EJERCICIOS PORTAFOLIO FENÓMENOS DE TRANSPORTE 2

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS PORTAFOLIO FENÓMENOS DE TRANSPORTE 2"

Transcripción

1 EJERCICIOS PORAFOLIO FENÓMENOS DE RANSPORE 2 EJERCICIO 1 Estimar la conductividad térmica del benceno como vapor a 20 C y 1 atm, empleando: (A) la teoría cinética de Chapman-Enskog, (B) la modificación de Stiel y hodos de la ecuación de Eucken, y (C) el método de Chung. DAO ADICIONAL: A 20 C y 1 atm, la viscosidad del vapor de benceno es Pa s. RESPUESA: (A) W/m K, (B) W/m K, (C) W/m K. EJERCICIO 2 Calcular la conductividad térmica de una mezcla de 64% mol amoniaco y 36% mol hidrógeno a 33 C. A dicha temperatura, las viscosidades y conductividades de los componentes puros son 90.6 μp y W/m K para el H 2, y μp y W/m K para el NH 3, respectivamente. RESPUESA: W/m K OPCIONAL: E Construir una gráfica de la conductividad térmica de mezclas de amoniaco e hidrógeno a 33 C en función de la fracción mol de NH 3. EJERCICIO 3 Estimar la conductividad térmica del etanol ( b = C) como líquido a 15 C empleando (A) el método de Sato y Riedel, y (B) el método de Latini. En ambos casos, calcular el error porcentual, sabiendo que a esa temperatura el valor experimental reportado es k = W/m K (Perry, Manual del Ingeniero Químico, 7 a edición) RESPUESA: (A) W/m K, (B) W/m K EJERCICIO 4 La composición (en base peso) del pollo es 66% agua, 18.1% proteína, 15.1% grasa y 0.8% cenizas, y su temperatura de congelamiento inicial es 2.2 C. Cuál es su conductividad térmica (empleando el modelo paralelo) y su fracción peso de hielo cuando está congelado 5 C? RESPUESA: W/m K, 47.5% hielo EJERCICIO 5 Considérese un cilindro de radio R y longitud L por el que circula una corriente eléctrica que genera calor uniformemente con una rapidez G (en W/m³). Los extremos superior e inferior del cilindro se mantienen aislados, y la superficie lateral del cilindro se mantiene a una temperatura uniforme s. Realizar un balance de energía en un volumen de control de radio interno r, radio externo r r y longitud L, y resolver la ecuación diferencial resultante para encontrar el perfil de temperaturas r. R L r r + r cilindro con volumen de control vista superior G 2 2 RESPUESA: rs R r 4k

2 EJERCICIO 6 (opcional) Repetir el ejercicio anterior, para el caso de una esfera de radio R, también con una generación uniforme de calor G (en W/m³) y una temperatura superficial uniforme s. El volumen de control en este caso es un cascarón esférico de radio interno r y radio externo r r. G 2 2 RESPUESA: rs R r 6k EJERCICIO 7 R 2 Considérese un cilindro hueco de radio interior R 1 y radio exterior R 2 y longitud L. Las superficies interna y externa del cilindro se mantienen a temperaturas constantes 1 y 2, respectivamente, y los extremos del cilindro se mantienen aislados. Mediante simplificación de la ecuación de conservación de la energía térmica, determinar el perfil de temperaturas r en estado estable, para R1 r R2. ln r / R1 RESPUESA: r1 2 1 ln R / R 2 1 EJERCICIO 8 Usted ha experimentado el enfriamiento por convección si alguna vez sacó la mano por la ventana de un vehículo en movimiento o si la sumergió en una corriente de agua. Si la superficie de la mano se asume a una temperatura constante de 30 C, determine la pérdida de calor por convección para (A) una velocidad del vehículo de 35 km/h en aire a 5 C, y (B) una velocidad de 20 cm/s en una corriente de agua a 10 C. En cuál condición se sentiría más frío? Comparar con una pérdida de calor de aproximadamente 30 W/m² en condiciones ambientales normales. RESPUESA: (A) W/m² (B) W/m². EJERCICIO 9 30 LPM de agua a 15 C entran a un tubo metálico de ½ plg de diámetro interno. La pared del tubo se mantiene a una temperatura uniforme de 95 C. Qué longitud debe tener el tubo para que el agua salga a 74 C? Asumir para el agua ρ = 1000 kg/m³ y c P = 4187 J/kg K; todas las demás propiedades estimarlas a m. RESPUESA: 3.36 m. EJERCICIO 10 Vaca esférica. RESPUESA: Como esfera pierde W y como cilindro pierde W. EJERCICIO 11 Se hace hervir agua en el exterior de tubos de cobre de 1 plg de diámetro y 75 cm de longitud. La presión del sistema es 1 atm. Los tubos se operan con una densidad de flujo de calor de 830 kw/m². Se tiene ebullición nucleada o en película? Cuántos tubos se necesitan para producir 750 kg/h de vapor saturado? Cuál es la temperatura superficial de los tubos? RESPUESA: 10 tubos, C EJERCICIO 12 Una barra cilíndrica de acero de 20 mm de diámetro y 200 mm de longitud, con una emisividad de 0.9, se saca de un horno a 455 C y se sumerge horizontalmente en agua a presión atmosférica. Asumiendo ebullición en película, estimar la rapidez inicial con la que se transfiere calor de la barra al agua. RESPUESA: kw/m²

3 EJERCICIO 13 Una placa vertical de 50 cm de altura y 30 cm de ancho, cuya temperatura superficial se mantiene a 54 C, se pone en contacto con vapor de agua a 1 atm. Calcular la densidad de flujo de calor y el flujo másico del condensado. RESPUESA: kw/m², kg/h EJERCICIO 14 Se tiene un fluido circulando por el interior de un tubo, y otro fluido diferente circulando por el exterior. El coeficiente de transferencia de calor por convección en el interior del tubo es h i = 1035 W/m² K, y el coeficiente de transferencia de calor por convección en el exterior del tubo es h e = 1209 W/m² K. El tubo está hecho de bronce ( k = 52 W/m K) y sus dimensiones son D e = 1 plg, D i = plg y L = 6 ft. Calcúlese la resistencia térmica total, el coeficiente global de transferencia de calor basado en el área externa, y el coeficiente global de transferencia de calor basado en el área interna. RESPUESA: R = K/W, U e = W/m² K, U i = W/m² K EJERCICIO 15 - OPCIONAL Se tiene un fluido circulando por el interior de un tubo, y otro fluido diferente circulando por el exterior del mismo tubo. El coeficiente de transferencia de calor por convección en el interior del tubo es h i y el coeficiente de transferencia de calor por convección en el exterior del tubo es h e. La conductividad térmica del material del tubo es k, y sus dimensiones son: radio externo r e, radio interno r i, y longitud L. Demuéstrese que el coeficiente global de transferencia de calor, basado en el área externa del tubo, está dado por: 1 Ue r reln re / r e i 1 rh k h i i e EJERCICIO 16 Para enfriar un aceite, se emplea un intercambiador de calor de tubos concéntricos formado con un tubo interior de pared delgada por donde circula agua (720 kg/h, entrando a 30 C), y un tubo exterior por donde circula el aceite (450 kg/h, entrando a 100 C). Se desea que el aceite salga del intercambiador a 55 C. El intercambiador está conectado para flujo en contracorriente, con un coeficiente global de transferencia de calor de W/m² K. Calcule la cantidad total de calor transferido (en kw), la temperatura de salida del agua, y el área de transferencia requerida en el intercambiador. El calor específico del aceite es 2000 J/kg K, y el del agua se puede asumir como 4200 J/kg K. RESPUESA: kw, C, m² EJERCICIO 17 En una planta de procesamiento de lácteos, se necesita enfriar una corriente de leche de vaca, inicialmente a temperatura corporal, hasta una temperatura adecuada para su refrigeración. Para ello se va a emplear un intercambiador de calor de coraza y tubos, con agua como fluido de enfriamiento. El coeficiente global de transferencia de calor para el intercambiador es 1000 W/m² K. Determinar el tipo adecuado de intercambiador a usar, la temperatura de salida del agua y el área requerida de transferencia de calor. V (m³/h) ρ (kg/m³) c P (J/kg K) e ( C) s ( C) leche agua ? RESPUESA: intercambiador 2-4, C, m²

4 EJERCICIO 18 Se emplea un intercambiador de calor de coraza y tubos 1-2 para enfriar una corriente de etilenglicol ( m = 2.1 kg/s, c P = 2470 J/ kg K) empleando una corriente de agua de río ( m = 5 kg/s, c P = 4180 J/kg K). Los fluidos entran a 75 C y 25 C, respectivamente. El intercambiador tiene un área total de 9.12 m², y en las condiciones en las que se operará se estima que el coeficiente global de transferencia de calor es 850 W/m² K. Determinar el número de unidades de transferencia del intercambiador y las temperaturas de salida de ambos fluidos. RESPUESA: N = 1.495; el etilenglicol sale a 39.8 C y el agua sale a 33.7 C EJERCICIO 19 - OPCIONAL Se pretende emplear un intercambiadorr de tubos concéntricos para enfriar una corriente de salmuera (18 kg/min entrando a 70 C) empleando agua (450 kg/min entrando a 30 C). El intercambiador está construido en acero inoxidable ( k = 16 W/m K) ), formado por un tubo de 1 plg de diámetro externo (con espesor de pared de plg), instalado dentro de un tubo de 2 plg de diámetro externo (con espesor de pared de plg), ambos de 10 pies de longitud. La salmuera fluye en el tubo interno, y el agua circula a contracorriente en el espacio entre los tubos. Las propiedades físicas de las corrientes se muestran en la tabla y se pueden asumir constantes. Las pérdidas de calor al medio ambiente son despreciables. Calcular (A) el coeficiente global de transferenciaa de calor, basado en el área externa del tubo interno, y (B) la temperatura de salida de la salmuera. AGUA SALMUERA densidad kg/m³ viscosidad Pa s capacidad calorífica J/kg K conductividad térmica W/m K RESPUESA: W/m² K, 57.4 C. EJERCICIO 20 Estimar la difusividad del amoniaco en argón, a 255 K y 1 bar, aplicando (A) la teoría cinética de Chapman-Enskog, (B) el método de Fuller, y (C) la extrapolación de Hirshfelder basándose en el valor reportado de cm²/ /s a 333 K y 1 atm. En los tres casos, calcular el porcentaje de error sabiendo que el valor experimental de la difusividad a 255 K y 1 bar es cm²/s ( dato experimental de Srivstava y Srivastava, Journal of Chemical Physics, 36:2616, 1962; citado por Reid, Prausnitz y Poling, he Properties of Gases and Liquids, 1987). RESPUESA: (A) cm²/ s, (B) cm²/s, (C) cm²/s EJERCICIO 21 Uno de los métodos para extraer la cafeína de los granos de café es mediantee dióxido de carbono a alta presión. Estimar la difusividad de la cafeína en CO 2 a 400 K y 100 bar. Usar la teoría cinética de Chapman-Enskog para estimar la difusividad del vapor de cafeína en CO 2 a baja presión, y asumir que las propiedades pseudocríticas de la mezcla a alta presión son iguales a las del CO 2 puro (suposición válida si la concentración de cafeína es baja). RESPUESA: cm²/s CAFEÍNA Fórmula molecular Peso molecular Punto de fusión Punto de ebullición emperatura crítica Presión crítica Volumen molar crítico Densidad (a 18 C) Solubilidad en 1000 g de agua C 8 H 10 N 4 O g/mol 238 C (sublima a 178 C) 1.23 g/cm³ 2.1 g = no disponible.

5 EJERCICIO 22 Estimar la difusividad del agua en acetona líquida a 0 C (estimar el paracoro de la acetona empleando contribución de grupos). La viscosidad de la acetona a 0 C es Pa s. RESPUESA: cm²/s EJERCICIO 23 Considérese una esfera de un material pemeable en la que ocurre la reacción química homogénea A B, con una cinética de orden cero ra k0. Si la esfera se encuentra en un contenedor muy grande que tiene una concentración C, determine expresiones matemáticas para el perfil de concentraciones C A y la densidad de flujo molar n A, r, ambas en función del radio. k0 2 2 k0 RESPUESA: CA C R r nar, r 6D 3 AB EJERCICIO 24 - OPCIONAL Cuando a una persona se le administra una medicina, es ocasionalmente necesario que el medicamento sea liberado lentamente para que sea efectivo durante un mayor tiempo. Supóngase que se emplean cápsulas esféricas huecas de gel permeable llenas de una solución del medicamento, con una concentración C. Demostrar que el perfil de concentraciones del medicamento C en función de r está dado por: A A C r C R R r 1 2 r R R 2 1 para R1 r R2 donde R 1 es el radio interno y R 2 es el radio externo de la cápsula. Se puede asumir que la concentración C es bastante baja y que no cambia con el tiempo (estado pseudoestable). ambién se puede asumir que fuera de la cápsula la concentración del medicamento es cero. EJERCICIO 25 Se necesita promover el crecimiento de un microorganismo aerobio en un medio de cultivo líquido. Para mantener una alta concentración de oxígeno disuelto, se propone burbujear oxígeno puro en el tanque. Las burbujas, producidas en el fondo del tanque, tienen un diámetro promedio de 3 mm. El líquido se mantiene sin agitación, de tal forma que las burbujas ascienden sólo por flotación. El sistema está a 25 C y 1 atm (constantes) y el medio de cultivo tiene las mismas propiedades que el agua pura. Estimar el valor del coeficiente de transferencia de masa k C. RESPUESA: m/s

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

PORTAFOLIO OPERACIONES UNITARIAS 3

PORTAFOLIO OPERACIONES UNITARIAS 3 PORTAFOLIO OPERACIONES UNITARIAS 3 EJERCICIO 1 Construir el diagrama de equilibrio isobárico xy y Txy para el sistema tolueno-etilbenceno a 1 atm. Las constantes de Antoine para ambos compuestos se muestran

Más detalles

Operaciones Básicas de Transferencia de Materia Problemas Tema 6

Operaciones Básicas de Transferencia de Materia Problemas Tema 6 1º.- En una torre de relleno, se va a absorber acetona de una corriente de aire. La sección de la torre es de 0.186 m 2, la temperatura de trabajo es 293 K y la presión total es de 101.32 kpa. La corriente

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Diseño Termohidráulico de Intercambiadores de Calor.

Diseño Termohidráulico de Intercambiadores de Calor. Diseño Termohidráulico de Intercambiadores de Calor. Horario de clases: Martes y Jueves, 10:00-13:00 hrs. Horario de asesorías: Miércoles de 12:00-14:00 hrs. Aula: B-306 Trimestre: 13I Curso: 2122096 1

Más detalles

Durante la reacción se forma material sólido que no se desprende. Se sabe además que E a = 10 4 cal/mol

Durante la reacción se forma material sólido que no se desprende. Se sabe además que E a = 10 4 cal/mol 4 REACCIONES FLUIDO-SÓLIDO 4.1.- Se ha estudiado la reacción A (g) + B (s) Productos en un reactor experimental discontinuo fluidizado con gas A. Durante la reacción se forma una ceniza dura que no se

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS 1. Por una tubería de 0.15 m de diámetro interno circula un aceite petrolífero de densidad 0.855 g/cm 3 a 20 ºC, a razón de 1.4 L/s. Se ha determinado

Más detalles

PROBLEMAS TRANSMISIÓN DE CALOR

PROBLEMAS TRANSMISIÓN DE CALOR PROBLEMAS TRANSMISIÓN DE CALOR CD_1 El muro de una cámara frigorífica de conservación de productos congelados está compuesto por las siguientes capas (de fuera a dentro): - Revoco de cemento de 2 cm de

Más detalles

TÍTULO DE INGENIERO QUÍMICO REACTORES QUÍMICOS AVANZADOS

TÍTULO DE INGENIERO QUÍMICO REACTORES QUÍMICOS AVANZADOS A TÍTULO DE INGENIERO QUÍMICO REACTORES QUÍMICOS AVANZADOS NOMBRE Test de 20 preguntas. Tres respuestas posibles y sólo una correcta. Por cada pregunta bien contestada se suma un punto. Por cada dos preguntas

Más detalles

Guía de Trabajo. Presión, Arquímedes, Bernoulli. Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta.

Guía de Trabajo. Presión, Arquímedes, Bernoulli. Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta. Guía de Trabajo Presión, Arquímedes, Bernoulli Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta. 1._Una rana en una vaina hemisferica descubre que flota sin

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

TRABAJOS PARA SUBIR NOTA DE 4º DE ESO

TRABAJOS PARA SUBIR NOTA DE 4º DE ESO TRABAJOS PARA SUBIR NOTA DE 4º DE ESO Trabajos para casa Ejercicios... 2 1. TRES ejercicios de CINEMÁTICA... 3 2. TRES ejercicios de HIDROSTÁTICA... 4 3. TRES ejercicios de CALOR... 5 4. CUATRO ejercicios

Más detalles

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar 242 6. Propiedades termodinámicas de los fluidos La energía interna es 34 10 bar 32 J Estos resultados concuerdan mucho más con los valores experimentales que los del supuesto caso del vapor de l-buteno

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

INGENIERIA de la CINETICA QUIMICA HOJA 6. PROBLEMAS de DIFUSION INTERNA

INGENIERIA de la CINETICA QUIMICA HOJA 6. PROBLEMAS de DIFUSION INTERNA INGENIERIA de la CINETICA QUIMICA HOJA 6 PROBLEMAS de DIFUSION INTERNA 1.- Una determinada reacción de primer orden en fase gaseosa, cuando la resistencia a la difusión en los poros es despreciable, transcurre

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN MARZO, 2016 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: TRANSFERENCIA

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

Ejercicio 2. Finalmente, mientras más separados los baffles menor es la transferencia de calor, es decir, existe un relación indirecta.

Ejercicio 2. Finalmente, mientras más separados los baffles menor es la transferencia de calor, es decir, existe un relación indirecta. Ejercicio Profesor: omás Vargas. Auxiliar: Melanie olet. Ayudante: orge Monardes Diego Guiachetti. 1.- En un tercambiador de carcasa y tubos, el fluido que circula por el exterior de los tubos (por la

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

Guía de Ejercicios Unidad IV. Balances de Energía Prof. Juan Rodríguez Estado T (ºF) P (Psia) (ft3/lbm) Ĥ (Btu/lbm)

Guía de Ejercicios Unidad IV. Balances de Energía Prof. Juan Rodríguez Estado T (ºF) P (Psia) (ft3/lbm) Ĥ (Btu/lbm) Universidad Nacional Experimental Politécnica Antonio José de Sucre Vicerrectorado Barquisimeto Departamento de Ingeniería Química Ingeniería Química Guía de Ejercicios Unidad IV. Balances de Energía Prof.

Más detalles

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles

TEMA 1. INTERCAMBIADORES DE CALOR

TEMA 1. INTERCAMBIADORES DE CALOR TEMA 1. INTERCAMBIADORES DE CALOR 1 Índice Clasificación. Regeneradores. Mezcladores o de contacto directo. Intercambiadores de lecho compacto. Intercambiadores de llama directa. Clasificación de los recuperadores.

Más detalles

Medición de la Conductividad

Medición de la Conductividad Medición de la Conductividad 1.1. Introducción Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y RADIACIÓN La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y la superficie que absorba o emita la energía.

Más detalles

PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR

PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR PROCEDIMIENTO DE DISEÑO DE INTERCAMBIADOR DE CALOR 1. Calcular la cantidad de calor intercambiado (Q). Calcular la diferencia de temperatura media efectiva 3. Asumir el coeficiente global de transferencia

Más detalles

GUIA DE PROBLEMAS N 5

GUIA DE PROBLEMAS N 5 GUIA DE PROBLEMAS N 5 PROBLEMA N 1 Se produce un vacío parcial en una caja estanca, que tiene una tapa cuya área es 7,5 10-3 m 2. Si se requiere una fuerza de 480N para desprender la tapa de la caja y

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha TAREA 1 Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha INSTRUCCIONES: Investiga como es el puente de Hidrógeno en las estructuras del H 2 O, NH 3 y HF. Dibuja los modelos resaltando con color

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Problema 1. Problema 2

Problema 1. Problema 2 Problemas de clase, octubre 2016, V1 Problema 1 Una máquina frigorífica utiliza el ciclo estándar de compresión de vapor. Produce 50 kw de refrigeración utilizando como refrigerante R-22, si su temperatura

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

DISEÑO DE CÁMARAS FRIGORÍFICAS

DISEÑO DE CÁMARAS FRIGORÍFICAS DISEÑO DE CÁMARAS FRIGORÍFICAS OBJETIVO Velocidad de extracción de Calor velocidad de ingreso de calor El aire en el interior debe ser mantenido a temperatura constante de diseño. El evaporador es diseñado

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I

Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I Prof. Ing. Mahuli González Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I INTERCAMBIADORES DE CALOR Equipos donde se realiza

Más detalles

Por qué es importante conocer. componentes de una disolución química?

Por qué es importante conocer. componentes de una disolución química? Por qué es importante conocer la proporción de los componentes de una disolución química? Qué será más conveniente cuando calentamos agua para cocinar algún alimento: agregar sal antes o después que hierva

Más detalles

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR IT 03.2 - TRANSMISIÓN DE CALOR POR CONVECCIÓN NATURAL Y FORZADA (pag. F - 1) TC 01.1 - ALIMENTADOR PARA INTERCAMBIADORES DE CALOR (pag. F - 3) TC 01.2 - INTERCAMBIADOR DE CALOR DE PLACAS (pag. F - 5) TC

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1 UNIDAD 1 I. INTRODUCCIÓN 1. Investiga y resume los siguientes conceptos: a. HIDRODINÁMICA: b. HIDROSTÁTICA: c. HIDRÁULICA 2. Investiga y resume en qué consiste cada una de las características de los fluidos

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h.

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h. SISTEMA DE UNIDADES EQUIVALENCIAS DE UNIDADES DE ENERGÍA 1 cal = 4,18 J 1 J = 0,24 cal 1Kwh = 3,6 x 10 6 J PROBLEMAS SOBRE ENERGÍA MECÁNICA FÓRMULAS: Energía potencial gravitatoria:. Energía cinética:.

Más detalles

PARCIAL DE FISICA II 7/6/2001 CASEROS II TEORICO: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos.

PARCIAL DE FISICA II 7/6/2001 CASEROS II TEORICO: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos. PARCIAL DE FISICA II 7/6/2001 CASEROS II ALUMNO: MATRICULA: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos. 2-Obtener la ecuación de las Adiabáticas. 3-Explicar

Más detalles

DIMENSIONAMIENTO DE TÚNELES Y CÁMARAS DE CONGELACIÓN

DIMENSIONAMIENTO DE TÚNELES Y CÁMARAS DE CONGELACIÓN UNIVERSIDAD AUSTRAL DE CHILE INSTITUTO DE CIENCIA Y TECNOLOGIA DE LOS ALIMENTOS (ICYTAL) / Asignatura : Ingeniería de Servicios (ITCL 286). Profesor : Elton F. Morales Blancas. DIMENSIONAMIENTO DE TÚNELES

Más detalles

Mecánica de fluidos. Ejercicios propuestos

Mecánica de fluidos. Ejercicios propuestos Mecánica de fluidos Ejercicios propuestos 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta en el

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Septiembre 95 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Septiembre 95 Nombre... Examen de TECNOLOGIA DE MAQUINAS Septiembre 95 Nombre... Sea el eje de una turbina de vapor que se apoya sobre dos cojinetes completos tal y como se puede ver en la figura. El eje pesa 2000 Kg y su centro

Más detalles

Ejercicios relacionados con líquidos y sólidos

Ejercicios relacionados con líquidos y sólidos Ejercicios relacionados con líquidos y sólidos. La presión de vapor del etanol es de 35,3 mmhg a 40 o C y 542,5 mmhg a 70 o C. Calcular el calor molar de vaporización y la presión del etanol a 50 o C.

Más detalles

Conductividad en presencia de campo eléctrico

Conductividad en presencia de campo eléctrico 6. Fenómenos de transporte Fenómenos de transporte Conductividad térmicat Viscosidad Difusión n sedimentación Conductividad en presencia de campo eléctrico UAM 01-13. Química Física. Transporte CT V 1

Más detalles

Y TECNOLOGÍA DEL MEDIO AMBIENTE UNIVERSIDAD DE OVIEDO BASES DE LA INGENERÍA QUÍMICA 1º GIQ CURSO 2014/15

Y TECNOLOGÍA DEL MEDIO AMBIENTE UNIVERSIDAD DE OVIEDO BASES DE LA INGENERÍA QUÍMICA 1º GIQ CURSO 2014/15 DEPARTAMENTO DE INGENIERÍA QUÍMICA Y TECNOLOGÍA DEL MEDIO AMBIENTE UNIVERSIDAD DE OVIEDO BASES DE LA INGENERÍA QUÍMICA 1º GIQ CURSO 2014/15 PRÁCTICAS DE AULA PROBLEMAS PROBLEMA 1.1.- Transformar las siguientes

Más detalles

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS 1. Una Cámara de refrigeración para almacenamiento de Kiwi tiene las siguientes dimensiones: 3,6 m x 8 m x 28 m. Fue diseñado para operar

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Bajo. Capítulo I. Generalidades sobre Intercambiadores de calor. Intercambiadores de calor

Bajo. Capítulo I. Generalidades sobre Intercambiadores de calor. Intercambiadores de calor Capítulo I Generalidades sobre Intercambiadores de calor. Intercambiadores de calor Bajo la denominación general de intercambiadores de calor, se engloba a todos aquellos dispositivos utilizados para transferir

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste

Más detalles

BALANCES DE MASA Y ENERGÍA CAPITULO 1: BALANCES DE MATERIALES

BALANCES DE MASA Y ENERGÍA CAPITULO 1: BALANCES DE MATERIALES BALANCES DE MASA Y ENERGÍA CAPITULO 1: BALANCES DE MATERIALES 1.1 INTRODUCCION Proceso: Cualquier operación o serie de operaciones que produce un cambio físico o químico en una sustancia o en una mezcla

Más detalles

SEGUNDA PRACTICA DE QUÍMICA

SEGUNDA PRACTICA DE QUÍMICA UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE QUÍMICA CURSO PROPEDÉUTICO ESTADO GASEOSO SEGUNDA PRACTICA DE QUÍMICA 1. El acetileno (C 2 H 2 ) es un combustible utilizado

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Unidad III. Sistemas Monofásicos

Unidad III. Sistemas Monofásicos UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingeniería Química Unidad III. Balance de materia Sistemas Monofásicos

Más detalles

19. BALANCE GENERAL 1. OBJETIVOS

19. BALANCE GENERAL 1. OBJETIVOS 19. BALANCE GENERAL 1. OBJETIVOS 1.1. Calcular, mediante HYSYS, los flujos y las composiciones desconocidas en un mezclado entre dos corrientes. 1.2. Verificar los resultados reportados por HYSYS en cálculos

Más detalles

1. MATERIA Y SU ASPECTO

1. MATERIA Y SU ASPECTO 1. MATERIA Y SU ASPECTO El aspecto de un sistema material puede variar según el método de observación. Algunos sistemas materiales como la leche, la sangre o la mantequilla a simple vista parecen uniformes,

Más detalles

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue Método del polo de operación (I) - Destilación Problemas PROBLEMA 1*. Cierta cantidad de una mezcla de vapor de alcohol etílico y agua, 50 % molar, a una temperatura de 190 ºF, se enfría hasta su punto

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONDUCCIÓN

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONDUCCIÓN LABORATORIO DE OPERACIONES UNITARIAS II Página 1 de 10 LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE 2010-1 CONDUCCIÓN Laura Franco, Yeni Ramírez, Luis García OBJETIVOS: Conducción

Más detalles

CAPITULO 1 BALANCES MOLARES

CAPITULO 1 BALANCES MOLARES CAPITULO 1 BALANCES MOLARES 1.1 INTRODUCCIÓN Los reactores químicos son el corazón de la mayoría de las industrias químicas. El conocimiento de la cinética química y del diseño de reactores distingue al

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Transferencia de Calor. Ingeniería Electromecánica EMM - 0536 3 2 8 2.- HISTORIA

Más detalles

INTERCAMBIADORES DE CALOR DE TUBOS CONCÉNTRICOS. María Claudia Romero, Natalia Ballesteros, Julián Vargas Echeverry

INTERCAMBIADORES DE CALOR DE TUBOS CONCÉNTRICOS. María Claudia Romero, Natalia Ballesteros, Julián Vargas Echeverry INTERCAMBIADORES DE CALOR DE TUBOS CONCÉNTRICOS María Claudia Romero, Natalia Ballesteros, Julián Vargas Echeverry Resumen En un intercambiador de calor participan dos o más corrientes de proceso, unas

Más detalles

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa?

de aire. Determinar la composicion de la mezcla resultante. Cuál es el porcentaje en exceso de aire, suponiendo conversion completa? C A P Í T U L O 2 Dada la importancia que tienen los procesos de combustión en la generación de contaminantes, en este capítulo se han incluido algunos ejercicios relacionados con la combustión estequiométrica.

Más detalles

Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández

Pedro G. Vicente Quiles Área de Máquinas y Motores Térmicos Departamento de Ingeniería de Sistemas Industriales Universidad Miguel Hernández BALANCE ENERGÉTICO EN CALDERAS 1 Introducción 2 Funcionamiento de una caldera 3 Pérdidas energéticas en calderas 4 Balance energético en una caldera. Rendimiento energético 5 Ejercicios Pedro G. Vicente

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

Estática de fluidos. 7. Si se llena con agua una presa de anchura 100 m hasta una altura de 30 m, determinar la fuerza que ejerce el agua sobre ésta.

Estática de fluidos. 7. Si se llena con agua una presa de anchura 100 m hasta una altura de 30 m, determinar la fuerza que ejerce el agua sobre ésta. Estática de fluidos 1. Para elevar un automóvil de 13300 N de peso se utiliza una bomba hidráulica con un pistón de 15 cm de diámetro. Qué fuerza debe aplicarse al otro pistón de 5 cm de diámetro, conectado

Más detalles

[CONDUCTIVIDAD TÉRMICA]

[CONDUCTIVIDAD TÉRMICA] Curso 2009-10 Conductividad Térmica D.Reyman U.A.M. Curso 2009-10 Curso2009-10 Página 1 Conductividad Térmica. Ley de Fourier Es un proceso de transporte en el que la energía migra en respuesta a un gradiente

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

Propiedades del agua saturada (líquido-vapor): Tabla de presiones

Propiedades del agua saturada (líquido-vapor): Tabla de presiones Propiedades del agua saturada (líquido-vapor): Tabla de presiones Volumen especifico Energía interna Entalpía Entropía m 3 / kg kj / kg kj / kg kj / kg, K Liquido Vapor Liquido Vapor Liquido Vapor Vapor

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

4. DISCUSIÓN DE RESULTADOS

4. DISCUSIÓN DE RESULTADOS 4. DISCUSIÓN DE RESULTADOS 4.1 Revisión bibliográfica La revisión bibliográfica aportó la información, datos y ecuaciones matemáticas para poder tener un punto de partida y sustentar este trabajo con datos

Más detalles

Ensayo De Evaporadores

Ensayo De Evaporadores Ensayo De Evaporadores UNITARIAS II PROFESOR: Dr. SALMERON OCHOA IVAN ALUMNOS: ANA LAURA PACHECO MORALES 232553 OSCAR OSWALDO AGUIRRE OLVERA 232619 OSCAR SALGADO POSADA 245454 GRUPO: 7 E La Evaporación

Más detalles

Calificación: 10 Puntos Pregunta 1.a 1.b 1.c 2.a 2.b Nota Oxidación del Monóxido de Nitrógeno (A) para Dióxido de Nitrógeno (B) Agua

Calificación: 10 Puntos Pregunta 1.a 1.b 1.c 2.a 2.b Nota Oxidación del Monóxido de Nitrógeno (A) para Dióxido de Nitrógeno (B) Agua Prueba Teórica Nº 6 Calificación: 10 Puntos Pregunta 1.a 1.b 1.c 2.a 2.b Nota 1 1 1 4 3 Problema: Producción del Ácido Nítrico. Figura 1: Wihelm Ostwald. El ácido nítrico es un ácido fuerte, importante

Más detalles

NOMBRE: CURSO: HOJAS DE ACTIVIDADES FÍSICA Y QUÍMICA 3º DE ESO

NOMBRE: CURSO: HOJAS DE ACTIVIDADES FÍSICA Y QUÍMICA 3º DE ESO NOMBRE: CURSO: HOJAS DE ACTIVIDADES FÍSICA Y QUÍMICA 3º DE ESO ACTIVIDAD 1: La materia Tema 2 LA NATURALEZA CORPUSCULAR DE LA MATERIA 1- Qué es la materia? 2- Qué es un corpúsculo? Pon ejemplos 3- Qué

Más detalles

03 DISOLUCIONES. 2 Observando la curva de solubilidad del clorato potásico, responder:

03 DISOLUCIONES. 2 Observando la curva de solubilidad del clorato potásico, responder: 03 DISOLUCIONES 1 Sabemos que cierta disolución tiene una concentración de c = 512 g/l. Si su densidad es1,43 g/l, expresa el valor de su concentración en tanto por ciento. 2 Observando la curva de solubilidad

Más detalles