DOCUMENTO 2: DISTRIBUCIÓN DE PROBABILIDAD DISCRETA: LA DISTRIBUCIÓN BINOMIAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DOCUMENTO 2: DISTRIBUCIÓN DE PROBABILIDAD DISCRETA: LA DISTRIBUCIÓN BINOMIAL"

Transcripción

1 DOCUMENTO 2: DISTRIBUCIÓN DE PROBABILIDAD DISCRETA: LA DISTRIBUCIÓN BINOMIAL Como recordarás una variable aleatoria discreta es aquella que sólo puede tomar valores enteros. Ejemplos: puntuación obtenida al lanzar un dado, número de cachorros hembra en una camada 2.1 FUNCIÓN DE PROBABILIDAD. Supongamos que hemos lanzado 240 veces un dado perfecto y hemos obtenido los siguientes resultados: Cara Núm. de veces Vamos a construir una tabla con la distribución de frecuencias, absolutas y relativas, de los resultados obtenidos y otra con los resultados esperados a la vista del cálculo de probabilidades: Resultados obtenidos CARA F. ABSOLUTA (f i ) F. RELATIVA (h i ) , , , , , ,1625 Total Resultados esperados CARA Nº de veces Probabilidad (p i ) / / / / / /6 Total ,1800 0,1700 0,1600 0,1500 0,1400 0,2000 0,1500 0,1000 0,0500 0,0000 0,1750 0,1750 0,1667 0,1625 0,1625 0, ,1667 0,1667 0,1667 0,1667 0,1667 0, Si nos fijamos en los resultados de la última tabla, observamos que a cada valor de la variable le hacemos corresponder su probabilidad. A esta ley se le llama función de probabilidad, ley de probabilidad o distribución de probabilidad. S e llama función de proba bi li dad de una v a ria ble a leatoria dis c reta X a la a pli cación que asocia a cada val o r de x i de la v a ri a ble s u p robabili dad p i. Esta función la podemos expresar mediante la siguiente tabla: x 1 p 1 x 2 p 2 x 3 p 3 En t oda fun ci ón d e p r obab ilidad se v e r ifica: 0 p i 1 x n p n p 1 + p 2 + p p n = Σ p i = 1 1

2 Ejemplo: Consideremos el experimento aleatorio que consiste en lanzar tres monedas. Sea X la variable aleatoria nº de caras obtenidas. Halla la función de probabilidad de esta variable y represéntala gráficamente. X = {0, 1, 2, 3} 0 1/8 1 3/8 2 3/8 3 1/8 p i 0,400 0,300 0,200 0,100 0,000 Función de probabilidad FUNCIÓN DE DISTRIBUCIÓN. Como acabamos de ver, mediante la función de probabilidad podemos conocer la probabilidad de que la variable X tome un valor concreto Pero también interesa conocer la probabilidad de que la variable tome valores menores o iguales que el valor x i. Para ello utilizaremos la función de distribución que se define de la siguiente forma: S e a X u na v a r iable a leatoria d iscreta cuy os v a l ores supo ne m os o r d e nados d e m e nor a m a y or. L lamaremos f u n ción de d is t ribu ción de l a v a r iable X, y e scrib iremos F (x ) a la f u nc ión q ue a s o cia a cada v a lor de la v a r iable a leatoria la p roba bil ida d a cumulada hasta ese va lor. F (x i ) = p( X x i ) Observa que al ser F ( x i ) = p ( X x i ) = p ( X= x 1 ) + p ( X = x 2 ) +. p ( X= x n ), s e t i e n e qu e 0 F (x i ) 1 Si la función de probabilidad de una variable aleatoria discreta X es: x 1 p 1 x 2 p 2 x 3 p 3 La función de distribución de dicha variable será: x n p n 0 si x<x 1 p 1 si x 1 x<x 2 F(x) = p 1 + p 2 si x 2 x<x 3... p 1 + p p n-1 si x n-1 x<x n 1 si x n x Ejemplo: Si seguimos consideremos la variable aleatoria nº de caras obtenidas al lanzar tres monedas, la función de distribución de esta variable será: 0 si x<0 F(x) = 1/8 4/8 =1/2 si 0 x<1 si 1 x<2 7/8 si 2 x<3 1 si 3 x

3 La función de distribución de cualquier variable aleatoria tiene las siguientes características: 0 F(x) 1, ya que F(x) es una probabilidad. F(x) es una función escalonada. F(x) es creciente F8x) es continua en cada intervalo (x i, x i+1 ) 2.3 PARÁMETROS DE UNA VARIABLE ALEATORIA DISCRETA. Para poder tener un resumen o tendencia global de los valores de una variable estadística podemos definir, como hicimos en las variables estadísticas, los siguientes parámetros: la media o esperanza matemática, la varianza y la desviación típica. Se llama media de una variable aleatoria X, que toma los valores x 1, x 2, x 3,... x n con probabilidades p 1, p 2, p 3,... p n respectivamente, al valor de la siguiente expresión: E(x) = = x 1. p 1 + x 2. p x n. p n = x i. p i A la media se le llama también esperanza matemática o valor esperado. Hace referencia a la ganancia esperada por un jugador, en promedio, cuando hace un gran número de apuestas, jugando a una única opción. Si la esperanza matemática de un juego es = 0, no existe ventaja para la banca ni para el jugador, y entonces el juego es justo. Desde hace muchos años este concepto ha sido aplicado ampliamente en el negocio de seguros y en los últimos veinte años ha sido aplicado por otros profesionales que casi siempre toman decisiones en condiciones de incertidumbre Se llama varianza de una variable aleatoria X, que toma los valores x 1, x 2, x 3,... x n probabilidades p 1, p 2, p 3,... p n respectivamente, al valor de la siguiente expresión: con 2 = x 1 2. p 1 + x 2 2. p x n 2. p n - 2 = x i 2. p i - 2 La raíz cuadrada positiva de la varianza se llama desviación típica y se representa por. La media tiene las siguientes propiedades (se supone que K es una constante cualquiera e Y otra variable aleatoria del mismo espacio muestral que X): a) E(X+k) = E(X) +k b) E(kX) = ke(x) c) E(X+Y) = E(X) + E(Y) La desviación típica tiene las siguientes propiedades: a) (X+k) = (X) b) (kx) = k (X) Ejemplo: Calcula la media, la varianza y la desviación típica de la variable aleatoria discreta cuya función de probabilidad es: 0 1/8 1 3/8 2 3/8 3 1/8 Para calcular estos parámetros construimos la siguiente tabla: x i p i x i p i x 2 i p i 0 1/ /8 3/8 3/8 2 3/8 6/8 12/8 3 1/8 3/8 9/8 12/8 23/8 = x 1. p 1 + x 2. p x n. p n = x i. p i = 12/8 2 = x 1 2. p 1 + x 2 2. p x n 2. p n - 2 = x i 2. p i - 2 = 23/8 (12/8) 2 = 23/8 144/64 = 1408/64=22 7

4 2.4 DISTRIBUCIÓN BINOMIAL. Entre las variables aleatorias discretas una muy frecuente es la llamada binomial, asociada a fenómenos aleatorios con dos únicos resultados posibles: cara-cruz para una moneda, verdadero-falso para una determinada opción, hombre-mujer para las personas, etc. Una distribución binomial se caracteriza por las siguientes propiedades: a) El experimento base se repite un número determinado de veces, que representaremos por n. b) En cada prueba del experimento sólo son posibles dos resultados. Estos sucesos se denominan cara-cruz, blanco-negro, correcto-incorrecto,etc. y, en general, éxito (A) fracaso(a). c) Cada prueba es independiente de las otras. Por ejemplo contar el número de caras en 5 lanzamientos de una moneda, extraer 10 bolas de una urna con reemplazamiento, y si la extracción fuera sin reemplazamiento?. d) La probabilidad de éxito es la misma en cada ensayo. La representamos como p. También la probabilidad de fracaso es la misma en cada prueba. La representaremos por q. Se cumple que q = 1-p. A la variable X, que expresa el número de éxitos obtenidos en cada prueba del experimento, la llamaremos variable aleatoria binomial. Esta variable es discreta, ya que únicamente toma los valores 0, 1, 2,3,...,n, suponiendo que se han realizado n pruebas. Representaremos por B(n, p) a la variable de la distribución binomial, siendo n y p los parámetros de dicha distribución. Ejemplos: El experimento aleatorio que consiste en lanzar una moneda 25 veces y anotar el número de caras obtenidas corresponde a una distribución B(25, ½). Supuesto que el 10% de los españoles aficionados al fútbol sean hinchas del Athletic de Bilbao, el conjunto de todas las posibles muestras de 100 aficionados elegidos al azar, en las que se trate de averiguar cuántos de ellos son hinchas de este equipo, puede estudiarse como una distribución B (100, 0 10). Función de probabilidad: La función de probabilidad de una distribución binomial B(n, p) donde se efectúan n repeticiones del experimento y el suceso éxito tiene una probabilidad p de aparición es: P(X = r) = n r n r r: número de éxitos p q r r n : número combinatorio Ejemplo: Considera la distribución binomial de parámetros B (10, 0,15). Halla el valor de la siguiente probabilidad: P(X= 0) 10 o 10 0 P(X = 0) = 0,15 0, ,1969 0, 1969 Media y varianza de la distribución binomial. Veamos un caso particular de la distribución binomial, aquél en el que únicamente se realiza una prueba en lugar de n. La función de probabilidad de esta variable es la siguiente: Valor de la variable 1 0 Probabilidad p q= 1-p La media o esperanza matemática será: = 1.p + 0. q = p La varianza será: 2 = (1-p) 2.p + (0-p) 2.q = (1-2p+p 2 ).p + p 2.(1-p) = p.(1-p) = p.q 8

5 Consideremos ahora el caso de una distribución binomial con n pruebas repetidas; únicamente tendremos que multiplicar por n los resultados anteriores, entonces se tiene:. Media: = n.p. Varianza: 2 = n. p. q. Desviación típica: = n.p.q Ejemplo: En una ferretería quedan 1000 bombillas, de las que se sospecha que el 2% están fundidas. cuál es el valor esperado de bombillas fundidas? Calcula también la varianza y desviación típica. En primer lugar vemos que se trata de una distribución binomial, ya que: 1.- Sólo hay dos resultados: fundida o no fundida. 2.- El estado de cada bombilla es independiente de las otras. 3.- La probabilidad de que una bombilla esté fundida es constante. Así pues, se trata de una distribución binomial de parámetros n = 100; p= 0,02; es decir, B (100, 0,02). El valor esperado de bombillas fundidas es la media aritmética de esta distribución: = n.p = 100.0,02 = 2 bombillas Varianza: 2 = n. p. q = ,02. 0,98 = 1,96 Desviación típica: = n.p.q = 1,96 = 1,4 Ejemplo: Un examen tipo test consta de diez preguntas, cada una de ellas con tres respuestas, de forma que solo una de las tres es correcta. Un estudiante que no ha preparado la materia decide contestar al azar a todas ellas. a) Cuál será la probabilidad de acertar seis preguntas? b) Y la probabilidad de no acertar ninguna? Se observa que la variable X, que expresa el número de respuestas acertadas, sigue una distribución binomial, cuyos parámetros son n = 10 (hay 10 preguntas) y p= 1/3 (probabilidad de éxito). Por tanto: a) La probabilidad de acertar seis preguntas será: P(X = 6) = 210 0, 0569 También podemos encontrar este resultado buscándolo en la tabla: Como p=1/3, nos situamos en la octava columna de los valores de p; además, como n=10, nos colocaremos en las filas del última bloque. Por último, como r=6, buscarremos en la quinta fila empezando por abajo. b) La probabilidad de no acertar ninguna pregunta será: P(X = 0) = 1 1 0, Para calcular P(X=0) utilizando la tabla, volvemos a mirar en la columna donde p =1/3 y en la fila donde n=10 y r =0; en este caso, la undécima fila empezando por abajo, y obtenemos P(X=0) = 0,0173 9

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos: 1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta?

Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta? Estadística 1 Sesión No. 9 Nombre: Distribuciones de probabilidad discreta. Segunda parte. Contextualización A qué nos referimos con probabilidad discreta? En la presente sesión analizarás y describirás

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD

BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD EJERCICIO 1 Considera el siguiente conjunto de datos bidimensionales: X 1 1 2 3 4 4 5 6 6 y 2.1 2.5 3.1 3.0 3.8 3.2 4.3 3.9 4.4 a)sin efectuar cálculos

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales 2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC SIGMA 28 Abel Martín (*) y Rosana Álvarez García (**) En dos artículos anteriores ya hemos estudiado la distribución Binomial

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer... TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

Concepto de Probabilidad

Concepto de Probabilidad Concepto de Probabilidad Prof. Miguel Hesiquio Garduño. Est. Mirla Benavides Rojas Depto. De Ingeniería Química Petrolera ESIQIE-IPN hesiquiogm@yahoo.com.mx mbenavidesr5@gmail.com PROBABILIDAD En cualquier

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Bioestadística. Curso Capítulo 3

Bioestadística. Curso Capítulo 3 Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Autor: Mª Isabel Conde Collado APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Mediante el estudio de dos ejemplos concretos de distribuciones se intentará un acercamiento al ajuste de distribuciones a una distribución

Más detalles

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos

Más detalles

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10 1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Axiomática de la Teoría de Probabilidades

Axiomática de la Teoría de Probabilidades Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2009

PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA SOLUCIONARIO UNIBERTSITATERA SARTZEKO HAUTAPROBAK 25 URTETIK GORAKOAK 2009ko MAIATZA ESTATISTIKA PRUEBAS DE ACCESO

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

HOJA DE TRABAJO UNIDAD 3

HOJA DE TRABAJO UNIDAD 3 HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

m de ir hacia la izquierda o hacia la derecha. Imita el recorrido de un perdigón lanzando una moneda 7 veces y haciendo la asignación

m de ir hacia la izquierda o hacia la derecha. Imita el recorrido de un perdigón lanzando una moneda 7 veces y haciendo la asignación Matemáticas aplicadas a las Ciencias Sociales I Resuelve Página 7 Por qué las casillas centrales del aparato de Galton están más llenas que las extremas? Para explicarlo, sigamos el camino recorrido por

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones.

Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones. PROBABILIDAD Y ESTADÍSTICA Sesión 2 2 MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS DISCRETOS 2.1 Definición de variable aleatoria discreta 2.2Función de probabilidad y de distribución 2.3 Valor esperado

Más detalles

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos 5.3-1 El % de los DVDs de una determinada marca son defectuosos. Si se venden en lotes de 5 unidades, calcular

Más detalles

T. 2 Modelos teóricos de distribución de probabilidad

T. 2 Modelos teóricos de distribución de probabilidad T. 2 Modelos teóricos de distribución de probabilidad 1. La distribución binomial 2. La distribución o curva normal El conocimiento acumulado en Psicología ha permitido evidenciar como algunas variables

Más detalles

Distribuciones discretas Distribución Binomial

Distribuciones discretas Distribución Binomial Distribuciones discretas Distribución Binomial 2º BACH CCSS Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos... DISTRIBUCIONES DISCRETAS. LA DISTRIBUCIÓN BINOMIAL. Página 2 RESUMEN DE OBJETIVOS

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Práctica 4 TEOREMA CENTRAL DEL LÍMITE

Práctica 4 TEOREMA CENTRAL DEL LÍMITE Práctica 4. Teorema Central del Límite 1 Práctica 4 TEOREMA CENTRAL DEL LÍMITE Objetivos: En esta práctica utilizaremos el paquete SPSS para ilustrar el Teorema Central del Límite. Además calcularemos

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS.

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Estadística Tema 4 Curso /7 Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Objetivos Conceptos: Conocer los siguientes modelos discretos de probabilidad: uniforme, binomial, geométrico y Poisson. De cada

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial.

Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. La distribución geométrica Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. Consideramos otro experimento relacionado. Vamos a

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº.- En una urna hay bolas numeradas de al. Etraemos una bola al azar y observamos

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

Jueves, 3 de Noviembre de La parte escrita del examen representa el 40 % de la nota y el cuestionario el 60 % restante.

Jueves, 3 de Noviembre de La parte escrita del examen representa el 40 % de la nota y el cuestionario el 60 % restante. Univ. de Alcalá. Estadística 2016-17 Dpto. de Fíca y Matemáticas Biología Jueves, 3 de Noviembre de 2016 N o : studentnumber currentstudent INSTRUCCIONES (LEER ATENTAMENTE). La parte escrita del examen

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

4. CONCEPTOS BASICOS DE PROBABILIDAD

4. CONCEPTOS BASICOS DE PROBABILIDAD 4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad

Más detalles

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6.

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6. Distribuciones Discretas de Probabilidad 1 Contenido 1. Variables Aleatorias. 2. Distribuciones Discretas de Probabilidad. 3. Valor Esperado y Varianza. Propiedades. 4. Distribución de Probabilidad Binomial.

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/99 SP XII José Mª Chacón Íñigo IES Llanes, Sevilla Te explicamos como realizar la operación de distribución de probabilidad

Más detalles

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i ESTADÍSTICA 1.- Un equipo ciclista quiere estudiar el estado de las bicicletas a lo largo de cuatro años. Toma una muestra de 20 bicicletas y mira los Kilómetros que han recorrido: Kilómetros recorridos:

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

Ejercicios de estadística.

Ejercicios de estadística. Ejercicios de estadística..- Los siguientes números son el número de horas que intervienen alumnos en hacer deporte durante un mes:, 7,,, 5, 6, 7, 9,,, 5, 6, 6, 6, 7, 8,,, 5, 8 a) Calcula las tablas de

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 0 DISTRIUIONES DE PROILIDD DE VRILE DISRET. L INOMIL Página PR EMPEZR, REFLEXION Y RESUELVE Problema Dibuja los recorridos correspondientes a: +, + +, +, + + + +, + + + + + + + + + + Problema Observa que

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una

Más detalles

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B: Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Disponible en el sitio OCW de la Universidad Nacional de Córdoba.

Disponible en el sitio OCW de la Universidad Nacional de Córdoba. OCW - UNC OpenCourseWare I UNC Curso: Estadística I U 4. Variables Aleatorias Autora: Rosanna Casini Cómo citar el material: Disponible en el sitio OCW de la Universidad Nacional de Córdoba. Casini, Rosanna

Más detalles