Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas"

Transcripción

1 Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

2 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. EJERCICIO.. Obtener la función de tranferencia del iguiente diagrama de bloque: _ / /( ) _ /( ) _

3 Diagrama de Bloque y Flujograma. EJERCICIO.. Obtener la función de tranferencia global del itema mediante el movimiento de bloque. c R() _ a _ d C() b a eñal en el punto d erá: d (a b) c a b c Se mueve el bloque retador cuya alida e el punto d hata ituarlo a continuación del punto de uma a: c R() a d C() b Se analiza ahora de que etá formada la eñal que llega al punto d: d (a c b) ab c Con repecto al valor inicial de la eñal e puede obervar que obra en el último umando. Para reolver eto e dividirá el bloque entre. / c R() a d C() b

4 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. Reolviendo el bucle interno: () M Con lo que el diagrama de bloque ahora erá: c a C() _ R() _ / Reolviendo el lazo interno entre a y c: () M C() R() _ Y reolviendo el último lazo: () M C() R() Otra poible forma de reolver ería moviendo la eñal de realimentación tomada a la alida del bloque hata la alida del bloque. De eta forma modificando lo bloque afectado e tendría:

5 Diagrama de Bloque y Flujograma. C() _ R() _ / Reolviendo el bloque má interno: () M C() R() _ / Reolviendo el lazo má interno nuevamente: () M C() R() _ Y reolviendo el último lazo: () M

6 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. EJERCICIO.. Para el diagrama de bloque de la figura encontrar eq y eq de forma analítica y gráfica. R() r _ e K 0 u v Y() z 0. w Analíticamente: e r z r (0.u w) r (0.u v v) r 0.u v ( ) ( ) K r 0.u u r 0. u r 0. e ( ) ( ) 0 ( ) K e r 0. e ( ) 0 0.K K( ) e r 0 ( )( 0) e 0.K K( ) 0 ( )( 0) r ( )( 0) 0.K( ) K( ) ( )( 0) r e ( )( 0) r ( 0.K) (0.K) K Por otro lado, la función de tranferencia de lazo directo e directa: K y e ( )( 0) y K () e ( )( 0)

7 Diagrama de Bloque y Flujograma. Entonce, la función de tranferencia de lazo cerrado e: M() Y() R() K e ( )( 0) ( 0.K) (0.K) K e ( )( 0) M() ( 0.K) K (0.K) K Se buca ahora decomponer dicha función de lazo cerrado en la funcione correpondiente a la cadena directa, cuyo valor ya e conoce, y la realimentación. () M() ()() Para ete itema, utituyendo el valor de la cadena directa: K ( )( 0) K M() K ( )( 0) K () () ( )( 0) K 0 K () uego igualando lo denominadore de la do expreione obtenida para M(): ( 0.K) (0.K) K 0 K () 0 0.K.K K 0 K () 0.K.K K K () eq 0.0. R() _ K ( )( 0) C() 00..

8 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. Reolviendo ahora de forma gráfica: R() r _ e K 0 u v Y() z 0. w Paando el último bloque delante del punto de bifurcación v: R() r _ e K 0 u ( ) v Y() z 0. w Agrupando la funcione de tranferencia del último umador: R() r _ e K 0 u ( ) v Y() z 0. w Moviendo el bloque ( ) delante del punto de bifurcación u: R() r _ e K ( )( 0) u v Y() z 0. ( ) w

9 Diagrama de Bloque y Flujograma. Agrupando lo do elemento del umador: R() r _ e K ( )( 0) Y() z 00.. EJERCICIO.. Para el diagrama de bloque motrado en la figura calcular la funcione de tranferencia () y () equivalente de forma analítica y gráfica. Calcular también la función de tranferencia () equivalente para que el itema tenga realimentación unitaria. R() r _ e 0 v Y() y z Analíticamente: 0 e r z r (v y) r v v r v r e 0 e r e 0 e r r e 0 0 r 0 ( ) r 0 a función de tranferencia de cadena directa e obtiene de forma directa: y 0 () e ( )

10 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. 0 y e ( ) Y la función de tranferencia de lazo cerrado e: Sabiendo que: M() y r 0 e ( ) 0 e ( ) 0 0 () M() ()() 0 ( ) M() 0 () ( ) 0 0 () Igualando lo denominadore de la do funcione de tranferencia M() obtenida: 0 0 () () () R() _ 0 ( ) Y() Reolviendo el diagrama de bloque de forma gráfica: R() r _ e 0 v Y() y z 9

11 Diagrama de Bloque y Flujograma. Moviendo el último bloque delante del punto v: R() r _ e 0 ( ) v Y() y z Uniendo lo elemento del umador: R() _ 0 ( ) Y() Si e deea que eq ea : R() _ () Y() Como la función de tranferencia de lazo cerrado e: M() 0 0 Dividiendo el numerador y denominador de M() entre e tiene: M() ' () ' () R() 0 _ ( ) Y() 0

12 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. De forma gráfica partiendo de la función obtenida con eq y eq : R() _ 0 ( ) Y() R() _ 0 ( ) Y() ' () 0 ( ) 0 ( ) 0 ( ) 0 ( ) 0 0 ( ) R() 0 _ ( ) Y() EJERCICIO.. Reolver el iguiente diagrama de bloque de forma gráfica y mediante la técnica de lo flujograma. C() R() - _

13 Diagrama de Bloque y Flujograma. Reolviendo primero gráficamente: En primer lugar e ha ordenado el diagrama de bloque de la forma típica: R() C() Ahora lo bloque y e mueven delante del punto de bifurcación: R() C() Se agrupan lo bloque de la realimentación interna:

14 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. C() R() C() R() ( Agrupando en un único bloque la realimentación interna: ) ( ( () ' C() R() _ ) ( Agrupando finalmente lo elemento retante: ) ( ) ( ) ( ) ( M()

15 Diagrama de Bloque y Flujograma. M() ( ) M() Aplicando la técnica de lo flujograma: Se contruye en primer lugar el flujograma correpondiente al itema: R C - - Se reuelve aplicando la regla de Maon: a relación entre la alida C() y la entrada R(), viene dada por: iendo: C() R() M() k k k (Determinante del flujograma.) = - i ij - ijk rayecto directo: "aquello que partiendo de un nodo fuente llegan a un nodo final in paar do vece por el mimo nodo" i : ganancia de cada lazo. i igual a la uma de ganancia de lo bucle que tienen algún nodo común con cualquier trayecto directo. ij igual a la uma de producto de la ganancia de toda la combinacione poible de do bucle dijunto. K e la ganancia del k-éimo trayecto directo. K e calcula igual que, pero eliminando lo bucle que tienen algún nodo común

16 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. con el k-éimo trayecto directo. rayecto directo: azo: i No exiten lazo dijunto. i C() R() M() k k k EJERCICIO.. Calcular la función de tranferencia R() C() del iguiente flujograma: R() - - C() rayecto Directo: P azo Independiente: Determinante:... a b c d e f

17 Cofactor: P Diagrama de Bloque y Flujograma. Entonce: M() k P k k EJERCICIO.. M() Calcular la función de tranferencia Y() R() del iguiente flujograma: - R() Y() - - rayecto Directo: P ( )( ) P ( ) P azo Independiente: Pare de lazo: Determinante: ( ) ( ) ( )( ) a bc def...

18 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. ) )( ( ) ( ) ( Cofactore: ) )( ( P ) ( P ) ( P ) )( ( ) ( ) ( Entonce: k k P k () M ) )( ( ) ( ) ( ) ( ) )( ( M() ) )( ( ) ( ) ( ) )( ( ) ( ) ( 0 M() EJERCICIO.. Calcular la función de tranferencia del iguiente flujograma: R() C()

19 Diagrama de Bloque y Flujograma. rayecto Directo: P P azo Independiente: Pare de lazo: Determinante: a bc def... Cofactore: P P Entonce: M() k P k k ( )( M() ( ( )) ( ) ( )( ( ) )) EJERCICIO.9. Calcular la funcione de tranferencia indicada para el iguiente flujograma:

20 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. R() R() - C() 0 C() C() C () R () R ( ) C R () () C R () () - C () R () R() - 0 C() 0 ( ) () 0 ( ) () C () R () R() - 0 C() ( ) () 0 ( ) 9

21 Diagrama de Bloque y Flujograma. () 0 - C () R () - C() 0 R() 0 ( ) () 0 ( ) () C () R () - R() 0 C() 0 ( ) ( ) () 0 ( ) () 0 EJERCICIO.0. Calcular la funcione de tranferencia del iguiente flujograma: 0

22 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. R() R() R() Y() Y() Y () Y () R () R ( ) Y () Y () R () R ( ) Y R () () Y R () () - Y () R() R() Y() () () 9 - Y () R () R() Y() () () 9

23 Diagrama de Bloque y Flujograma. - Y () R () R() Y() () () ( ) 9 - Y () R() R() Y() () () ( ) 9 - Y () R () R() Y() ()

24 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. () ( ) 9 - Y () R () R() Y() () EJERCICIO.. () 9 a función de tranferencia () viene definida por el iguiente diagrama de flujo: Donde: = = / = / = / = = = - = - 9 = - 0 = =. Calcular, mediante Maon, la función de tranferencia de (). () K K rayecto directo: 0 K

25 Diagrama de Bloque y Flujograma. Determinante del itema: a bc... 9 Cofactore: Función de tranferencia: () EJERCICIO.. () Calcular la función de traferencia del itema de la figura mediante la aplicación de la regla de Maon: R() - Y() () () () () () - () () () () () ( ) () () () () () () rayecto: () n n

26 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. azo: ) ( ) ( () ) ( ) ( ) ( () 0 ) ( () EJERCICIO.. () etá definida por el diagrama de flujo: / / - - U() Y() Obtener la función de tranferencia. Aplicando la regla de Maon: n n rayecto directo: azo independiente:

27 Diagrama de Bloque y Flujograma. () ( 0.) () EJERCICIO.. Obtener la función de tranferencia de una planta que viene definida por el iguiente flujograma: R'() / () / () C'() a relación entre la alida C'() y la entrada R'(), viene dada por: C'() R'() k k k M'() 0

28 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. ( ) Bucle: No hay Bucle dijunto: No hay. uego, utituyendo: Se tiene entonce:. = - i ij - ijk = - 0= k k k... M'() M'() 0 ( ) ( ) M'() ( ) M'() 0 ( ) EJERCICIO.. Para el itema del ejercicio.. hallar la función de tranferencia que relaciona la altura del líquido en el depóito h(t) y la tenión de referencia u(t), mediante la técnica de flujograma. En el ejercicio.. el itema quedó definido por el iguiente diagrama de bloque: F() U() E() 0. V() Q e () 0 0 () Q () 0.009

29 Diagrama de Bloque y Flujograma. Obtener en primer lugar el flujograma correpondiente al diagrama de bloque motrado en la figura. U E 0 0. V 0 Q e Aplicando la Regla de Maon e obtendrá la función de tranferencia: n n ( ) ( 0.009) ( ) ( 0.009) () U() () U() () U() 00( 0.) ( 0.)

30 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. EJERCICIO.. Dado un itema de control repreentado por el iguiente diagrama de bloque: R() - () R() - () Y() () () ().- Dibujar el flujograma correpondiente. Y().- Si e hace R () = 0, hallar mediante la regla de Maon, M() R().- Si en M(), hacemo () = () = ; () = ; () = K y () =. ( )( ) Obtener la función de tranferencia () para que M() ea equivalente al itema de la figura: R() C() () -. Flujograma: Sutituyendo el diagrama de bloque: R () 0 () - () R () - () - () Y() - () - Ahora R () = 0. a función de tranferencia global del itema erá: Y() K K M() R () 9

31 Diagrama de Bloque y Flujograma. rayecto directo: 0 : () () Bucle: B : : () ()[- ()] B : B : : () ()[- ()] () - : ()[- ()] Bucle dijunto: No hay. uego, utituyendo:. = [ () ()[- ()] () ()[- ()] () ()[- ()]] 0 = = ()[ ()[- ()] ()[- ()] () ()] K = = 0 = = () () Se tiene entonce: Y() K K () () M() R() () () () () () () (). Ahora, () () ; () ; () K; () ( )( ) utituyendo en la ecuación anterior de M(), e tiene: K ( )( ) K () K (K ) ( )( ) (K ) K ( )( ) M 0 K ( K) K R () K 0 ( K) K Y() R() () C() M() 0

32 Problema de Ingeniería de Sitema: Sitema Continuo. Concepto báico. () () () () () M() () M() M K 0 ( K) uego la función de tranferencia en lazo abierto del nuevo itema, teniendo en cuenta que K = 000, erá: F...A.' K () F...A.' ( ) EJERCICIO.. () e la función de tranferencia de una planta, de la que e conoce u flujograma, que e el iguiente: Calcular la función de tranferencia de la planta, aplicando la regla de Maon. rayecto directo:

33 Diagrama de Bloque y Flujograma. ) )( ( 0 0 P 0 9 ) )( ( P 0 9 azo dijunto: ; ; ; ; ) )( ( 0 0 Determinante del flujograma: ) ( ) ( ) ( ) ( ) ( ) ( ) )( ( ) ( ) ( ) )( ( Cofactore: ) ( ) ( ) ( ) ( uego, P P () Y utituyendo lo valore queda: 9) )( ( 0 9 ()

DIAGRAMAS DE BLOQUES

DIAGRAMAS DE BLOQUES Univeridad Carlo III de Madrid Señale y Sitema DIAGRAMAS DE BLOQUES Diagrama de bloque. 1. Repreentación en diagrama de bloque. 2. Operacione con bloque. Dolore Blanco, Ramón Barber, María Malfaz y Miguel

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

Tema IV REPRESENTACIÓN DE LOS SISTEMAS

Tema IV REPRESENTACIÓN DE LOS SISTEMAS Tema IV REPRESENTACIÓN DE LOS SISTEMAS REPRESENTACIÓN DE LOS SISTEMAS.-Introducción..-Diagrama funcional o de bloque. Elemento...-Reducción de diagrama de bloque de entrada alida imple...-reducción de

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN

Más detalles

Anexo 1.1 Modelación Matemática de

Anexo 1.1 Modelación Matemática de ELC-3303 Teoría de Control Anexo. Modelación Matemática de Sitema Fíico Prof. Francico M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/tic.html Modelación de Sitema Fíico Francico

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

2. Cálculo de las pérdidas de carga localizadas.

2. Cálculo de las pérdidas de carga localizadas. Cátedra de Ineniería Rural Ecuela Unieritaria de Ineniería Técnica Arícola de Ciudad Real Tema 8. Pérdida de cara localizada o accidentale. Introducción y concepto. Cálculo de la pérdida de cara localizada

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

Tema 4: Programación lineal con variables continuas: método del Simplex

Tema 4: Programación lineal con variables continuas: método del Simplex Tema 4: Programación lineal con variable continua: método del Simple Obetivo del tema: Reolver de forma gráfica un problema de programación lineal continuo Etudiar la forma equivalente de repreentación

Más detalles

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara CONTROL POR COMPUTADOR Temario. Ingeniería Informática. Realiado por: Juan Manuel Bardallo Gonále Miguel Ángel de Vega Alcántara Huelva. Curo 06/07. INDICE Tema. MODELIZACIÓN DE SISTEMAS DISCRETOS. Introducción..

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 1) Epejo cóncavo y convexo 1.1) Criterio de igno en óptica geométrica Lo objetivo principale en óptica geométrica on la determinación, en función de la poición del objeto y u tamaño, de la poición de la

Más detalles

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Univeridad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Documento UTN Nº EA3-5- Adaptación de impedancia en amplif de RF Introducción o amplificadore de potencia e uan generalmente

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

Análisis En El Dominio De La Frecuencia

Análisis En El Dominio De La Frecuencia Análii En El Dominio De La Frecuencia.-Introducción..-Repueta en frecuencia...-diagrama cero-polar. 3.-Repreentación gráfica de la repueta en frecuencia. 3..-Diagrama de Bode. 3..-Diagrama polar (Nyquit.

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC

El estudio teórico de la práctica se realiza en el problema PTC PRÁCTICA LTC-1: REFLEXIONES EN UN PAR TRENZADO 1.- Decripción de la práctica a) Excitar un cable de pare de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

Diagramas de Bloques

Diagramas de Bloques 1! Diagrama de Bloques y Grafos Juan Antonio Hernández Tamames, Susana Borromeo Curso 2014-2015 Diagramas de Bloques 2! Representación en Diagramas de Bloques Álgebra de Bloques 1 Ideas Básicas 3! Los

Más detalles

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO En el Capítulo e obtuvieron la ecuacione para lo flujo electrocinético en término del potencial electrotático promedio ψ() en el interior del poro cilíndrico.

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota:

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Intituto Tecnológico de Cota Rica Ecuela de Ingeniería Electrónica EL-70 Modelo de Sitema Profeore: Dr. Pablo Alvarado Moya, Ing. Gabriela Ortiz León, M.Sc. I Semetre, 007 Examen de Suficiencia

Más detalles

Práctica 6.2: Circuito hidráulico para cilindro de grúa

Práctica 6.2: Circuito hidráulico para cilindro de grúa Práctica 6.: Circuito hidráulico para cilindro de grúa Una grúa de tranporte de chatarra utiliza do cilindro hidráulico para mover u brazo articulado. Se va a etudiar el circuito que irve para accionar

Más detalles

MOTORES DE C.C. Y C.A.

MOTORES DE C.C. Y C.A. MOTORES DE C.C. Y C.A. La neumática e la tecnología que utiliza el aire comprimido como fluido de trabajo. El compreor e el elemento que comprime el aire dede la preión atmoférica hata lo 6-8 bar; la válvula

Más detalles

Automá ca. Ejercicios Capítulo7.2.AnálisisFrecuencial(Parte2)

Automá ca. Ejercicios Capítulo7.2.AnálisisFrecuencial(Parte2) Automáca Ejercicios Capítulo7..AnálisisFrecuencial(Parte) JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez DepartamentodeTecnologíaElectrónica eingenieríadesistemasyautomáca

Más detalles

CALENDARIO - MATRIZ BIMESTRAL 2012. Profesora: Anita Espejo de Velasco Asignatura: Matemática Grado: 2º de Secundaria Bimestre: Segundo

CALENDARIO - MATRIZ BIMESTRAL 2012. Profesora: Anita Espejo de Velasco Asignatura: Matemática Grado: 2º de Secundaria Bimestre: Segundo Competencia Indicadore logro Unida Hr Criterio Repreenta patrone numérico y expreione algebraica e intifica el patrón formación y lo aplica en la reolución problema matemático Compren forma lógica e intuitiva

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N.

TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N. TEORÍ E RUTOS 4 ño ngeniería Electrónica F.R.T. U.T.N. Teoría de lo uadripolo olaboración del alumno Juan arlo Tolaba efinición: Un cuadripolo e una configuración arbitraria de elemento de circuito, que

Más detalles

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO XXV Jornada de Automática Ciudad Real, del 8 al de eptiembre de 4 MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO Manuel Pérez Polo, Joé Ángel Berná Galiano, Javier Gil Chica Departamento

Más detalles

Profesora Anna Patete, Dr. M.Sc. Ing. Escuela de Ingeniería de Sistemas. Universidad de Los Andes, Mérida, Venezuela.

Profesora Anna Patete, Dr. M.Sc. Ing. Escuela de Ingeniería de Sistemas. Universidad de Los Andes, Mérida, Venezuela. Modelado de Sitema Fíico Profeora Anna Patete, Dr. M.Sc. Ing. Departamento de Sitema de Control. Ecuela de Ingeniería de Sitema., Mérida, Venezuela. Correo electrónico: apatete@ula.ve Página web: http://webdelprofeor.ula.ve/ingenieria/apatete/

Más detalles

MODELOS MATEMÁTICOS. 1. Diagrama de flujo de señal. 2. Fórmula de Mason. Flujograma. Método de Mason.

MODELOS MATEMÁTICOS. 1. Diagrama de flujo de señal. 2. Fórmula de Mason. Flujograma. Método de Mason. MODELOS MATEMÁTICOS Flujograma. Método de Mason. 1. Diagrama de flujo de señal. 2. Fórmula de Mason. ibliografía Ogata, K., "Ingeniería de control moderna", Ed. Prentice-Hall. Capítulo 3 Dorf, R.C., "Sistemas

Más detalles

Aplicando la Transformada de Laplace a Redes Eléctricas

Aplicando la Transformada de Laplace a Redes Eléctricas Aplicando la Tranformada de Laplace a Rede Eléctrica J.I. Huircán Univeridad de La Frontera April 5, 006 Abtract Se aplica la Tranformada de Laplace a ditinta rede eléctrica, primero excitacione báica

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD 03 Fíica BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Eamen Criterio de Corrección Calificación UNIBERSIAERA SARZEKO PROBAK 03ko EKAINA FISIKA

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Ecuela Técnica Superior de Ingeniería Informática PRÁCTICA 4: MUESTREO DE SEÑALES Y DIGITALIZACIÓN Tecnología Báica de la Comunicacione (Ingeniería Técnica Informática de Sitema

Más detalles

Filtros de Elementos Conmutados

Filtros de Elementos Conmutados Filtro de Elemento onmutado Ing. A. amón arga Patrón rvarga@inictel.gob.pe INITEL Introducción En un artículo anterior dearrollamo una teoría general para el filtro activo de variable de etado. e detacó

Más detalles

CIRCULAR Nº 2 (Aclaratoria)

CIRCULAR Nº 2 (Aclaratoria) Bueno Aire, 8 ero 2016 Referencia: Licitación Pública N 27/15 CIRCULAR Nº 2 (Aclaratoria) A lo efecto una mejor comprenión lo volcado en la epecificacione técnica l Pliego Bae y Condicione Particulare

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur)

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur) VECTORES: OPERACIONES BÁSICAS Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B (0 m Este 30º Norte) y C (35 m Sur) Solución: I.T.I. 94, I.T.T. 05 A

Más detalles

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO: 6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

E s t r u c t u r a s

E s t r u c t u r a s t r u c t u r a epartamento de tructura de dificación cuela Técnica Superior de Arquitectura de adrid iagrama de efuerzo de una viga quebrada uo: 4,5 k/m I AA 15/16 12-4-2016 jemplo peo propio: 4,5 k/m

Más detalles

RESPONSABLE: FRANCISCO JOSÉ PELÁEZ FERMOSO

RESPONSABLE: FRANCISCO JOSÉ PELÁEZ FERMOSO LA INTEGRACIÓN DE LOS PLANES DE PENSIONES CON LA SEGURIDAD SOCIAL: UN SEGURO FRENTE AL RIESGO ASOCIADO A LA VIABILIDAD DE LAS PENSIONES PÚBLICAS EN ESPAÑA RESPONSABLE: FRANCISCO JOSÉ PELÁEZ FERMOSO Invetigación

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones Aplicación de lo parámetro de diperión en la caracterización de componente y equipo de radiofrecuencia para la indutria de telecomunicacione Suana adilla Laboratorio de Analizadore de Rede padilla@cenam.mx

Más detalles

Optimización de Tiempo para el Proceso de Atención al Cliente para un Restaurante Altamente Estacional

Optimización de Tiempo para el Proceso de Atención al Cliente para un Restaurante Altamente Estacional Optimización de Tiempo para el Proceo de Atención al Cliente para un Retaurante Altamente Etacional Alumna: Año Académico: 212 Profeor Guía: Contraparte: TERESA YOLANDA OLAVE QUINTEROS RODOLFO SCHMAL Ecuela

Más detalles

Tema VI: Referencias de tensión y reguladores de tensión.

Tema VI: Referencias de tensión y reguladores de tensión. ESUELA ÉNA SUPEO DE NGENEOS NDUSALES Y DE ELEOMUNAÓN UNESDAD DE ANABA NSUMENAÓN ELEÓNA DE OMUNAONES (5º uro ngeniería de elecomunicación) ema : eferencia de tenión y reguladore de tenión. Joé María Drake

Más detalles

Tema 3. Secuencias y transformada z

Tema 3. Secuencias y transformada z Ingeniería de Control Tema 3. Secuencias y transformada z Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Concepto de secuencia

Más detalles

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS Miguel Angel Rodríguez Pozueta Doctor Ingeniero Indutrial 008, Miguel

Más detalles

6. Diagramas de flujo.

6. Diagramas de flujo. Ingeniería de Control I Tema 6 Diagramas de flujo 1 6. Diagramas de flujo. Representación en DF Simplificaciones Fórmula de Mason Formas de Kalman Sistemas MIMO Diagramas de Flujo 2 1 Bibliografía Señales

Más detalles

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO 2 ÓPTICA GEOMÉTRICA 2.. ORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO. En la imagen que e forma de un objeto en un epejo plano e invierten la izquierda la derecha, pero no la parte de arriba la parte de abajo

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas MATEMÁTICA DISCRETA

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas MATEMÁTICA DISCRETA Facultad de Ciencia Báica e Ingeniería Programa Ingeniería de Sitema CURSO: MATEMÁTICA DISCRETA 1 SEMESTRE: II 2 CÓDIGO: 602202 3 COMPONENTE: 4 CICLO: 5 ÁREA: Báica 6 FECHA DE APROBACIÓN: 7 NATURALEZA

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Proceamiento Digital de Señal Tema 5: Muetreo y recontrucción Teorema de muetreo: Shannon-Nyquit. Recontrucción Diezmado e Interpolación Cuantización Muetreo El muetreo digital de una eñal analógica trae

Más detalles

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs ANÁLISIS TEMPORAL Concepto generale 1. Régimen tranitorio y permanente. 2. Señale normalizada de entrada. 3. Repueta a ecalón de itema de tiempo continuo. 4. Relación entre la repueta temporal y la ituación

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL Sitema Lineale II Unidad 4 EL MPLIFICDO OPECIONL Material de apy Indice 1. Intrducción.. Preentación. 3. Circuit equivalente. 4. Cnfiguración inverra. 4.1 Un circuit "ube y baja". 4. Ca de ganancia finita

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010.

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010. COL. OFICIAL INGENIEROS AGRÓNOMOS DE ALBACETE COL. OFICIAL INGENIEROS TÉCNICOS AGRICOLAS DE CENTRO (ALBACETE) E.T.S. INGENIEROS AGRÓNOMOS DE ALBACETE CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

MODELO DE ASIGNACIÓN PRESUPUESTARIA

MODELO DE ASIGNACIÓN PRESUPUESTARIA MODELO DE ASIGNACIÓN PRESUPUESTARIA TEXTO UNIFICADO COMITÉ TÉCNICO Ciudad Autónoma de Bueno Aire, 8 de marzo de 2012 [Texto unificado de lo Acuerdo Plenario referido al Modelo de Aignación Preupuetaria.

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

Tema03: Circunferencia 1

Tema03: Circunferencia 1 Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,

Más detalles

Tercer Congreso Nacional Segundo Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía HYFUSEN 2009

Tercer Congreso Nacional Segundo Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía HYFUSEN 2009 APLICACIÓN DEL ÍNDICE CAPACIDAD EVAPORATIVA PARA EVALUAR EL COMPORTAMIENTO DE UN SISTEMA DE SECADO INTEGRADO POR UN COLECTOR SOLAR Y UNA CABINA DE SECADO Pontin, M. I.; Lema, A. I.; Moretto, J. M.; Barral,

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

DISEÑO CON AMPLIFICADORES OPERACIONALES

DISEÑO CON AMPLIFICADORES OPERACIONALES 1 DISEÑO CON AMPLIFICADORES OPERACIONALES Introducción Muchos de los circuitos con amplificadores operacionales que efectúan operaciones matemáticas se usan con tal frecuencia que se les ha asignado su

Más detalles

Contenido. Vision ME Guía del usuario s

Contenido. Vision ME Guía del usuario s GUÍA DEL USUARIO Contenido 1. Introducción...2 1.1. Viion ME Iniciar eión automáticamente...2 2. Invitar a lo alumno a unire a la clae...3 2.1. Ver a lo alumno en clae...6 2.2. Experiencia de lo alumno...7

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

1. Análisis de Sistemas Realimentados

1. Análisis de Sistemas Realimentados Análii v2.doc 1 1. Análii de Sitema Realimentado 1. Análii de Sitema Realimentado 1 1.1. INTRODUCCIÓN... 2 1.2. ESTABILIDAD... 2 1.3. ESTRUCTURAS DE REALIMENTACIÓN... 3 1.3.1. Sitema Etable e Inetable...

Más detalles

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5

y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Control Automático II Má Problema UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página de 5. Control de un itema de Bola Riel La Figura muetra

Más detalles

PARA MEJORAR CARACTERÍSTICAS DE DISEÑO EN FILTROS BICUADRÁTICOS

PARA MEJORAR CARACTERÍSTICAS DE DISEÑO EN FILTROS BICUADRÁTICOS EL USO DE LOS SFG PARA MEJORAR ARATERÍSTIAS DE DISEÑO EN FILTROS BIUADRÁTIOS - Lui Abraham Sánchez Gapariano, Joé Joel García Delgado, Arturo Prieto Fuenlabrada 3, Alejandro Díaz Sánchez,3 Intituto Nacional

Más detalles