Fundamentos de Estadística Pablo Cazau

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fundamentos de Estadística Pablo Cazau"

Transcripción

1 Fundamentos de Estadística Pablo Cazau

2 Prefacio Capítulo 1: Introducción a la estadística 1.1 Definición y utilidad de la estadística 1.2 Clasificaciones de la estadística 1.3 Población y muestra 1.4 Estructura del dato 1.5 La medición Capítulo 2: Estadística descriptiva 2.1 Generalidades 2.2 Ordenamiento y agrupación de los datos: matrices y tablas 2.3 Visualización de los datos: gráficos 2.4 Síntesis de los datos: medidas estadísticas de posición 2.5 Síntesis de los datos: medidas estadísticas de dispersión 2.6 Síntesis de los datos: asimetría y curtosis Notas Capítulo 3: Probabilidad y curva normal 3.1 El concepto de probabilidad 3.2 Definición y características de la curva normal 3.3 Puntajes brutos y puntajes estandarizados 3.4 Aplicaciones de la curva normal Notas Capítulo 4: Correlación y regresión 4.1 Introducción 4.2 El análisis de correlación 4.3 Cálculo gráfico de la correlación 4.4 Cálculo analítico de la correlación 4.5 Un ejemplo: construcción y validación de tests 4.6 El análisis de regresión 4.7 Cálculo analítico de la regresión 4.8 Cálculo gráfico de la correlación Notas Capítulo 5: Estadística inferencial 5.1 Introducción 5.2 Estimación de parámetros 5.3 Prueba de hipótesis 5.4 Ejemplos de pruebas de hipótesis 5.5 El concepto de significación estadística Notas Referencias bibliográficas Otras fuentes consultadas Anexos ANEXO 1: NOMENCLATURA UTILIZADA EN ESTA GUÍA ANEXO 2: TABLA DE ÁREAS BAJO LA CURVA NORMAL ESTANDARIZADA Tabla 1 Áreas desde z hacia la izquierda Tabla 2 Áreas desde z = 0 hacia la izquierda o hacia la derecha ANEXO 3: TABLA DE LA DISTRIBUCIÓN t Fundamentos de estadística Pablo Cazau PREFACIO

3 El presente texto fue pensado como un manual de consulta para alumnos de diversas carreras universitarias de grado y posgrado que cursan asignaturas donde se enseña la estadística como herramienta de la metodología de la investigación científica. Se brinda aquí un panorama general e introductorio de los principales temas de una disciplina que opera en dos grandes etapas: la estadística descriptiva y la estadística inferencial. También se desarrollan los conceptos de probabilidad y curva normal, básicos para la comprensión de la estadística inferencial, y los conceptos de correlación y regresión vinculados, respectivamente, con las etapas descriptiva e inferencial. Pablo Cazau. Licenciado en Psicología y Profesor de Enseñanza Media y Superior en Psicología (UBA). Buenos Aires, Enero Todos los derechos reservados

4 CAPÍTULO 1: INTRODUCCION A LA ESTADISTICA 1.1 DEFINICIÓN Y UTILIDAD DE LA ESTADÍSTICA La Estadística es una disciplina que utiliza recursos matemáticos para organizar y resumir una gran cantidad de datos obtenidos de la realidad, e inferir conclusiones respecto de ellos. Por ejemplo, la estadística interviene cuando se quiere conocer el estado sanitario de un país, a través de ciertos parámetros como la tasa de morbilidad o mortalidad de la población. En este caso la estadística describe la muestra en términos de datos organizados y resumidos, y luego infiere conclusiones respecto de la población. Por ejemplo, aplicada a la investigación científica, hace inferencias cuando emplea medios matemáticos para establecer si una hipótesis debe o no ser rechazada. La estadística puede aplicarse a cualquier ámbito de la realidad, y por ello es utilizada en física, química, biología, medicina, astronomía, psicología, sociología, lingüística, demografía, etc. Cuando en cualquiera de estas disciplinas se trata de establecer si una hipótesis debe o no ser rechazada, no siempre es indispensable la estadística inferencial. Por ejemplo, si sobre 60 veces que se mira un dado, sale un dos 10 veces, no se requiere la estadística para rechazar la hipótesis el dado está cargado. Si sale un dos en 58 ocasiones sobre 60, tampoco se necesita la estadística para aceptar la hipótesis el dado está cargado. Pero, qué ocurre si el número dos sale 20, 25 o 30 veces? En estos casos de duda, la estadística interviene para determinar hasta qué cantidad de veces se considerará rechazada la hipótesis (o bien desde qué cantidad de veces se la considerará aceptada). En otras palabras, la estadística interviene cuando debe determinarse si los datos obtenidos son debidos al azar o son el resultado de un dado cargado. Otro ejemplo. Si una persona adivina el color (rojo o negro) de las cartas en un 50% de los casos, se puede rechazar la hipótesis la persona es adivina. Si, en cambio, acierta en el 99% de los casos el color de las cartas, se puede aceptar la mencionada hipótesis. Los casos de duda corresponden a porcentajes de acierto intermedios, como el 60%, el 70%, etc., en cuyos casos debe intervenir la estadística para despejarlos. La importancia de la estadística en la investigación científica radica en que la gran mayoría de las investigaciones son casos de duda. 1.2 CLASIFICACIONES DE LA ESTADÍSTICA Existen varias formas de clasificar los estudios estadísticos. 1) Según la etapa.- Hay una estadística descriptiva y una estadística inferencial. La primera etapa se ocupa de describir la muestra, y la segunda etapa infiere conclusiones a partir de los datos que describen la muestra (por ejemplo, conclusiones con respecto a la población). Tanto la estadística descriptiva como la estadística inferencial se ocupan de obtener datos nuevos. La diferencia radica en que la estadística descriptiva procede a resumir y organizar esos datos para facilitar su análisis e interpretación, y la estadística inferencial procede a formular estimaciones y probar hipótesis acerca de la población a partir de esos datos resumidos y obtenidos de la muestra. Puesto que estas últimas operaciones llevarán siempre a conclusiones que tienen algún grado de probabilidad, la teoría de la probabilidad constituye una de sus herramientas principales. Téngase presente que en sí misma la teoría de la probabilidad no forma parte de la estadística porque es otra rama diferente de la matemática, pero es utilizada por la estadística como instrumento para lograr sus propios objetivos. La estadística descriptiva también incluye explícita o implícitamente- consideraciones probabilísticas, aunque no resultan ser tan importantes como en la estadística inferencial. Por ejemplo, la elección de un determinado estadístico para caracterizar una muestra (modo, mediana o media aritmética) se funda sobre ciertas consideraciones implícitas acerca de cuál de ellos tiene más probabilidades de representar significativamente el conjunto de los datos que se intenta resumir. Tanto la estadística descriptiva como la inferencial implican, entonces, el análisis de datos. Si se realiza un análisis con el fin de describir o caracterizar los datos que han sido reunidos, entonces estamos en el área de la estadística descriptiva Por otro lado, la estadística inferencial no se refiere a la simple descripción de los datos obtenidos, sino que abarca las técnicas que nos permiten utilizar los datos muestrales para inferir u obtener conclusiones sobre las poblaciones de las cuales fueron extraídos dichos datos (Pagano, 1998:19). Kohan, por su parte, sintetiza así su visión de las diferencias entre ambos tipos de estadística: Si estudiamos una característica de un grupo, sea en una población o en una muestra, por ejemplo talla, peso, edad, cociente intelectual, ingreso mensual, etc, y lo describimos sin sacar de ello conclusiones estamos en la etapa de la estadística descriptiva. Si estudiamos en una muestra una característica cualquiera e inferimos, a partir de los resultados obtenidos en la muestra, conclusiones sobre la población correspondiente, estamos haciendo estadística inductiva o inferencial, y como estas inferencias no pueden ser exactamente ciertas, aplicamos el lenguaje probabilístico para sacar las conclusiones (Kohan, 1994:25). Kohan emplea la palabra inductiva porque las inferencias realizadas en este tipo de estadística son razonamientos inductivos, modernamente definidos como razonamientos cuya conclusión es sólo probable.

5 2) Según la cantidad de variables estudiada.- Desde este punto de vista hay una estadística univariada (estudia una sola variable, como por ejemplo la inteligencia), una estadística bivariada (estudia la relación entre dos variables, como por ejemplo inteligencia y alimentación), y una estadística multivariada (estudia tres o más variables, como por ejemplo como están relacionados el sexo, la edad y la alimentación con la inteligencia). El siguiente esquema ilustra la relación entre dos clasificaciones de la estadística: descriptiva / inferencial y univariada / bivariada. Parámetros POBLACION x y Estadísticos x y MUESTRA x 1 x 2 x n x 1 y 1 Una variable Dos (o más) variables La estadística descriptiva se ocupa de muestras, y la estadística inferencial infiere características de la población a partir de muestras. A su vez, ambas etapas de la estadística pueden estudiar una variable por vez o la relación entre dos o más variables. Por ejemplo, a) en el caso de la estadística univariada, el cálculo de medidas de posición y dispersión en una muestra corresponde a la estadística descriptiva, mientras que la prueba de la media corresponde a la estadística inferencial; b) en el caso de la estadística bivariada, el análisis de correlación de variables en una muestra corresponde estrictamente hablando a la estadística descriptiva, mientras que el análisis de regresión o las pruebas de hipótesis para coeficientes de correlación (Kohan N, 1994:234) corresponden a la estadística inferencial. 3) Según el tiempo considerado.- Si se considera a la estadística descriptiva, se distingue la estadística estática o estructural, que describe la población en un momento dado (por ejemplo la tasa de nacimientos en determinado censo), y la estadística dinámica o evolutiva, que describe como va cambiando la población en el tiempo (por ejemplo el aumento anual en la tasa de nacimientos). 1.3 POBLACIÓN Y MUESTRA Puesto que la estadística se ocupa de una gran cantidad de datos, debe primeramente definir de cuáles datos se va a ocupar. El conjunto de datos de los cuales se ocupa un determinado estudio estadístico se llama población. No debe confundirse la población en sentido demográfico y la población en sentido estadístico. La población en sentido demográfico es un conjunto de individuos (todos los habitantes de un país, todas las ratas de una ciudad), mientras que una población en sentido estadístico es un conjunto de datos referidos a determinada característica o atributo de los individuos (las edades de todos los individuos de un país, el color de todas las ratas de una ciudad). Incluso una población en sentido estadístico no tiene porqué referirse a muchos individuos. Una población estadística puede ser también el conjunto de calificaciones obtenidas por un individuo a lo largo de sus estudios universitarios. En el siguiente esquema pueden apreciarse algunas formas de considerar los datos individuales, según que correspondan a muchas personas o a una sola, y también según que hayan sido recolectados en un instante de tiempo determinado, o bien a lo largo del tiempo. En un instante de tiempo De muchos individuos Notas de todos los alumnos en el primer parcial de tal mes y tal año. De un solo individuo Notas de un solo alumno en el primer parcial de las materias que

6 A lo largo del tiempo Notas de todos los alumnos durante los 6 años de carrera. cursa en ese momento. Notas de un alumno a lo largo de los 6 años de carrera. Los datos de la totalidad de una población pueden obtenerse a través de un censo. Sin embargo, en la mayoría de los casos no es posible hacerlo por razones de esfuerzo, tiempo y dinero, razón por la cual se extrae, de la población, una muestra, mediante un procedimiento llamado muestreo. Se llama muestra a un subconjunto de la población, y que puede o no ser representativa de la misma. Por ejemplo, si la población es el conjunto de todas las edades de los estudiantes de la provincia de Buenos Aires, una muestra podría ser el conjunto de edades de 2000 estudiantes de la provincia de Buenos Aires tomados al azar. 1.4 ESTRUCTURA DEL DATO Los datos son la materia prima con que trabaja la estadística, del mismo modo que la madera es la materia prima con que trabaja el carpintero. Así como este procesa o transforma la madera para obtener un producto útil, así también el estadístico procesa o transforma los datos para obtener información útil. Tanto los datos como la madera no se inventan: se extraen de la realidad; en todo caso el secreto está en recoger la madera o los datos más adecuados a los objetivos del trabajo a realizar. De una manera general, puede definirse técnicamente dato como una categoría asignada a una variable de una unidad de análisis. Por ejemplo, Luis tiene 1.70 metros de estatura es un dato, donde Luis es la unidad de análisis, estatura es la variable, y 1.70 metros es la categoría asignada. Como puede apreciarse, todo dato tienen al menos tres componentes: una unidad de análisis, una variable y una categoría. La unidad de análisis es el elemento del cual se predica una propiedad y característica. Puede ser una persona, una familia, un animal, una sustancia química, o un objeto como una dentadura o una mesa. La variable es la característica, propiedad o atributo que se predica de la unidad de análisis. Por ejemplo puede ser la edad para una persona, el grado de cohesión para una familia, el nivel de aprendizaje alcanzado para un animal, el peso específico para una sustancia química, el nivel de salud para una dentadura, y el tamaño para una mesa. Pueden entonces también definirse población estadística (o simplemente población) como el conjunto de datos acerca de unidades de análisis (individuos, objetos) en relación a una misma característica, propiedad o atributo (variable). Sobre una misma población demográfica pueden definirse varias poblaciones de datos, una para cada variable. Por ejemplo, en el conjunto de habitantes de un país (población demográfica), puede definirse una población referida a la variable edad (el conjunto de edades de los habitantes), a la variable ocupación (el conjunto de ocupaciones de los habitantes), a la variable sexo (el conjunto de condiciones de sexo de los habitantes). La categoría es cada una de las posibles variaciones de una variable. Categorías de la variable sexo son masculino y femenino, de la variable ocupación pueden ser arquitecto, médico, etc, y de la variable edad pueden ser 10 años, 11 años, etc. Cuando la variable se mide cuantitativamente, es decir cuando se expresa numéricamente, a la categoría suele llamársela valor. En estos casos, el dato incluye también una unidad de medida, como por ejemplo años, cantidad de hijos, grados de temperatura, cantidad de piezas dentarias, centímetros, etc. El valor es, entonces, cada una de las posibles variaciones de una variable cuantitativa. Datos individuales y datos estadísticos.- Un dato individual es un dato de un solo individuo, mientras que un dato estadístico es un dato de una muestra o de una población en su conjunto. Por ejemplo, la edad de Juan es un dato individual, mientras que el promedio de edades de una muestra o población de personas es un dato estadístico. Desde ya, puede ocurrir que ambos no coincidan: la edad de Juan puede ser 37 años, y el promedio de edades de la muestra donde está incluído Juan es 23 años. Por esta razón un dato estadístico nada dice respecto de los individuos, porque solamente describe la muestra o población. Los datos estadísticos que describen una muestra suelen llamarse estadísticos (por ejemplo, el promedio de ingresos mensuales de las personas de una muestra), mientras que los datos estadísticos descriptores de una población suelen llamarse parámetros (por ejemplo, el promedio de ingresos mensuales de las personas de una población) (Kohan N, 1994:143). 1.5 LA MEDICIÓN Los datos se obtienen a través un proceso llamado medición. Desde este punto de vista, puede definirse medición como el proceso por el cual asignamos una categoría (o un valor) a una variable, para determinada unidad de análisis. Ejemplo: cuando decimos que Martín es varón, estamos haciendo una medición, porque estamos asignando una categoría (varón) a una variable (sexo) para una unidad de análisis (Martín).

7 A veces se ha definido medir como comparar, lo cual puede referirse a diversos tipos de comparación: 1) comparar una cantidad con otra tomada como unidad Sentido clásico de comparación); 2) comparar dos categorías de una misma variable en el mismo sujeto y distinto tiempo; 3) comparar dos categorías de una misma variable en distintos sujetos al mismo tiempo; y 4) categorías de variables distintas (debe usarse puntaje estandarizado), en el mismo sujeto o en sujetos distintos. Se pueden hacer mediciones con mayor o menor grado de precisión. Cuanto más precisa sea la medición, más información nos suministra sobre la variable y, por tanto, sobre la unidad de análisis. No es lo mismo decir que una persona es alta, a decir que mide 1,83 metros. Los diferentes grados de precisión o de contenido informativo de una medición se suelen caracterizar como niveles de medición. Típicamente se definen cuatro niveles de medición, y en cada uno de ellos la obtención del dato o resultado de la medición será diferente: Ejemplos de datos en diferentes niveles de medición Nivel de medición Nivel nominal Nivel ordinal Nivel cuantitativo discreto Nivel cuantitativo continuo DATO Martín es electricista Elena terminó la secundaria Juan tiene 32 dientes María tiene 70 pulsaciones por minuto Unidad de Martín Elena Juan María análisis Variable Oficio Nivel de Cantidad de piezas Frecuencia cardíaca instrucción dentarias Categoría o Electricista Secundaria valor completa Unidad de medida Diente Pulsaciones por minuto En el nivel nominal, medir significa simplemente asignar un atributo a una unidad de análisis (Martín es electricista). En el nivel ordinal, medir significa asignar un atributo a una unidad de análisis cuyas categorías pueden ser ordenadas en una serie creciente o decreciente (la categoría secundaria completa puede ordenarse en una serie, pues está entre secundaria incompleta y universitaria incompleta ). En el nivel cuantitativo, medir significa además asignar un atributo a una unidad de análisis de modo tal que la categoría asignada permita saber cuánto mayor o menor es respecto de otra categoría, es decir, especifica la distancia o intervalo entre categorías (por ejemplo, la categoría 70 es el doble de la categoría 35). Las variables medibles en el nivel cuantitativo pueden ser discretas o continuas. Una variable discreta es aquella en la cual, dados dos valores consecutivos, no puede adoptar ningún valor intermedio (por ejemplo entre 32 y 33 dientes, no puede hablarse de 32.5 dientes). En cambio, una variable es continua cuando, dados dos valores consecutivos, la variable puede adoptar muchos valores intermedios (por ejemplo entre 1 y 2 metros, puede haber muchas longitudes posibles). Algunas veces una misma variable puede ser considerada como discreta o continua. Por ejemplo, la variable peso es discreta si solamente interesan los pesos sin valores intermedios (50 kg, 51 kg, etc), mientras que será continua si interesan también los valores intermedios (50,3 kg, 50,35 kg, 50,357 kg, etc). Obviamente, al considerar una variable como continua se obtendrá mayor precisión, es decir, mayor información. La precisión es una cualidad importante de la medición. Se pueden hacer mediciones más precisas y menos precisas, o tan precisas como lo permita el instrumento de medición. El primer nivel de medición es el menos preciso, y el último el más preciso. Por ejemplo, una mujer puede estar interesada en medir el amor de su pareja, para lo cual podrá interrogarla solicitándole diferentes grados de precisión: me querés? (nivel nominal), me querés más que a la otra? (nivel ordinal), Cuánto me querés, del 1 al 10? (nivel cuantitativo). De la misma manera, diferentes grados de precisión para la variable temperatura pueden ser: A es un objeto caliente (nivel nominal), A es más caliente que B (nivel ordinal), A tiene 25 grados Celsius (nivel cuantitativo). Los ejemplos del amor y de la temperatura ilustran también el hecho de que una variable puede en principio medirse en cualquiera de los niveles de medición. Los niveles de medición pueden también ser clasificados de acuerdo a un criterio diferente, que afecta específicamente a los dos últimos. Así, los niveles de medición pueden ser clasificados como nominal, ordinal, de intervalos iguales y de cocientes o razones. Más allá de sus diferentes propiedades matemáticas, el nivel de intervalos iguales incluye un cero relativo o arbitrario, mientras que el nivel de cocientes o razones incluye un cero absoluto o real. Un cero absoluto o real representa la ausencia real de la variable (cero metros implica ausencia de longitud), mientras que un cero relativo o arbitrario no (cero grado centígrados no implica ausencia de temperatura).

8 Existen ciertas variables a las cuales no puede asignársele un cero real, por cuanto no se considera que esa variable pueda estar ausente en la realidad. Tal es el caso de la ansiedad o la inteligencia: nadie, por menos ansioso o por menos inteligente que sea, puede tener ansiedad o inteligencia nulas. CAPÍTULO 2: ESTADÍSTICA DESCRIPTIVA 2.1 GENERALIDADES El propósito fundamental de la estadística descriptiva es resumir y organizar una gran cantidad de datos referentes a una muestra (lo más habitual) o a una población. Se supone que los datos resumidos y organizados permiten describir adecuadamente la muestra o la población a los efectos de conocerla y, eventualmente, utilizarlos en la estadística inferencial para obtener conclusiones a partir de ellos. Para resumir y organizar los datos se utilizan diferentes procedimientos, llamados técnicas descriptivas: la matriz de datos permite ordenarlos, las tablas de frecuencias (o tablas de distribución de frecuencias) permiten agruparlos, los gráficos permiten visualizarlos, y las medidas estadísticas y las medidas de asimetría y curtosis permiten resumirlos reduciéndolos a un solo dato. Secuencia para organizar y resumir datos individuales A medida que se van utilizando estos procedimientos, los datos van quedando cada vez más resumidos y organizados. El empleo de dichos procedimientos propios de la estadística descriptiva sigue un orden determinado, como puede apreciarse en el siguiente esquema: DATOS ORDENADOS (matriz de datos) DATOS RECOLECTADOS (entrevistas, cuestionarios, tests, etc) DATOS AGRUPADOS POR FRECUENCIA (tabla de frecuencias) DATOS AGRUPADOS POR INTERVALOS (tabla de frecuencias por intervalos) DATOS VISUALIZADOS (gráficos) DATOS SINTETIZADOS (medidas estadísticas y medidas de asimetría y curtosis) Como puede verse: a) Los datos quedan recolectados mediante entrevistas, cuestionarios, tests, etc. b) Los datos quedan ordenados mediante una matriz de datos (lo cual permite resumir la información en unas pocas páginas). c) Los datos quedan agrupados mediante tablas de frecuencias (lo cual permite resumir la información en una sola página). d) Los datos quedan visualizados mediante gráficos. e) Los datos quedan sintetizados mediante las medidas estadísticas y otras (lo cual permite resumir la información en uno o dos renglones). Puede entonces decirse que, mediante una matriz de datos, una tabla de frecuencias (1), un gráfico o con medidas estadísticas, etc, la muestra o la población (conjuntos de datos) puede quedar adecuadamente descrita. Estas sucesivas abstracciones estadísticas implican: a) la reducción del espacio físico donde queda guardada la nueva información, y b) la desaparición de considerable información irrelevante. Debe distinguirse el fin o propósito perseguido (por ejemplo ordenar los datos), del medio utilizado para ello, que e la técnica descriptiva (por ejemplo, la matriz de datos). 2.2 ORDENAMIENTO Y AGRUPACIÓN DE LOS DATOS: MATRICES Y TABLAS Una vez que los datos han sido recolectados, se procede a continuación a ordenarlos en una matriz de datos y luego a agruparlos en una tabla de frecuencias.

9 La forma de ordenarlos y agruparlos dependerá del tipo de variable considerada. Por ejemplo, si son datos relativos a variables cualitativas (niveles de medición nominal y ordinal), no podremos utilizar tablas de frecuencias por intervalos. El siguiente cuadro indica de qué manera se pueden ordenar y agrupar los datos según cada nivel de medición de la variable: Ejemplos de organización de los datos según el nivel de medición Nivel nominal (Ejemplo: variable religión) Datos ordenados Datos agrupados por frecuencia Datos agrupados por intervalos Matriz de datos Tabla de frecuencias Sujeto x (religión) x (religión) f Juan Católica Católica 2 Pedro Católica Judía 1 María Judía Protestante 3 Antonio Protestante n = 6 Luis Protestante José Protestante f = frecuencia n = tamaño de la muestra Nivel ordinal (Ejemplo: variable clase social) Matriz de datos Sujeto x (clase social) Juan Alta Pedro Media María Media Antonio Media Luis Baja José Baja Tabla de frecuencias x (clase social) f Alta 1 Media 3 Baja 2 n = 6 f = frecuencia n = tamaño de la muestra Nivel cuantitativo (Ejemplo: variable edad) Matriz de datos Sujeto x (edad) Juan 15 Pedro 15 María 15 Antonio 16 Luis 16 José 16 Ana 16 Gabriela 16 Susana 17 Martín 17 Sergio 17 Pablo 17 Daniel 17 Graciela 17 Daniela 17 Beatriz 17 Oscar 18 Felipe 18 Alberto 18 Mónica 19 Marta 19 Mariana 20 Tabla de frecuencias x (edad) f n = 22 f = frecuencia n = tamaño de la muestra Tabla de frecuencias por intervalos x (edad) f n = 22 f = frecuencia n = tamaño de la muestra Una vez confeccionada la matriz de datos, se procede luego a resumir aún más esta información mediante una tabla de frecuencias o, si cabe, en una tabla de frecuencias por intervalos. Una tabla de este último tipo se justifica cuando la tabla de frecuencias original es demasiado grande y por tanto de difícil manejo para procesar la información. Sea de la forma que fuere, los datos ordenados según sus frecuencias suelen denominarse distribución de frecuencias (13). Las tablas de frecuencias contienen tres elementos importantes: las frecuencias, el tamaño de la muestra y los intervalos (en este último caso sólo para variables cuantitativas).

10 a) Frecuencia.- La frecuencia (f) se define como la cantidad de datos iguales o que se repiten. Por ejemplo: la frecuencia 2 indica que el dato católico se repite dos veces, la frecuencia 3 que el dato clase media se repite tres veces, y la frecuencia 8 que el dato 17 años se repite ocho veces. A veces resulta necesario expresar las frecuencias de otra manera, como puede apreciarse en la siguiente tabla ilustrativa: Tipos de frecuencias que pueden indicarse en una tabla de frecuencias x (edad) f f% F F% fr F r % 3 15% % 10 50% % 18 90% % % n = 20 n = 100% n = Frecuencia absoluta (f).- Es la cantidad de datos que se repiten. Por ejemplo, la frecuencia 3 indica que hay tres personas de 15 años. La suma de todas las frecuencias absolutas equivale al tamaño de la muestra. Frecuencia porcentual (f%).- Es el porcentaje de datos que se repiten. Por ejemplo, la frecuencia porcentual 15% indica que el 15% de la muestra tiene la edad de 15 años. La suma de todas las frecuencias porcentuales es 100%. Frecuencia acumulada (F).- Es el resultado de haber sumado las frecuencias anteriores. Por ejemplo, la frecuencia acumulada 10 resulta de sumar 7+3, e indica la cantidad de veces que se repiten las edades 16 y 15. La última de todas las frecuencias acumuladas, que en el ejemplo es 20, debe coincidir con el tamaño de la muestra. Frecuencia acumulada porcentual (F%).- Es el porcentaje de las frecuencias acumuladas. Frecuencia relativa (f r ).- A veces también llamada proporción, es el cociente entre la frecuencia de un dato x y la frecuencia total o tamaño de la muestra. En la práctica, el tamaño de la muestra se considera como 1, a diferencia del tamaño de la muestra en la frecuencia porcentual, que se considera 100%. Frecuencia relativa acumulada (F r ).- Es el resultado de haber sumado las frecuencias relativas anteriores. Por ejemplo: la frecuencia relativa 0.90 indica que en 0.90 casos sobre 1 las edades están comprendidas entre 15 y 17 años. Frecuencias parciales y frecuencia total.- Tanto las frecuencias absolutas como las porcentuales o las relativas pueden ser frecuencias parciales o una frecuencia total, siendo ésta última la suma de todas frecuencias parciales. Las frecuencias porcentuales y las frecuencias relativas comparan la frecuencia parcial con la frecuencia total, y sirven para establecer comparaciones entre muestras distintas. Por ejemplo, si en una muestra de 1000 hombres, solo votaron 200, y en una muestra de 600 mujeres solo votaron 200 mujeres, en términos de frecuencias absolutas existe la misma cantidad de votantes masculinos y femeninos, es decir 200, pero en proporción, las mujeres votaron más (la tercera parte del total) que los hombres (la quinta parte del total). Esta información se obtiene al convertir las frecuencias absolutas en frecuencias porcentuales o en frecuencias relativas (o proporciones). 2) Tamaño de la muestra.- Otro concepto importante es el tamaño de la muestra (n), que designa la cantidad total de datos. Obviamente, la suma de todas las frecuencias f debe dar como resultado el tamaño n de la muestra, por lo que el tamaño de la muestra coincide con la frecuencia total. 3) Intervalos.- Un intervalo, también llamado intervalo de clase, es cada uno de los grupos de valores ubicados en una fila en una tabla de frecuencias. Por ejemplo el intervalo significa que en esa fila se están considerando las edades de 15 a 16 años. La frecuencia correspondiente a un intervalo es igual a la suma de frecuencias de los valores en él incluídos (2). Los intervalos presentan algunas características, que son las siguientes: Tamaño del intervalo (a).- También llamado amplitud o anchura del intervalo, es la cantidad de valores de la variable que se consideran conjuntamente en ese intervalo. Por ejemplo, el intervalo años tiene una amplitud de 2, puesto que se consideran dos valores: 15 y 16. En otro ejemplo, el intervalo años tiene una amplitud de 6, puesto que se consideran seis valores. En general, puede calcularse el tamaño de un intervalo restando el límite superior y el inferior y sumando al resultado el número 1. Por ejemplo, 25 menos 20 da 5, y sumándole 1 da 6. Los ejemplos indicados corresponden a variables discretas, lo que significa que no podrán encontrarse valores intermedios entre dos intervalos. Por ejemplo, entre los intervalos y no se encontrarán valores intermedios entre 16 y 17 años. Téngase presente que: a) preferiblemente los intervalos deben tener un tamaño constante, de manera tal que no se pueden considerar como intervalos y 17-20, porque tienen diferentes tamaños; y b) los intervalos han de ser mutuamente excluyentes, de manera tal que cuando se trata de variables discretas, no pueden definirse los intervalos y 16-17, porque el valor 16 años está en ambos intervalos y no se podrá saber con seguridad en qué intervalo ubicar dicho valor.

11 El problema se puede presentar con las variables continuas, donde, por definición, podría aparecer algún valor intermedio entre dos intervalos. Por ejemplo, si se considera la variable continua ingresos mensuales y se consideran en ella los intervalos dólares y dólares, puede ocurrir que un dato obtenido de la realidad sea 2500 dólares, con lo cual no podrá ser registrado en ningún intervalo. En tal caso se deberían reorganizar los intervalos como dólares y dólares, con lo cual el problema estaría resuelto. Desde ya, puede ocurrir que aparezca un ingreso mensual de 2999,50 dólares, en cuyo caso en principio deberían reorganizarse nuevamente los intervalos como ,50 dólares y 2999, dólares. La forma de reorganizar los intervalos dependerá entonces del grado de precisión que pretenda el investigador o del grado de precisión del instrumento de medición disponible. Límites del intervalo.- Todo intervalo debe quedar definido por dos límites: un límite inferior y un límite superior. Estos límites, a su vez, pueden ser aparentes o reales (Pagano, 1998:38-39). Considérese el siguiente ejemplo: Límites aparentes Límites reales Si la variable considerada es discreta, carecerá de sentido la distinción entre límites reales o aparentes. Si se conviene que los valores que la variable puede adoptar son números enteros, se considerarán solamente los intervalos 95-99, 90-94, etc. Estos intervalos son en rigor reales, porque expresan los valores reales que puedan haber, que no son fraccionarios. Sólo en el caso de las variables continuas adquiere sentido la distinción entre límites reales y aparentes. Si la variable es continua, deberían tenerse en cuenta los límites reales. Por ejemplo, si un valor resulta ser 94.52, entonces será ubicado en el intervalo Sin embargo, aún en estos casos, lo usual es omitir los límites reales y presentar sólo los límites aparentes (Pagano, 1998:39). En todo caso, los límites reales se utilizan a veces cuando se intenta transformar la tabla de frecuencias por intervalos en un gráfico. En principio, en ningún caso deberá haber una superposición de valores, como en el caso de los intervalos y 21-22, donde el valor 21 está incluído en ambos intervalos, violándose así la regla de la mutua exclusión. Si acaso se presentara esta situación, o bien podrá ser adjudicada a un error del autor de la tabla, o bien deberá traducírsela como y Punto medio del intervalo (x m ).- Es el valor que resulta de la semisuma de los límites superior e inferior, es decir, el punto medio del intervalo se calcula sumando ambos límites y dividiendo el resultado por dos. Por ejemplo, el punto medio del intervalo es El punto medio del intervalo sirve para calcular la media aritmética. Intervalos abiertos y cerrados.- Idealmente, todos los intervalos deberían ser cerrados, es decir, deberían estar especificados un límite superior y uno inferior de manera definida. Sin embargo, en algunos casos se establecen también intervalos abiertos, donde uno de los límites queda sin definir. En el siguiente ejemplo, 18 o menos y 29 o más son intervalos abiertos. Obviamente, en este tipo de distribución los intervalos dejan de ser de tamaño constante. Intervalos 18 o menos o más Cantidad de intervalos.- La cantidad de intervalos es inversamente proporcional al tamaño de los mismos: cuanto menor tamaño tienen los intervalos, más numerosos serán. El solo hecho de emplear intervalos supone una cierta pérdida de la información. Por ejemplo, si se considera el intervalo años, quedará sin saber cuántas personas de 16 años hay. Para reducir esta incertidumbre, podría establecerse un intervalo menor (15-16 años), pero con ello habrá aumentado la cantidad de intervalos hasta un punto donde la información se procesará de manera más difícil. Consiguientemente, al agrupar los datos hay que resolver el dilema entre perder información y presentar los datos de manera sencilla (Pagano R, 1998:37) (Botella, 1993:54), es decir, encontrar el justo equilibrio entre el tamaño de los intervalos y su cantidad. En la práctica, por lo general (Pagano, 1998:37) se consideran de 10 a 20 intervalos, ya que la experiencia indica que esa cantidad de intervalos funciona bien con la mayor parte de las distribuciones de datos (3). Se pueden sintetizar algunas reglas importantes para la construcción de intervalos de la siguiente manera:

12 a) Los intervalos deben ser mutuamente excluyentes. b) Cada intervalo debe incluir el mismo número de valores (constancia de tamaño). c) La cantidad de intervalos debe ser exhaustiva (todos los valores deben poder ser incluídos en algún intervalo). d) El intervalo superior debe incluir el mayor valor observado (Botella, 1993:54). e) El intervalo inferior debe incluir al menor valor observado (Botella, 1993:54). f) En variables continuas, es aconsejable expresar los límites aparentes de los intervalos, que los límites reales. 2.3 VISUALIZACIÓN DE LOS DATOS: GRÁFICOS Una vez que los datos han sido organizados en tablas de frecuencias, es posible seguir avanzando organizándolos, desde allí, de otras maneras diferentes y con distintos propósitos. Una de estas maneras es la utilización de representaciones gráficas, algunas de las cuales son aptas para representar variables cualitativas (niveles nominal y ordinal) y otras para variables cuantitativas. Al tratarse de esquemas visuales, los gráficos permiten apreciar de un golpe de vista la información obtenida. Diagrama de tallo y hojas Esta técnica de visualización de datos es aquí mencionada en primer lugar porque puede ser considerada un procedimiento intermedio entre la tabla de frecuencias y el gráfico. Fue creada por Tukey en 1977 (citado por Botella, 1993:59) y presenta, entre otras, las siguientes ventajas: a) permite conocer cada puntuación individual (a diferencia de la tabla de frecuencias por intervalos, donde desaparecen en ellos); y b) puede ser considerada un gráfico si hacemos girar 90 el listado de puntuaciones o datos. A continuación se describe la forma de construir un diagrama de tallo y hojas, tomando como ejemplo la siguiente distribución de datos ordenados: Tallo Hojas Procedimiento para realizar el diagrama de tallo y hojas a) Se construye una tabla como la de la izquierda con dos columnas: tallos y hojas b) Se identifican cuáles son los valores extremos: 32 y c) Se consideran los primeros dígitos de cada valor: 3 y d) En la columna tallos se colocan los números desde el 3 hasta el e) En la columna hojas se colocan los segundos dígitos de cada valor que empiece con 3, con 4, con 5, etc. Girando la tabla obtenida 90 hacia la izquierda, se obtendrá algo similar a un gráfico de barras, que muestra por ejemplo que la mayor concentración de valores es la que comienza con 7. Una utilidad adicional del diagrama de tallo y hojas es que permite comparar visualmente dos variables, es decir, dos conjuntos de datos en los análisis de correlación, como puede apreciarse en el siguiente ejemplo: Hojas (Grupo control) Tallo Hojas (Grupo experimental) Visualmente es posible darse una idea de los resultados del experimento: los datos del grupo experimental tienden a concentrarse en los valores altos, y los del grupo de control en los valores bajos. Pictograma Es una representación gráfica en la cual se utilizan dibujos. Por ejemplo, en el siguiente pictograma cada cara puede representar 100 personas:

13 Varones Mujeres 100 personas Sector circular Representación gráfica de forma circular donde cada porción de la torta representa una frecuencia. Para confeccionarlo se parte de una tabla de frecuencias donde están especificadas las frecuencias en grados (f ), las cuales se calculan mediante una sencilla regla de tres simple a partir de las frecuencias absolutas (f). Por ejemplo, si 825 es a 360, entonces 310 es igual a 360 x 310 dividido por 825, lo cual da un resultado de 135. Por lo tanto, para representar la frecuencia 310 deberá trazarse un ángulo de 135. Estos valores pueden verse en el ejemplo siguiente, donde se han representado dos sectores circulares distintos, uno para varones y otro para mujeres: x Sexo Total f f (patología) Varones Mujeres (varones) (mujeres) Angina Bronquitis Sarampión Otras Total Bronquitis Bronquitis Angina Saram pión Angina Saram pión Otras Otras Varones Mujeres Para realizar estos sectores se traza un ángulo de por ejemplo 130 y dentro de coloca la palabra bronquitis, y así sucesivamente. El círculo para mujeres es algo mayor que el círculo para hombres, porque en la muestra hay más mujeres que hombres. Para lograr estos tamaños debe calcularse el radio. Por ejemplo, si se ha elegido un radio masculino de 4 cm, el radio femenino puede calcularse mediante la fórmula siguiente: El radio femenino es igual al radio masculino multiplicado por la raíz cuadrada del n femenino, resultado que se dividirá por la raíz cuadrada del n masculino, donde n = tamaño de la muestra de cada sexo. Si el radio masculino es 4 cm, con esta fórmula se obtendrá un radio femenino de 4,22 cm. Diagrama de barras Representación gráfica donde cada barra representa una frecuencia parcial. En el eje de las ordenadas se indican las frecuencias absolutas, y en el eje de absisas se representan los valores de la variable x. De esta manera, las barras más altas tienen mayor frecuencia.

14 Existen diferentes tipos de diagramas de barras, de los cuales se ilustran tres: las barras simples, las barras superpuestas y las barras adyacentes. Los dos últimos tipos dan información sobre dos variables al mismo tiempo, que son sexo y estado civil en los ejemplos que siguen: Barras simples Barras superpuestas f f Solteros Casados Separados x Solteros Casados Separados x Barras adyacentes f Adolescentes Adultos Solteros Casados Separados x Las barras también pueden disponerse horizontalmente. Mediante el diagrama de barras pueden representarse variables cualitativas y cuantitativas discretas. Histograma de Pearson Utilizado para representar variables cuantitativas continuas agrupadas en intervalos, este gráfico se compone de barras adyacentes cuya altura es proporcional a las respectivas frecuencias parciales. En el ejemplo siguiente, se presenta la tabla de frecuencias por intervalos y su histograma correspondiente: x (longitud) f Total 10

15 f x Como pude apreciarse, en las absisas se indican los límites inferiores de los intervalos. Cuando los intervalos no son iguales, en lugar de indicar las frecuencias absolutas pueden indicarse las alturas (h). Esta última se obtiene dividiendo la frecuencia parcial por el tamaño del intervalo correspondiente. Polígono de frecuencias Es un gráfico de líneas rectas que unen puntos, siendo cada punto la intersección del punto medio del intervalo (indicado en las absisas) y la frecuencia correspondiente. Tomando el ejemplo anterior, el polígono de frecuencias sería el siguiente: f punto medio (x m) Un polígono de frecuencias puede obtenerse también a partir del histograma correspondiente. Para ello basta con indicar los puntos medios de cada línea horizontal superior de cada barra del histograma, y luego unirlos con líneas rectas. Otra alternativa para este tipo de diagrama es el polígono de frecuencias acumuladas, donde se indican las frecuencias acumuladas en lugar de las frecuencias habituales. Ojiva de Galton Gráfico en el cual se consignan en las ordenadas las frecuencias acumuladas y en las absisas los límites superiores de cada intervalo (aunque también pueden indicarse los puntos medios de cada intervalo). Por ejemplo: x (longitud) f F Total 10

16 F lím superior (L s) La ojiva de Galton también puede representar frecuencias acumuladas decrecientes. 2.4 SÍNTESIS DE LOS DATOS: MEDIDAS ESTADÍSTICAS DE POSICIÓN Los datos individuales pueden ser sintetizados mediante medidas de posición, medidas de dispersión (ambas se llaman medidas estadísticas), medidas de asimetría y medidas de curtosis. En este ítem se describen las medidas de posición. Definición Las medidas de posición pueden ser definidas de diversas formas (4). En esta nota proponemos la siguiente definición: Las medidas de posición son datos estadísticos que intentan representar un conjunto de datos individuales respecto de una variable. Esta definición se refiere a tres cuestiones: 1) Son medidas estadísticas, es decir, no son medidas individuales. Una medida de posición representa a todo un conjunto de datos, y no son los datos individuales. Por ejemplo, un promedio de edades representa a todas las edades del grupo, y no es la edad individual de uno de sus miembros, aunque pueda coincidir numéricamente con ella. Así, si el promedio de edades es 20 años y una de las personas del grupo tiene 20 años, el primer dato es una medida estadística y el segundo una medida individual. En otros términos, las medidas estadísticas no describen individuos, sino poblaciones o muestras. Por ejemplo, no tiene sentido explicar que una persona es anciana porque vive en una población cuyo promedio de edad es 70 años. 2) Son medidas representativas, es decir, intentan representar y sintetizar a todas las medidas individuales. El conjunto de todas las medidas individuales puede recibir diversos nombres, tales como muestra y población, con lo cual tiene sentido afirmar proposiciones tales como una medida de posición representa una muestra o una población. Por ejemplo, es posible representar las notas obtenidas por un grupo de alumnos de diversas maneras: a) El promedio de las notas es de 7.35 puntos (en este caso usamos una medida de posición llamada media aritmética). b) La mitad de los alumnos ha obtenido una nota superior a 6,5 puntos (en este caso utilizamos otra medida de posición llamada mediana). c) La nota que más se ha repetido fue 7 puntos (en este caso usamos la medida de posición llamada modo). La pregunta acerca de cuál de las tres medidas de posición representa mejor al conjunto de datos individuales es el problema de la representatividad de la medida de posición, y la estadística suministra,

17 como se verá, diversos criterios para evaluar la mejor forma de representar un cierto número de datos individuales. 3) Son medidas que miden una variable, es decir, algún atributo o propiedad de los objetos. En el ejemplo anterior la variable medida es el rendimiento académico, pero también pueden obtenerse medidas de posición representativas de un conjunto de edades, de profesiones, de clases sociales, de puntuaciones de un test, de cantidad de dientes, etc. De otra manera: no tiene sentido decir que una medida de posición represente un conjunto de personas, pero sí tiene sentido decir que representan las edades de un conjunto de personas. Características de las principales medidas de posición Las medidas de posición pueden ser de tendencia central y de tendencia no central. Las primeras se refieren a los valores de la variable que suelen estar en el centro de la distribución (Kohan, 1994:69). Por ejemplo: la media aritmética, la mediana y el modo son las más conocidas, pero también está la media aritmética ponderada (útil cuando hay valores que se repiten y que requieren atención diferencial), la media geométrica (Kohan, 1994:71-72), la media armónica, la media antiarmónica, la media cuadrática, la media cúbica, etc. Las medidas de posición no centrales son los cuartiles, deciles y percentiles (Kohan, 1994:79), que reciben genéricamente el nombre de cuantiles o fractiles (5). De acuerdo a Botella (1993:99), las medidas de posición no centrales son datos o valores que ocupan una posición especial en la serie de datos. Cuando una medida de posición es un dato que ocupa un lugar central, la llamamos medida de tendencia central. En el siguiente cuadro se especifican las definiciones y características principales de las medidas de posición. Medida Definición Características MODO Es el dato o valor que más se repite, o sea, el de mayor frecuencia. Resulta útil si hay muchos datos repetidos (altas frecuencias). Puede calcularse cuando hay valores muy extremos. El modo muestral no es un estimador suficiente del modo poblacional porque no incluye todos los datos. En distribuciones multimodales es posible que la muestra no sea homogénea, y que esté constituída por varios estratos. Es posible convertir una distribución multimodal en una modal reorganizando los intervalos. Si una distribución no tiene modo, podría obtenerse reorganizando los MEDIANA MEDIA ARITMÉTICA CUANTIL Es el dato o valor que divide por la mitad la serie de datos ordenados creciente o decrecienteme nte, es decir, es el valor central de la serie. Es el promedio aritmético de todos los datos o valores. Es el dato o valor que divide la serie ordenada de datos en intervalos. Es la medida más útil en escalas ordinales siempre que los valores centrales sean iguales. No está influenciada por los valores extremos (por ello por ejemplo puede aplicarse desconociendo estos o sea cuando hay límites superiores o inferiores abiertos). Puede usarse cuando hay intervalos abiertos, siempre que el orden de la mediana no se corresponda con ellos. Es útil cuando unos pocos datos difieren mucho del resto. No es útil si hay muchos datos repetidos (altas frecuencias). La mediana muestral no es un estimador suficiente de la mediana poblacional porque no incluye todos los datos. Es útil es distribuciones muy asimétricas (extremos no compensados). La mediana coincide con el Q2 (cuartil 2), el D5 (decil 5) y el P50 (percentil 50) (8). Está influenciada por los valores extremos (por ejemplo, no puede utilizarse cuando hay valores extremos desconocidos o intervalos abiertos, salvo que estos puedan cerrarse). No conviene cuando los valores extremos son muy altos o muy bajos. Es útil en distribuciones simétricas (con extremos compensados). No puede usarse en escalas nominales ni ordinales. Es siempre superior a la media geométrica y a la media armónica. La media muestral es un estimador suficiente de la media poblacional porque incluye todos los datos. No necesariamente coincide con alguno de los valores. La media aritmética tiene varios otras propiedades (7). Es útil cuando hay gran cantidad de valores. Puede también utilizarse como medida de dispersión. Suelen utilizarse los cuartiles, los deciles y los percentiles.

18 -Cuartiles -Deciles -Percentiles datos en partes iguales. Valores que dividen la serie en cuatro partes iguales. Valores que dividen la serie en diez partes iguales. Valores que dividen la serie en cien partes iguales. Tres cuartiles dividen la serie en cuatro partes iguales. Nueve deciles dividen la serie en diez partes iguales. Noventa y nueve percentiles dividen la serie en cien partes iguales. También se llaman centiles. Relación entre modo, mediana y media aritmética.- a) La experiencia indica que la relación entre estas tres medidas es: Modo = (3. Mediana) (2. Media aritmética). Esta relación es conocida como la fórmula de Pearson. b) Cuanto más simétrica es una distribución (por ejemplo en una curva normal), más tienden a coincidir los valores de las tres medidas. Cálculo analítico de las medidas de posición: fórmulas Para calcular una determinada medida de posición puede haber diversas fórmulas. La elección de la fórmula adecuada dependerá de la forma en que estén organizados los datos individuales. En principio, los datos pueden estar organizados de cuatro maneras: 1) Datos desordenados. Por ejemplo, las edades de un grupo de cuatro personas son 17, 29, 17 y 14. Cuando se recolecta información, generalmente se obtienen datos desordenados, frente a lo cual convendrá ordenarlos. 2) Datos ordenados. Por ejemplo, las edades del mismo grupo de personas son 14, 17, 17 y 29, si hemos decidido ordenarlas en forma creciente, aunque también podemos ordenarlas decrecientemente. 3) Datos agrupados por frecuencia. Por ejemplo, hay dos edades de 17 años, una edad de 14 años y una edad de 29 años. O, lo que es lo mismo, la frecuencia de la edad 17 es 2, y la frecuencia de las restantes edades es 1. 4) Datos agrupados por intervalos. Por ejemplo, hay 3 edades comprendidas en el intervalo años, y una edad comprendida en el intervalo años. La estadística va agrupando los datos siguiendo el orden anterior. Cuanto más avance en este proceso, más habrá logrado sintetizar y organizar los datos individuales. En el siguiente cuadro se sintetizan las diversas reglas o fórmulas para calcular las medidas de posición, según como estén organizados los datos individuales y según los niveles de medición que admiten. Nótese que en algunos casos no es posible especificar ninguna fórmula, y entonces el cálculo se hará siguiendo la regla indicada para los mismos. Por ejemplo: para calcular el modo de un conjunto de datos ordenados, debe buscarse el dato o valor que más se repite (6).

19 Cálculo de medidas de posición según los niveles de medición que admiten y según la forma de organización de los datos individuales. Preparado por: Pablo Cazau Medida de posición Nivel de medición Datos ordenados Datos agrupados por frecuencia Datos agrupados por intervalos Modo Nominal Valor que más se repite Valor con la mayor frecuencia Ordinal Valor que más se repite Valor con la mayor frecuencia Cuantitativo Valor que más se repite Valor con la mayor frecuencia f - f ant Mo = L i a (f - f ant ) + (f- f pos ) Mediana Ordinal Valor central de la serie ordenada de valores Cuantitativo Valor central de la serie ordenada de valores Media aritmética Cuantitativo x X = n Cuartil Cuantitativo Valores que dividen la serie en cuatro partes iguales. Por tanto, hay 3 cuartiles: Q 1, Q 2 y Q 3 Decil Cuantitativo Valores que dividen la serie en diez partes iguales. Por tanto, hay 9 deciles: desde el D 1 hasta el D 9 Percentil Cuantitativo Valores que dividen la serie en cien parte iguales. Por tanto, hay 99 percentiles: desde el P 1 hasta el P 99 Valor que corresponde a la frecuencia acumulada n/ Valor que corresponde a la frecuencia acumulada n/2 x.f) X = n Valor que corresponde a la frecuencia acumulada t.n/4, expresión llamada cuartil de orden o Q 0 (1) Donde t puede valer 1, 2 o 3. Por tanto, hay 3 cuartiles: Q 1, Q 2 y Q 3 Valor que corresponde a la frecuencia acumulada t.n/10, expresión llamada decil de orden o D 0 (1) Donde t puede valer entre 1 y 9. Por tanto, hay 9 deciles: desde el D 1 hasta el D 9 Valor que corresponde a la frecuencia acumulada t.n/100, expresión llamada percentil de orden o P 0 (1) Donde t puede valer entre 1 y 99. Por tanto, hay 99 percentiles: desde el P 1 hasta el P 99 n/2 - F ant Mn = L i a f x m.f) X = n t.n/4 - F ant Q t = L i a f t.n/10 - F ant D t = L i a f t.n/100 - F ant P t = L i a f (1) Si no puede identificarse unívocamente una frecuencia acumulada, y por tanto un valor determinado de x, puede ser calculada por interpolación. En realidad, los cuantiles se utilizan preferentemente cuando los datos están agrupados por intervalos.

20 A continuación, se suministran ejemplos de cómo calcular cada medida de posición teniendo en cuenta las reglas y fórmulas del esquema anterior. a) Cálculo del modo para datos ordenados (niveles nominal, ordinal y cuantitativo) Nivel nominal: perro, perro, gato, gato, gato, gato (por tanto, el modo es gato) Nivel ordinal: grande, grande, mediano, mediano, mediano, chico, chico, chico, chico (por tanto, el modo es chico) Nivel cuantitativo: 6, 6, 7, 7, 7, 7, 8, 9, 10, 10, 11 (por tanto, el modo es 7) b) Cálculo del modo para datos agrupados en frecuencia (niveles nominal, ordinal y cuantitativo) Nivel nominal Nivel ordinal Nivel cuantitativo x (religión) f x (dureza) f x (edad) f Católicos 56 Muy duro años 6 Protestantes 78 Duro 8 31 años 14 Judíos 45 Intermedio años 19 Budistas 24 Blando años 24 Otros 31 Muy blando 7 34 años 15 El modo es Protestantes El modo es Muy duro El modo es 33 años Como puede verse, el modo es el valor de la variable x que está más repetido. c) Cálculo del modo para datos agrupados por intervalos (nivel cuantitativo) x (cantidad piezas dentarias) f n=40 Una vez confeccionada la tabla de frecuencias por intervalos, se procede en dos pasos: a) Se identifica cuál es el intervalo de mayor frecuencia. En este caso, es b) Se aplica la fórmula correspondiente: f - f ant Mo = L i a (f - f ant ) + (f- f pos ) 24-8 Mo = = piezas dentarias (24-8) + (24-2) d) Cálculo de la mediana para datos ordenados (niveles ordinal y cuantitativo) Para hallar la mediana de un conjunto de datos, primero hay que organizarlos en orden descendente o ascendente. Si el conjunto de datos contiene un número impar de elementos, el central es la mediana. Si hay un número par, la mediana es el promedio de los dos datos centrales. Ejemplos para el nivel ordinal: Número impar de datos: alto, alto, alto, alto, medio, medio, medio, medio, medio, medio, bajo (por tanto, la mediana es = medio). Número par de datos: En el nivel ordinal no puede calcularse un promedio si los dos valores centrales son distintos. Si los dos valores centrales son iguales, ese es el valor de la mediana. Ejemplos para el nivel cuantitativo:

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL Las medias de tendencia central o posición nos indican donde se sitúa un dato dentro de una distribución de datos. Las medidas de dispersión, variabilidad o variación

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

PRESENTACIÓN GRÁFICA DE LOS DATOS

PRESENTACIÓN GRÁFICA DE LOS DATOS PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada

Más detalles

Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias:

Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias: Iniciar con las interpretaciones de las medidas MEDIA VS MEDIANA VS MODA CUAL ES LA MEDIDA ADECUADA TAREA MEDIA PONDERADA Actividad de Medidas de Localización Problema 1. El problema de las tasas de delito.

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

Tema 9: Estadística Descriptiva. Distribuciones estadísticas. Representaciones

Tema 9: Estadística Descriptiva. Distribuciones estadísticas. Representaciones Tema 9: Estadística Descriptiva Distribuciones estadísticas Representaciones gráficas 1 Conceptos fundamentales La Estadística es el conjunto de métodos necesarios para recoger, clasificar, representar

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Población, muestra y variable estadística

Población, muestra y variable estadística Población, muestra y variable estadística La estadística es la parte de las Matemáticas que estudia cómo recopilar y resumir gran cantidad de información para extraer conclusiones. La población de un estudio

Más detalles

Otras medidas descriptivas usuales

Otras medidas descriptivas usuales Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.

Más detalles

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL. REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer

Más detalles

Diseños de Investigación 40 conceptos que debes conocer

Diseños de Investigación 40 conceptos que debes conocer Diseños de Investigación 40 conceptos que debes conocer 1. El método científico: Se puede realizar desde dos enfoques distintos, hipotético deductivo y analítico inductivo. Con frecuencia los dos ocurren

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

Criterios para decidir qué gráfico usar en cada trabajo estadístico

Criterios para decidir qué gráfico usar en cada trabajo estadístico Criterios para decidir qué gráfico usar en cada trabajo estadístico No todos los tipos de gráficos son adecuados para un conjunto concreto de datos. Algunos de ellos sólo valen para un fin, y otros se

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Tema 2. Análisis gráfico Ejercicios resueltos 1

Tema 2. Análisis gráfico Ejercicios resueltos 1 Tema 2. Análisis gráfico Ejercicios resueltos 1 Ejercicio resuelto 2.1 En una tienda han anotado los precios de los artículos que han vendido en una hora. Los datos son: 9,95, 19,95, 19,95, 14,95, 29,95,

Más detalles

Distribución de frecuencias gráficas y tablas

Distribución de frecuencias gráficas y tablas Distribución de frecuencias gráficas y tablas Dra. Alicia M. González de la Cruz Educ 525 2013 Organizar los datos Las distribuciones de frecuencia es la organización de datos crudos en forma de tablas,

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1)

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) Cuestiones de Verdadero/Falso 1. Un estadístico es una característica de una población. 2. Un parámetro es una característica de una población. 3. Las variables discretas

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

ESTADÍSTICA SEMANA 4

ESTADÍSTICA SEMANA 4 ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...

Más detalles

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 2, Febrero 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Autor:

Más detalles

ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS

ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS Profesor del del curso: curso: Ing. Ing. Celso Celso Gonzales INTRODUCCION OBJETIVOS Comprender qué es y porqué se estudia la

Más detalles

Representaciones Gráficas

Representaciones Gráficas Representaciones Gráficas Gráficos para variables cualitativas Los gráficos más usuales para representar variables de tipo nominal son los siguientes: Diagramas de barras: Se representa en el eje de ordenadas

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

Estadística: conceptos básicos y definiciones.

Estadística: conceptos básicos y definiciones. Estadística: conceptos básicos y definiciones. 1 Conceptos básicos 2 Conceptos básicos cont. 3 Conceptos básicos cont. 4 Conceptos básicos cont. 5 Conceptos básicos cont. 6 Definición de Estadística La

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Introducción a la estadística y SPSS

Introducción a la estadística y SPSS Introducción a la estadística y SPSS Marcelo Rodríguez Ingeniero Estadístico - Magister en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I

Más detalles

Métodos, Diseño y Técnicas de Investigación en Psicología 2010-2011

Métodos, Diseño y Técnicas de Investigación en Psicología 2010-2011 NOMBRE DE LA ASIGNATURA Métodos, Diseño y Técnicas de Investigación en Psicología OBLIGATORIA /CRÉDITOS 4,5 Titulación en la que se imparte/ Curso /Cuatrimestre: Psicopedagogía / 1º / 1º Curso académico:

Más detalles

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros

1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros TEMA 0: INTRODUCCIÓN Y REPASO 1. Introducción a la estadística 2. Estadística descriptiva: resumen numérico y gráfico de datos 3. Estadística inferencial: estimación de parámetros desconocidos 4. Comparación

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 3, Marzo 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Autor:

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

CORRELACIÓN Y PREDICIÓN

CORRELACIÓN Y PREDICIÓN CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una

Más detalles

Capítulo 10. Gráficos y diagramas

Capítulo 10. Gráficos y diagramas Capítulo 10. Gráficos y diagramas 1. Introducción Los gráficos y diagramas que se acostumbran a ver en libros e informes para visualizar datos estadísticos también se utilizan con propósitos cartográficos,

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7 Página 1 de 7 1 CRITERIOS DE EVALUACIÓN 1.1 SECUENCIA POR CURSOS DE LOS CRITERIOS DE EVALUACION PRIMER CURSO 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones

Más detalles

Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS

Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS .. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS Ser: Describir el método de construcción del diagrama de tallo, tabla de frecuencias, histograma y polígono. Hacer: Construir

Más detalles

Tema 4 : Tabulación de datos

Tema 4 : Tabulación de datos Tema 4 : Tabulación de datos La tabulación consiste en presentar los datos estadísticos en forma de tablas o cuadros. --Partes de una tabla TITULO de la tabla, que debe ser preciso y conciso CONTENIDO,

Más detalles

(Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html)

(Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html) VARIABLES CUANTITATIVAS (Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html) Variables ordinales y de razón. Métodos de agrupamiento: Variables cuantitativas:

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

DISTRIBUCIÓN DE FRECUENCIAS

DISTRIBUCIÓN DE FRECUENCIAS UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira DISTRIBUCIÓN DE FRECUENCIAS FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

Más detalles

MUESTREO TIPOS DE MUESTREO

MUESTREO TIPOS DE MUESTREO MUESTREO En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población), se selecciona una muestra, entendiendo por tal una parte representativa de

Más detalles

15 PARÁMETROS ESTADÍSTICOS

15 PARÁMETROS ESTADÍSTICOS EJERCICIOS PROPUESTOS 1.1 El número de libros leídos por los miembros de un círculo de lectores en un mes se resume en esta tabla. N. o de libros leídos x i N. o de personas f i 1 1 3 18 11 7 7 1 Halla

Más detalles

Construyendo gráficos estadísticos con ayuda de Microsoft Excel

Construyendo gráficos estadísticos con ayuda de Microsoft Excel Construyendo gráficos estadísticos con ayuda de Microsoft Excel Eduardo Aguilar Fernández Universidad Nacional Heredia, Costa Rica eaguilar2@gmail.com Andrey Zamora Araya Universidad Nacional Heredia,

Más detalles

Procesos Críticos en el Desarrollo de Software

Procesos Críticos en el Desarrollo de Software Metodología Procesos Críticos en el Desarrollo de Software Pablo Straub AgileShift Imagine una organización de desarrollo de software que consistentemente cumple los compromisos con sus clientes. Imagine

Más detalles

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse. TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes

Más detalles

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales 1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS

Más detalles

ESCALAS DE MEDICIÓN ...

ESCALAS DE MEDICIÓN ... ESCALAS DE MEDICIÓN... Como la estadística analiza los datos y éstos son el resultado de las mediciones, necesitamos ocupar cierto tiempo para estudiar las escalas de medición. Este tema es de suma importancia,

Más detalles

TEMA 2. LA MEDICIÓN EN PSICOLOGÍA

TEMA 2. LA MEDICIÓN EN PSICOLOGÍA TEMA 2. LA MEDICIÓN EN PSICOLOGÍA 1. La Psicometría Concepto Niveles de contenido 2. La medición Funciones generales Funciones específicas Condiciones de la medición 3. Variables: Definición y clasificación

Más detalles

Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68.

Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68. Departamento de Economía Aplicada: UDI de Estadística. Universidad Autónoma de Madrid Notas sobre el manejo de Excel para el análisis descriptivo y exploratorio de datos. (Descriptiva) 1 1 Introducción

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

Socioestadística I Análisis estadístico en Sociología

Socioestadística I Análisis estadístico en Sociología Análisis estadístico en Sociología 1. INTRODUCCIÓN. Definición e historia. 1.1. Que es la Sociestadística?. La estadística es la ciencias de las regularidades que se observan en conjuntos de fenómenos

Más detalles

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica.

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica. Las variables de un estudio. La variable es determinada característica o propiedad del objeto de estudio, a la cual se observa y/o cuantifica en la investigación y que puede variar de un elemento a otro

Más detalles

UNIDAD III MEDIDAS DE TENDENCIA CENTRAL

UNIDAD III MEDIDAS DE TENDENCIA CENTRAL UNIDAD III MEDIDAS DE TENDENCIA CENTRAL ISC. Claudia García Pérez 1 PRESENTACIÓN La representación gráfica de los datos permite realizar una descripción visual de manera general de los datos obtenidos

Más detalles

Estadística descriptiva con Excel (Cálculo de medidas)

Estadística descriptiva con Excel (Cálculo de medidas) Universidad Pedagógica Experimental Libertador Instituto Pedagógico de Miranda José Manuel Siso Martínez Departamento de Ciencias Naturales y Matemáticas Cátedra: Estadística aplicada a la educación Estadística

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

Indicaciones específicas para los análisis estadísticos.

Indicaciones específicas para los análisis estadísticos. Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

Síntesis Numérica de una Variable

Síntesis Numérica de una Variable Relación de problemas 2 Síntesis Numérica de una Variable Estadística 1. En siete momentos del día se observa el número de clientes que hay en un negocio, anotando: 2, 5, 2, 7, 3, 4, 9. Calcular e interpretar

Más detalles

Tema 2. Variables y medidas

Tema 2. Variables y medidas Curso de Estadística Aplicada a las Ciencias Sociales Tema 2. Variables y medidas Fuentes: Manual (2.1.) y Agresti (cap. 2) Tema 2. Variables y medidas Introducción 1. Variables, valores y escalas 2. Definición

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

La metodologia Cuantitativa. Encuestas y muestras

La metodologia Cuantitativa. Encuestas y muestras La metodologia Cuantitativa. Encuestas y muestras Técnicas «cuantitativas» y «cualitativas» «Las técnicas cuantitativas»: Recogen la información mediante cuestiones cerradas que se planteal sujeto de forma

Más detalles

COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO

COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO COMPARACIÓN DE ÁREAS DE FIGURAS POR ESTUDIANTES DE PRIMERO DE MAGISTERIO Sonia Aguilera Piqueras y Pablo Flores Martínez Departamento de Didáctica de la Matemática Universidad de Granada 1. Introducción

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Las 7 Herramientas Fundamentales de la Calidad

Las 7 Herramientas Fundamentales de la Calidad Las 7 Herramientas Fundamentales de la Calidad Se utilizarán los métodos estadísticos elementales, dado que está dirigido a todos los funcionarios, desde la alta dirección hasta los operarios de base (Ej:

Más detalles

ESTADÍSTICA DESCRIPTIVA CON SPSS

ESTADÍSTICA DESCRIPTIVA CON SPSS ESTADÍSTICA DESCRIPTIVA CON SPSS (2602) Estadística Económica Joaquín Alegre y Magdalena Cladera SPSS es una aplicación para el análisis estadístico. En este material se presentan los procedimientos básicos

Más detalles

CAPITULO III MARCO METODOLÓGICO. Desde la perspectiva de Hurtado de Barrera (2008), el tipo de

CAPITULO III MARCO METODOLÓGICO. Desde la perspectiva de Hurtado de Barrera (2008), el tipo de CAPITULO III MARCO METODOLÓGICO 1. TIPO DE INVESTIGACIÓN Desde la perspectiva de Hurtado de Barrera (2008), el tipo de investigación que propone soluciones a una situación determinada a partir de un proceso

Más detalles

Aplicaciones de Estadística Descriptiva

Aplicaciones de Estadística Descriptiva Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH

ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH Cuando se estudian en forma conjunta dos características (variables estadísticas) de una población o muestra, se dice que estamos analizando una variable

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

2.1 INFORMACION BASICA Y PRINCIPALES DEFINICIONES.

2.1 INFORMACION BASICA Y PRINCIPALES DEFINICIONES. 2 - PROPIEDAD COMÚN. 2.1 INFORMACION BASICA Y PRINCIPALES DEFINICIONES. En esta oportunidad se adelanta información correspondiente a una nueva serie con las variables de interés en las Compraventas de

Más detalles

ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES

ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES ERRORES CONCEPTUALES DE ESTADÍSTICA EN ESTUDIANTES DE BÁSICA PRIMARIA EN LA CIUDAD DE PEREIRA José R. Bedoya Universidad Tecnológica de Pereira Pereira, Colombia La formación estadística en la ciudadanía,

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

4.3 Variables de la Estadística descriptiva

4.3 Variables de la Estadística descriptiva 4.3 4.3.1 Conceptos básicos en Estadística El origen de Estadística puede remontarse a los recuentos de datos. El hombre hace acopio de datos para tener información sobre características de ciertos colectivos

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

Técnicas de valor presente para calcular el valor en uso

Técnicas de valor presente para calcular el valor en uso Normas Internacionales de Información Financiera NIC - NIIF Guía NIC - NIIF NIC 36 Fundación NIC-NIIF Técnicas de valor presente para calcular el valor en uso Este documento proporciona una guía para utilizar

Más detalles

Capítulo VI. Diagramas de Entidad Relación

Capítulo VI. Diagramas de Entidad Relación Diagramas de Entidad Relación Diagramas de entidad relación Tabla de contenido 1.- Concepto de entidad... 91 1.1.- Entidad del negocio... 91 1.2.- Atributos y datos... 91 2.- Asociación de entidades...

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada

Más detalles

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Asignatura: Econometría. Conceptos MUY Básicos de Estadística Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes

Más detalles

TEMA 7 ANÁLISIS DE DATOS: INTRODUCCIÓN AL SPSS

TEMA 7 ANÁLISIS DE DATOS: INTRODUCCIÓN AL SPSS TEMA 7 ANÁLISIS DE DATOS: INTRODUCCIÓN AL SPSS 1. Introducción 2. Definición de variables 3. Introducción de los datos 4. Análisis de los datos 5. Otras utilidades 1. INTRODUCCIÓN El SPSS es un paquete

Más detalles

Escuela Nacional Adolfo Pérez Esquivel UNCPBA 3º año ESTADÍSTICA

Escuela Nacional Adolfo Pérez Esquivel UNCPBA 3º año ESTADÍSTICA Objetivos: Conocer y trabajar conceptos básicos de la estadística descriptiva. Analizar situaciones representadas en los gráficos. Adquirir habilidades para conseguir una tabla de frecuencias, un diagrama

Más detalles