Universidad > Física Tamaño: 17 x 24 cm. Páginas: 320 ISBN 13: 9788428339353 ISBN 10:

Más detalles

Estructura cristalina. Materiales para ingeniería en energía

Estructura cristalina. Materiales para ingeniería en energía Estructura cristalina Materiales para ingeniería en energía Definiciones Además de la composición, otro aspecto fundamental que gobierna las propiedades físicas y químicas de los sólidos es la organización

Más detalles

Síntesis y Caracterización Estructural de los Materiales. Grado en Física.

Síntesis y Caracterización Estructural de los Materiales. Grado en Física. El hierro (Fe) sufre una tranformación polimórfica a 912 ºC, pasando de una estructura cubica centrada en el cuerpo (I o bcc) a una estructura cubica centrada en todas las caras (F o fcc). Sabiendo que

Más detalles

Contenido. 5. Estructura cristalina. Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51

Contenido. 5. Estructura cristalina. Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51 Contenido 5. Estructura cristalina 1 / Omar De la Peña-Seaman IFUAP Física del Estado Sólido Maestría (Física) 1/51 51 Contenido: Tema 05 5. Estructura cristalina 5.1 Arreglo periódico de átomos: bases,

Más detalles

Tema 9. Tema 9: Estados de agregación de la materia. 9.1 Características generales de los estados de agregación LARGO ALCANCE ORDEN ALCANCE

Tema 9. Tema 9: Estados de agregación de la materia. 9.1 Características generales de los estados de agregación LARGO ALCANCE ORDEN ALCANCE Tema 9: Estados de agregación de la materia 9.1 Características generales de los estados de agregación Desde el punto de vista microscópico: 9.1 Características generales 9.2 Sólidos: estructura cristalina

Más detalles

Física del Estado Sólido I. Tema 2: Enlace y propiedades de los materiales

Física del Estado Sólido I. Tema 2: Enlace y propiedades de los materiales Física del Estado Sólido I Tema : Enlace y propiedades de los materiales Tema : Enlace y propiedades de los materiales Introducción Qué interacción es responsable de la cohesión en los cristales? - La

Más detalles

Física Cuántica. Sólidos II. Requerimientos previos. José Manuel López y Luis Enrique González. Universidad de Valladolid. Curso p.

Física Cuántica. Sólidos II. Requerimientos previos. José Manuel López y Luis Enrique González. Universidad de Valladolid. Curso p. Física Cuántica Sólidos II. Requerimientos previos. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/20 Red cristalina El primer dibujo de un cristal apareció en

Más detalles

Tema 2: Enlace y propiedades de los materiales

Tema 2: Enlace y propiedades de los materiales En la mayoría de moléculas, los enlaces entre los átomos que las constituyen no es mediante la interacción coulombiana que hemos analizado en el caso del enlace iónico. Se necesita tener en cuenta el llamado

Más detalles

TEMA 8: SÓLIDOS INORGÁNICOS. 2.- Redes bidimensionales y tridimensionales

TEMA 8: SÓLIDOS INORGÁNICOS. 2.- Redes bidimensionales y tridimensionales TEMA 8: SÓLIDOS INORGÁNICOS 1.- Tipos de sólidos 2.- Redes bidimensionales y tridimensionales 3.- Celda unidad y sus parámetros: - nº de átomos / celda - nº de coordinación (NC) - fracción de volumen ocupado

Más detalles

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display ESTRUCTURAS CRISTALINAS

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display ESTRUCTURAS CRISTALINAS ESTRUCTURAS CRISTALINAS PREGUNTAS SOBRE LA ESTRUCTURA DE MATERIALES SOLIDOS Cuál es la distribución de los átomos en los materiales sólidos? Qué es polimorfismo y alotropía en materiales? Cómo se describen

Más detalles

Electrones en un potencial periódico - Teoría de bandas

Electrones en un potencial periódico - Teoría de bandas Electrones en un potencial periódico - Teoría de bandas g(e) g(e) Desde un punto de vista fundamental, se debe resolver el siguiente problema para obtener los niveles de energía de los electrones en un

Más detalles

CIENCIA E INGENIERÍA DE LOS MATERIALES

CIENCIA E INGENIERÍA DE LOS MATERIALES CIENCIA E INGENIERÍA DE LOS MATERIALES ARREGLOS ATÓMICOS E IÓNICOS En los distintos estados de la materia podemos encontrar 4 clases de arreglos atómicos o iónicos: Sin orden Orden de corto alcance Orden

Más detalles

TEMA 7 EJERCICIOS ENLACE METÁLICO

TEMA 7 EJERCICIOS ENLACE METÁLICO TEMA 7 1. Determine el FEA de la red alfa del Po (M = 209 g/mol), que es el único ejemplo conocido de red cúbica simple (SC) formada por átomos iguales. Finalmente, determine su densidad teórica (experimental

Más detalles

Electrones en un potencial periódico - Teoría de bandas

Electrones en un potencial periódico - Teoría de bandas Electrones en un potencial periódico - Teoría de bandas g(e) g(e) Desde un punto de vista fundamental, se debe resolver el siguiente problema para obtener los niveles de energía de los electrones en un

Más detalles

Sólidos ENLACE IONICO

Sólidos ENLACE IONICO Zonas de Brillouin Sólidos NLAC IONICO nlace iónico jemplo: Na + Cl -. structura cristalina fcc con una base de un ion (Na + ) en (,,) y el otro (Cl - ) en el centro del cubo (1/,1/,1/)a. Madelung propone

Más detalles

Tema 1: Electrones, energía, átomos y sólidos

Tema 1: Electrones, energía, átomos y sólidos Tema 1: Electrones, energía, átomos y sólidos K. Kano: cap. 1 y cap. El modelo de Bohr Mecánica cuántica. Dualidad onda corpúsculo. Ecuación de Schrödinger en un átomo hidrogenoide. Números cuánticos Formación

Más detalles

Física del Estado Sólido Práctico 5 Vibraciones de los Cristales

Física del Estado Sólido Práctico 5 Vibraciones de los Cristales Física del Estado Sólido Práctico 5 Vibraciones de los Cristales 1. Medición de las Constantes de Fuerza Considere una red lineal monoatómica, siendo M la masa de cada átomo y a la distancia entre ellos.

Más detalles

Sólidos covalentes. Orbitales σ

Sólidos covalentes. Orbitales σ Tipos de sólidos Sólidos covalentes La unión covalente de A y B implica la promoción de electrones de ambos partners a orbitales moleculares. Los orbitales moleculares son soluciones espaciales de la ecuación

Más detalles

Contenidos Programáticos Programas de Pregrado CIENCIAS BÁSICAS FACULTAD: FÍSICA PROGRAMA: FÍSICA Y GEOLOGÍA DEPARTAMENTO DE: ÁREA:

Contenidos Programáticos Programas de Pregrado CIENCIAS BÁSICAS FACULTAD: FÍSICA PROGRAMA: FÍSICA Y GEOLOGÍA DEPARTAMENTO DE: ÁREA: Página 1 de 4 CIENCIAS BÁSICAS FACULTAD: FÍSICA PROGRAMA: FÍSICA Y GEOLOGÍA PARTAMENTO : CURSO : ESTADO SÓLIDO CÓDIGO: 157216 ÁREA: REQUISITOS: 157239 CORREQUISITO: CRÉDITOS: 4 TIPO CURSO: TEÓRICO JUSTIFICACIÓN

Más detalles

MATERIA CONDENSADA. Práctica 4: Vibraciones de la red - Fonones

MATERIA CONDENSADA. Práctica 4: Vibraciones de la red - Fonones MATERIA CONDENSADA Práctica 4: Vibraciones de la red - Fonones 1- Estudiar la dinámica de la red de la cadena lineal diatómica de la Figura. Examinar en particular los modos en el centro y borde de la

Más detalles

3. Cual es el marco conceptual y las teorías que se utilizan para el entendimiento de las propiedades y fenómenos físicos de los materiales?

3. Cual es el marco conceptual y las teorías que se utilizan para el entendimiento de las propiedades y fenómenos físicos de los materiales? Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Física Estado Sólido CNF-422 Primer Taller del Semestre 2010-1 Los talleres del curso de Estado Sólido tienen como objetivo

Más detalles

Tipos de sólidos. Qué produce la cohesión de un sólido?

Tipos de sólidos. Qué produce la cohesión de un sólido? Tipos de sólidos Tipos de sólidos Qué produce la cohesión de un sólido? El origen de la cohesión está en las fuerzas electrostáticas entre las partículas subatómicas cargadas presentes en el sólido: electrones

Más detalles

Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II

Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II Relación de Ejercicios Propuestos FÍSICA DEL ESTADO SÓLIDO II 7 Entregable 1.- Considerar una cadena monoatómica lineal de constante de red a, cuya relación de dispersión viene dada por: C [1 cos(ka)]

Más detalles

FACULTAD DE CIENCIAS GRADO DE FÍSICA. Curso 2015/16. Asignatura: FÍSICA DEL ESTADO SÓLIDO DATOS DE LA ASIGNATURA

FACULTAD DE CIENCIAS GRADO DE FÍSICA. Curso 2015/16. Asignatura: FÍSICA DEL ESTADO SÓLIDO DATOS DE LA ASIGNATURA FACULTAD DE CIENCIAS GRADO DE FÍSICA Asignatura: DATOS DE LA ASIGNATURA Denominación: Código: 100511 Plan de estudios: GRADO DE FÍSICA Curso: 4 Denominación del módulo al que pertenece: ESTRUCTURA DE LA

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

DIFRACCIÓN DE RAYOS X

DIFRACCIÓN DE RAYOS X DIFRACCIÓN DE RAYOS X Difracción La difracción es el resultado de la dispersión de la radiación producida por una disposición regular de los centros de dispersión, cuyo espaciado es aproximadamente igual

Más detalles

Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s

Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s Redes Cristalinas Ciencia de Materiales Ing. en Mecatrónica Otoño 2009 Lilia Meza Montes-IFUAP Diagrama de correlación de enlaces moleculares Antienlace : rojo 1s similar a 2s Sólidos cristalinos y amorfos

Más detalles

FACULTAD DE CIENCIAS GRADO DE FÍSICA. Curso 2016/17. Asignatura: FÍSICA DEL ESTADO SÓLIDO DATOS DE LA ASIGNATURA

FACULTAD DE CIENCIAS GRADO DE FÍSICA. Curso 2016/17. Asignatura: FÍSICA DEL ESTADO SÓLIDO DATOS DE LA ASIGNATURA FACULTAD DE CIENCIAS GRADO DE FÍSICA Asignatura: DATOS DE LA ASIGNATURA Denominación: Código: 100511 Plan de estudios: GRADO DE FÍSICA Curso: 4 Denominación del módulo al que pertenece: ESTRUCTURA DE LA

Más detalles

FES. Calor específico asociado a las vibraciones reticulares

FES. Calor específico asociado a las vibraciones reticulares Calcularemos en esta sección el calo específico reticular C v, término más fácil de calcular si bien experimentalmente el dato que se mide es C p La relación entre ambos calores específicos viene dada

Más detalles

Comportamiento Electrónico de los Materiales. Tema 2. Electrones en Sólidos. Teoría de Bandas de Energía.

Comportamiento Electrónico de los Materiales. Tema 2. Electrones en Sólidos. Teoría de Bandas de Energía. Comportamiento Electrónico de los Materiales Tema. Electrones en Sólidos. Teoría de Bandas de Energía. .1 Teoría de Bandas de Energía..1.1 Partículas en interacción con objetos múltiples. Molécula de Hidrógeno.

Más detalles

SÓLIDOS LÍQUIDOS - GASES

SÓLIDOS LÍQUIDOS - GASES Cristalografía 1 Fases Introducción Definición: n: porción de la materia con propiedades homogéneas La materia puede encontrarse en un gran número de fases. Las más conocidas están asociadas a sus estados

Más detalles

Los pasos que se dan son:

Los pasos que se dan son: Hasta ahora hemos admitido que podemos trabajar con la red de cores de nuestro sólido usando una aproximación clásica lo que nos ha permitido determinar los «modos normales de vibración» en el sentido

Más detalles

Generalidades del Estado Sólido

Generalidades del Estado Sólido Universidad de Antioquia Instituto de Física Primer Taller de Estado Sólido, CNF-422 Este taller tiene como objetivo que el estudiante haga un recorrido por los diferentes conceptos para preparar el primer

Más detalles

Unidad 2: Estado Sólido

Unidad 2: Estado Sólido Unidad 2: Estado Sólido Redes de Bravais P = primitiva (sólo hay un punto de red dentro la celdilla, uno por vértice repartido en ocho vértices, 8/8=1) C = centrada en las caras perpendiculares al eje

Más detalles

Enlace químico Química Inorgánica I

Enlace químico Química Inorgánica I Enlace químico Química Inorgánica I Es un conjunto de átomos cercanos los cuáles forman una red, la cuál puede ser ordenada o desordenada. Metales Átomos que se mantienen juntos con los electrones deslocalizados.

Más detalles

22/03/2012. Energía de cohesión en Cristales

22/03/2012. Energía de cohesión en Cristales 22/03/2012 Energía de cohesión en Cristales 1 Alcalinos Alcalinos térreos Metales Nobles (Cu,Ag,Au) Halógenos Gases nobles Metales de transición Post trans. Tierras raras Clasificación: - Basada en las

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

uco.es/grados GUÍA DOCENTE DENOMINACIÓN DE LA ASIGNATURA DATOS DEL PROFESORADO REQUISITOS Y RECOMENDACIONES COMPETENCIAS OBJETIVOS

uco.es/grados GUÍA DOCENTE DENOMINACIÓN DE LA ASIGNATURA DATOS DEL PROFESORADO REQUISITOS Y RECOMENDACIONES COMPETENCIAS OBJETIVOS Curso 7/8 DENOMINACIÓN DE LA ASIGNATURA Denominación: Código: 5 Plan de estudios: GRADO DE FÍSICA Curso: 4 Denominación del módulo al que pertenece: ESTRUCTURA DE LA MATERIA Materia: ESTADO SÓLIDO Carácter:

Más detalles

Tema Tema 18 (I) Estados de agregación de la materia El estado sólido Estructura cristalina

Tema Tema 18 (I) Estados de agregación de la materia El estado sólido Estructura cristalina Tema 18 (I) Estados de agregación de la materia 18.1 El estado sólido 18.2 Estructura cristalina 18.3 Tipos de cristales 18.4 El estado líquido 18.5 Propiedades particulares del agua 1 2 18.1 El estado

Más detalles

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II PROBLEMAS DE FUNDAMENTOS DE FÍSICA II Grupo 511. CURSO 2016/2017. Vectores. Vectores y Campo Eléctrico V.1.-Dados los vectores A = 3u x + 4 u y 5 u z; y B = u x + u y + 2 u z. Encontrar módulo, dirección

Más detalles

Física en las moléculas

Física en las moléculas Física en las moléculas La distancia entre los 2 átomos de Cs que forman la molécula de Cs 2 es de 0.447 nm. Si la masa de cada átomo de Cs es de 2.21 10 25 Kg. a) Calcular el momento de inercia del sistema

Más detalles

Capítulo 1 Marco teórico

Capítulo 1 Marco teórico Capítulo 1 Marco teórico 1.1 Onda de Densidad de Carga A bajas temperaturas los metales pueden sufrir un cambio de fase, una transición que los lleva a un nuevo orden. Metales como el plomo o aluminio

Más detalles

Introducción a la Ciencia de Materiales. M. Bizarro

Introducción a la Ciencia de Materiales. M. Bizarro Introducción a la Ciencia de Materiales M. Bizarro Orden en la materia Sin orden: Gases monoatómicos Orden de corto alcance: Materiales Amorfos Orden de largo alcance Materiales cristalinos Cristales líquidos

Más detalles

red directa y red recíproca

red directa y red recíproca Más sobre redes: red directa y red recíproca Cualquier plano puede caracterizarse por un vector perpendicular a él ( hkl ) Familia de planos hkl con distancia interplanar d hkl Tomemos hkl = 1/ d hkl hkl

Más detalles

QUÍMICA - 2º BACHILLERATO ENLACE QUÍMICO RESUMEN CONCEPTO DE ENLACE QUÍMICO

QUÍMICA - 2º BACHILLERATO ENLACE QUÍMICO RESUMEN CONCEPTO DE ENLACE QUÍMICO Javier Robledano Arillo Química 2º Bachillerato Enlace Químico - 1 QUÍMICA - 2º BACHILLERATO ENLACE QUÍMICO RESUMEN CONCEPTO DE ENLACE QUÍMICO 1. Enlace químico: conjunto de fuerzas que mantienen unidos

Más detalles

Es un conjunto de átomos cercanos los cuáles forman una red, la cuál puede ser ordenada o desordenada.

Es un conjunto de átomos cercanos los cuáles forman una red, la cuál puede ser ordenada o desordenada. Es un conjunto de átomos cercanos los cuáles forman una red, la cuál puede ser ordenada o desordenada. Metales Átomos que se mantienen juntos con los electrones deslocalizados. (Materiales puros o aleaciones)

Más detalles

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas.

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas. Física Teórica 1 Guia 5 - Ondas 1 cuat. 2014 Ondas electromagnéticas. 1. (Análisis de las experiencias de Wiener) En 1890, Wiener realizó tres experiencias para demostrar la existencia de ondas electromagnéticas

Más detalles

Niveles Electrónicos en un Potencial Periódico

Niveles Electrónicos en un Potencial Periódico Niveles Electrónicos en un Potencial Periódico Dr. Andres Ozols aozols@fi.uba.ar Facultad de Ingeniería de la Universidad de Buenos Aires 2009 Dr. A. Ozols 1 TEMARIO Niveles Electrónicos en un Potencial

Más detalles

Física cuántica I Grupo C 2015/16 Examen final 22 de junio de 2016

Física cuántica I Grupo C 2015/16 Examen final 22 de junio de 2016 UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FÍSICA TEÓRICA I GRADO EN FÍSICA Física cuántica I Grupo C 15/1 Examen final de junio de 1 Nombre: Soluciones Firma: Problema 1 (1 punto). Un haz de radiación

Más detalles

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II

4.- PROPIEDADES ELÉCTRICAS DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4.- DE LOS SÓLIDOS FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades eléctricas de los sólidos Conductividad eléctrica. Metales, semiconductores y aislantes. Semiconductores intrínsecos y extrínsecos. Dieléctricos.

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones

Más detalles

Ing. Fredy Velázquez Soto

Ing. Fredy Velázquez Soto Ing. Fredy Velázquez Soto TIPOS DE SÓLIDOS Sólidos cristalinos Los átomos, iones o moléculas se empaquetan en un arreglo ordenado Sólidos covalentes ( diamante, cristales de cuarzo), sólidos metálicos,

Más detalles

ÍNDICE El movimiento del péndulo físico Objetivos Objetivos parciales. Hitos... 2

ÍNDICE El movimiento del péndulo físico Objetivos Objetivos parciales. Hitos... 2 ÍNDICE 1 Proyectos de Computación Algunos ejemplos de posibles proyectos para la asignatura de Computación. Los objetivos nales y parciales se indican a modo de ejemplo y se pueden redenir, modicar etc.

Más detalles

2.- PROPIEDADES TÉRMICAS FÍSICA DEL ESTADO SÓLIDO II

2.- PROPIEDADES TÉRMICAS FÍSICA DEL ESTADO SÓLIDO II 2.- FÍSICA DEL ESTADO SÓLIDO II 2. Propiedades térmicas Capacidad Calorífica. Ley de Dulong y Petit Modelos clásicos de Debye y Einstein. Dilatación térmica. Conductividad térmica. Procesos de interacción

Más detalles

Caracterización Estructural de Materiales por Difracción de Rayos X

Caracterización Estructural de Materiales por Difracción de Rayos X Grado C. Físicas SÍNTESIS Y DETERMINACIÓN ESTRUCTURAL DE LOS MATERIALES Caracterización Estructural de Materiales por Difracción de Rayos X J. Medina UNIVERSIDAD DE VALLADOLID Departamento de Física de

Más detalles

TEMA 4 INTRODUCCIÓN A LA FÍSICA DEL ESTADO SÓLIDO

TEMA 4 INTRODUCCIÓN A LA FÍSICA DEL ESTADO SÓLIDO TEMA 4 INTRODUCCIÓN A LA FÍSICA DEL ESTADO SÓLIDO 1. ESTRUCTURA DEL ESTADO SÓLIDO. TIPOS DE SÓLIDOS CRISTALINOS.1. Tipos de enlace. Sólidos cristalinos: propiedades y ejemplos 3. BANDAS DE ENERGÍA EN LOS

Más detalles

Empaquetamiento compacto

Empaquetamiento compacto Empaquetamiento compacto Energía y empaquetamiento No denso, empaquetamiento aleatorio Energy Distancia del enlace energía de enlace Denso, empaquetamiento ordenado Energy distancia del enlace r Energía

Más detalles

UCM - Mec. Cuan. Avan. 13/14

UCM - Mec. Cuan. Avan. 13/14 UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FISICA TEORICA I Mecánica cuántica avanzada - Curso 013/14 - Problemas Perturbaciones dependientes del tiempo Problema 1. Un campo eléctrico PROBABILIDAD

Más detalles

Centro de Preparación de Ingenieros

Centro de Preparación de Ingenieros C) Ríos Rosas nº 34, 8003 Madrid Teléfono: 91 546139-915593300 www.academiacpi.es Curso: 017-018 Tema 1: ANÁLISIS DIMENSIONAL VÍDEO 1: (1.1, 1., 1.3.) ECUACIÓN DE DIMENSIONES (Duración 9,40 m) PROBLEMA

Más detalles

Fuerzas intermoleculares y líquidos y sólidos

Fuerzas intermoleculares y líquidos y sólidos Fuerzas intermoleculares y líquidos y sólidos Capítulo 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Una fase es la parte homógenea de un sistema en contacto

Más detalles

PROBLEMAS. ÁTOMOS Y SUS ENLACES

PROBLEMAS. ÁTOMOS Y SUS ENLACES PROBLEMAS. ÁTOMOS Y SUS ENLACES 1. Por qué el modelo nuclear del átomo permite explicar el resultado de la experiencia de las partículas que rebotan en la lámina de oro? 2. El espesor de la lámina de oro

Más detalles

Caracterización Estructural de Minerales por Difracción de Rayos X

Caracterización Estructural de Minerales por Difracción de Rayos X Máster Universitario en Profesor de Enseñanza Secundaria Obligatoria, Bachillerato, Formación Profesional y Enseñanza de Idiomas Caracterización Estructural de Minerales por Difracción de Rayos X J. Medina

Más detalles

Serie de problemas para el curso. Química Cuantica I

Serie de problemas para el curso. Química Cuantica I erie de problemas para el curso Química Cuantica I Matemáticas Tema Resuelva todos los problemas del capítulo de la referencia B6 y compare sus resultados con las soluciones que se incluyen al final de

Más detalles

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

2.- PROPIEDADES TÉRMICAS FÍSICA DEL ESTADO SÓLIDO II

2.- PROPIEDADES TÉRMICAS FÍSICA DEL ESTADO SÓLIDO II 2.- PROPIEDADES TÉRMICAS FÍSICA DEL ESTADO SÓLIDO II 2. Propiedades térmicas Capacidad Calorífica. Ley de Dulong y Petit Modelos clásicos de Debye y Einstein. Dilatación térmica. Conductividad térmica.

Más detalles

Enlace Químico: Compuestos Químicos

Enlace Químico: Compuestos Químicos Enlace Químico: Compuestos Químicos Contenidos Introducción. Enlace Iónico. Enlace Covalente. S 8 Enlace Metálico. Introducción. En general los objetos están formados por conjuntos de átomos iguales (elementos)

Más detalles

FIZ Física Contemporánea

FIZ Física Contemporánea FIZ1111 - Física Contemporánea Interrogación N o 3 17 de Junio de 2008, 18 a 20 hs Nombre completo: hrulefill Sección: centering Buenas Malas Blancas Nota Table 1. Instrucciones - Marque con X el casillero

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS FÍSICA DEL ESTADO SÓLIDO I Área a la que pertenece: Área de Formación Integral Profesional Horas teóricas: 5 Horas prácticas: 0 Créditos: 10 Clave: F0124 Asignaturas antecedentes y

Más detalles

FORMATO DE CONTENIDO DE CURSO

FORMATO DE CONTENIDO DE CURSO PÁGINA: 1 de 6 FACULTAD DE: CIENCIAS BÁSICAS PROGRAMA: DE FÍSICA Plan de Estudio 2015-2 1. IDENTIFICACIÓN DEL CURSO PLANEACIÓN DEL CONTENIDO DE CURSO NOMBRE : FÍSICA DEL ESTADO SÓLIDO CÓDIGO : 210300 SEMESTRE

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017 Juan P. Campillo Nicolás 3 de agosto de 07 . Gravitación.. Un satélite meteorológico de masa m = 680 kg describe una órbita circular a una altura h = 750 km sobre la superficie terrestre. a) Calcula el

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017 Juan P. Campillo Nicolás 2 de julio de 207 . Gravitación.. Un satélite de 900 kg describe una órbita circular de radio 3R Tierra. a) Calcula la aceleración del satélite en su órbita. b) Deduce y calcula

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA...C.P... QUÍMICA CUÁNTICA PRUEBA DE EVALUACIÓN A DISTANCIA Número de expediente 09534 09534 Química

Más detalles

FES. Vibraciones reticulares

FES. Vibraciones reticulares Vibraciones reticulares Los átomos en un sólido están oscilando en torno a sus posiciones de equilibrio con una amplitud que depende de la temperatura. Como hemos mencionado en el apartado previo estas

Más detalles

Física Examen final 15/04/11 OPCIÓN A

Física Examen final 15/04/11 OPCIÓN A Física Examen final 15/04/11 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre OPCIÓN A [6 Ptos.] 1. Una masa de 0,100 kg unida a un resorte de masa despreciable realiza oscilaciones alrededor

Más detalles

ÍNDICE GENERAL ÍN DI CE PRÓLOGO 17

ÍNDICE GENERAL ÍN DI CE PRÓLOGO 17 GENERAL ÍN PRÓLOGO 17 I. INTRODUCCIÓN A LA FÍSICA DEL ESTADO SÓLIDO 21 1.1. Introducción 21 1.2. Definición y breve historia de la Física del Estado Sólido 24 1.3. Estructura conceptual de la Física del

Más detalles

Fallos del modelo de sólido estático.

Fallos del modelo de sólido estático. Fallos del modelo de sólido estático. Hasta ahora hemos trabajado en un modelo de «sólido estático» en el que los iones permanecían inmóviles en sus posiciones de equilibrio, lo que nos ha permitido evaluar

Más detalles

TECNOLOGÍA DE MATERIALES SERIE DE EJERCICIOS No. 1 SEMESTRE

TECNOLOGÍA DE MATERIALES SERIE DE EJERCICIOS No. 1 SEMESTRE SERIE DE EJERCICIOS No. 1 SEMESTRE 2015-2 1.- Describa con sus propias palabras los siguientes modelos atómicos: a) Thomson b) Rutherford c) Bohr 2.- Determine la estructura cristalina (BCC o FCC) de los

Más detalles

DEPARTAMENTO DE TECNOLOGÍA Actividades complementarias Curso: 1º Bach. Profesor: José Jiménez R. Tema 12: Materiales Metálicos: Metales ferrosos

DEPARTAMENTO DE TECNOLOGÍA Actividades complementarias Curso: 1º Bach. Profesor: José Jiménez R. Tema 12: Materiales Metálicos: Metales ferrosos PARTAMENTO 1.- Determinar, en %, el factor de empaquetamiento de una: a) Red cúbica centrada en el cuerpo (BCC). b) Red cúbica centrada en las caras (FCC). 2.- El hierro a 20 ºC cristaliza en una red BCC

Más detalles

Las Ondas y la Luz. Las Ondas

Las Ondas y la Luz. Las Ondas Las Ondas Una onda consiste en la propagación de una perturbación física en un medio que puede ser material (aire, agua, tierra, etc) o inmaterial (vacío), según la cual existe transporte de energía, pero

Más detalles

Enlaces y Propiedades de Cristales con esos Enlaces

Enlaces y Propiedades de Cristales con esos Enlaces Enlaces y Propiedades de Cristales con esos Enlaces Enlaces Enlaces Primarios, participan directamente los electrones de valencia. El rol de estos electrones (ser cedidos, compartidos o captados) depende

Más detalles

EJERCICIOS TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES

EJERCICIOS TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES EJERCICIOS TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES Ejercicio 1 El aluminio cristaliza en el sistema cúbico centrado en las caras, tiene un radio atómico de 1,4 10-10 m y una masa atómica de 27. a)

Más detalles

4. Estructura atómica, enlaces y Ordenamiento atómico de los metales

4. Estructura atómica, enlaces y Ordenamiento atómico de los metales 4. Estructura atómica, enlaces y Ordenamiento atómico de los metales Atomo Unidad estructural básica de todos los materiales. En nuestro modelo, los átomos están constituidos por tres partículas subatómicas

Más detalles

π, los niveles de energía que existen y la degeneración, o número de

π, los niveles de energía que existen y la degeneración, o número de EXAMEN DE SEPTIEMBRE DE QUÍMICA FÍSICA (3º Curso de Químicas): 9/9/8. ) a) Que propiedades poseen las funciones propias de un operador hermítico. b) Indicar para una configuración π, los nieles de energía

Más detalles

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES PERIODO Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES El átomo: Toda la materia está compuesta por átomos y éstos por partículas

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

TEMA 5: INTROD. AL ESTADO SÓLIDO

TEMA 5: INTROD. AL ESTADO SÓLIDO 5.3 Electrones libres en metales: modelo de Drude Se pretende explicar las propiedades de los metales a partir de diferentes modelos (5.3: Drude y 5.4: bandas) Propiedades de los metales: Todos, excepto

Más detalles

Unidad 4 Enlace iónico y metálico

Unidad 4 Enlace iónico y metálico Evaluación unidad 4. Enlace iónico y metálico CRITERIOS DE EVALUACIÓN. Utilizar el modelo de enlace correspondiente para explicar la formación de moléculas, de cristales y estructuras macroscópicas, y

Más detalles

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA

IEO-394 Semiconductores. Juan E. Martínez P. Docente. UdeA IEO-394 Semiconductores Juan E. Martínez P. Docente. UdeA Bandas de Energía Y Corrientes de Portadores en Semiconductores. PARTICION DE LOS NIVELES DE ENERGIA A medida que se traen juntos N átomos Cada

Más detalles

Mecánica cuántica avanzada - Curso 2011/2012 Problemas - Hoja 2: Teoría de colisiones

Mecánica cuántica avanzada - Curso 2011/2012 Problemas - Hoja 2: Teoría de colisiones UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FÍSICA TEÓRICA I Mecánica cuántica avanzada - Curso 11/1 Problemas - Hoja : Teoría de colisiones 1. Se considera el potencial V (r) = V e αr, donde V y

Más detalles

Básicamente, el fenómeno de la difracción de rayos X (y. formulaciones equivalentes: La formulación de Bragg y la formulación de Laue (Von Laue).

Básicamente, el fenómeno de la difracción de rayos X (y. formulaciones equivalentes: La formulación de Bragg y la formulación de Laue (Von Laue). Determinación de estructuras cristalinas mediante difracción de Rayos X Para que la difracción de Rayos X sea observable, la longitud de onda de la radiación debe ser menor o del orden de las distancias

Más detalles

ENLACE ATÓMICO. Física del Estado Sólido. Facultad de Ingeniería Universidad de Buenos Aires Dr. Andrés Ozols. Enlace Atómico. Dr. A.

ENLACE ATÓMICO. Física del Estado Sólido. Facultad de Ingeniería Universidad de Buenos Aires Dr. Andrés Ozols. Enlace Atómico. Dr. A. Física del Estado Sólido ENLACE ATÓMICO Dr. Andrés Ozols Facultad de Ingeniería Universidad de Buenos Aires 2009 Dr. A. Ozols 1 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles