Resumen TEMA 4: Dinámica del sólido indeformable con punto fijo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resumen TEMA 4: Dinámica del sólido indeformable con punto fijo"

Transcripción

1 Mecánica Resumen TEMA 4: Dinámica del sólido indeformable con punto fijo. Ángulos de Euler a) Definición. ψ ψ (precesión) ψ y y' x ψ x = N' (nutación) z' z y" y y' x = N' N = Línea de nodos TECNUN, 006

2 Mecánica z' z ϕ (rotación propia) ϕ y" y x ϕ x = N' El triedro xyz está fijo en el espacio. El triedro está vinculado al cuerpo. b) ω del triedro móvil, expresada por sus componentes en el mismo triedro móvil. z ϕ ψ y y" ω = ψ ϕ + sen sen cos ϕ ω = ψ sen cos ϕ sen ϕ ω =ψ cos +ϕ x ψ ϕ N TECNUN, 006

3 Mecánica. Ecuaciones de Euler No hay rozamiento en. El triedro cartesiano es el principal de inercia en (está, por tanto, solidariamente vinculado al cuerpo). dh Las ecuaciones del teorema del momento cinético en : = N suministran las dt ecuaciones del movimiento. Téngase en cuenta que: H = ω E + ω E + ω E 3 está expresado en una base móvil (exige ser derivado aplicando la fórmula de Boure). Haciendo operaciones (hágalas) se llega a las ecuaciones de Euler: dω + ( dt ) ω ω = N dω + ( dt ) ω ω = N dω + ( dt ) ω ω = N Las ecuaciones del teorema del momento lineal permiten determinar la reacción, R, en : M a F R ( F F ) G N = + = ap i i= 3. Giroscopio con movimiento por inercia. nterpretación geométrica El movimiento por inercia se produce cuando el sistema de las fuerzas exteriores se reduce a una sola fuerza, F, que pasa por ( F ; N = 0) TECNUN, 006

4 a) Ecuaciones del movimiento: TEMA 4: Dinámica del sólido indeformable con punto fijo Mecánica dh Si 0 H = cte (tanto en módulo, como dirección y sentido) dt Luego, por H = cte ω + ω + ω = cte () Además: dt = dwap = 0 T = cte (ω + ω + ω ) = cte ω + ω + ω = cte () Añadiendo a estas dos integrales primeras una de las ecuaciones de Euler: dω + ( ) ω ω = 0 dt (3) (), () y (3) son las ecuaciones diferenciales del movimiento (hay que expresar ω, ω, ω en función de los ángulos de Euler). Al resolver el problema que conduce a una ecuación elíptica en ω - hay que hacer una discusión para establecer correctamente los signos de los radicales que aparecen en la ecuación elíptica (hágalo). b) Simplificación del procedimiento: Al ser H = cte podemos tomar la dirección de H (que se determina por las condiciones iniciales) como eje fijo z. z H En los ejes móviles: H = ϕ = ω = ψ ϕ + H sen sen ( sen sen cos ϕ) H = H sen cos ϕ = ω = ( ψ sen cos ϕ sen ϕ) H = H cos= ω = ( ψ cos +ϕ ) De ahí se obtiene que ( obténgalo!): = H ( ) cos ϕ sen ϕ sen sen ϕ cos ϕ ψ= H ( + ) sen ϕ cos ϕ ϕ= H cos ( ) (4) TECNUN, 006

5 c) Caso de que el giroscopio sea simétrico: TEMA 4: Dinámica del sólido indeformable con punto fijo Mecánica Si el elipsoide de inercia fuera de revolución y el eje fuera el eje de revolución: =. Las ecuaciones (4) se convierten en: = 0 = cte H ψ= = cte ϕ= H cos ( ) = cte En un movimiento por inercia del giroscopio simétrico: - el ángulo de nutación permanece constante - y son constantes las velocidades de precesión y de rotación propia (tomando como eje de la precesión la recta soporte de H y como eje de rotación propia el eje de revolución del elipsoide de inercia en el punto fijo). d) nterpretación geométrica: (de Poinsot) H n Propiedad de la normal al elipsoide de inercia en : π P P P es el punto en que ω corta al elipsoide de inercia en el punto fijo. x y z P(x,y,z) = = =λ (5) ω ω ω Ecuación del elipsoide de inercia referido a sus ejes principales: = x + y + z y teniendo en cuenta (5) =λ ( ω + ω + ω ) =λ T λ= T luego: P = ( ω E+ω E +ωe 3) T El vector n normal al elipsoide en P será paralelo a grad P(elipsoide) TECNUN, 006

6 Mecánica grad P(elip) = xpe+ ype + zpe3 = = (ω E+ ω E + ω E3) = H = n T T luego el vector normal al elipsoide en P es paralelo a P es la proyección de P sobre H (que es cte): H (que es cte). H / P' = P = ( ) ( ω E+ω E +ωe3) (ω E+ ω E + ω E3) = H T H T = = cte H Luego el plano π, perpendicular a H que contiene siempre a P, es un plano fijo en el espacio y por ser perpendicular a n - es tangente al elipsoide de inercia del punto fijo. En consecuencia este elipsoide al moverse el giroscopio con movimiento por inercia es siempre tangente al plano fijo π, con la particularidad de que el punto de tangencia, P, tiene velocidad siempre nula. Por tanto puede decirse que en el movimiento por inercia el elipsoide de inercia en el punto fijo gira y pivota sobre un plano fijo. Qué son la polodia y la herpolodia? Si el elipsoide de inercia fuera de revolución, demuestre que la polodia y la herpolodia son dos circunferencias. 4. Giroscopio de Lagrange a) Características: giroscopio simétrico ( = ). El peso es la única fuerza aplicada. b) Ecuaciones del movimiento: (aplicando el formalismo de Lagrange) = T + ψ + ϕ + ψ sen ( cos ) (hállela) V = Mglcos ψ ϕ = = + ψ + ϕ+ψ, coord. cíclicas L T V sen ( cos ) Mgl cos sistema esclerónomo TECNUN, 006

7 Mecánica Luego: L = cte ϕ+ψ ( cos ) = B ϕ L = cte ψ + ϕ + ψ sen ( cos ) cos = A ψ + = T V E + ψ + ϕ + ψ sen ( cos ) + Mgl cos = E Estas tres integrales primeras son las ecuaciones diferenciales del movimiento. c) Movimiento unidimensional equivalente: B ϕ+ψ = ϕ+ψ ( cos ) B cos = A B cos ψ + ϕ+ψ = ψ= sen ( cos ) cos A sen luego: + = (A B cos ) B T V E Mgl cos = E sen ó bien: (A B cos ) + + Mgl cos = E' sen movimiento unidimensional equivalente en la que: que es la ecuación del (A B cos ) = + = V ef ( ) Mgl cos E' + V ef ( ) sen Vef () ' E Si: ' a) E' = E ( y son los valores absidales de durante el movimiento) 0 0 π ' E 0 ' E ' b) E' = E Movimiento imposible. ' 0 0 c) E' = E = = cte (a este movimiento se le llama estacionario y ' dvef en él E0 = Vef = 0 ) min d = 0 TECNUN, 006

8 Mecánica d) nterpretación geométrica: (de acuerdo con los valores de E, A y B) Consideramos la trayectoria del punto de corte del eje de rotación propia con una superficie esférica cuyo centro sea el punto fijo. ) E' = E ' A B cos Si A > B como ψ=, ψ no sen cambia de signo durante el movimiento. Si B > A existirá un ángulo 3 tal que cos = B(cos ψ= 3 - cos ) sen 3 A B por lo que: En estas circunstancias pueden suceder cuatro posibilidades: a) < 3 b) > 3 en estos dos casos ψ tampoco cambia de signo y la trayectoria en la superficie esférica es similar al caso de A > B c) < < 3 3 ψ cambia de signo cuando = 3 y la trayectoria es la dada por la figura de la izquierda. TECNUN, 006

9 Mecánica =3 d) = 3 ψ no cambia de signo pero es cero cuando = Este último movimiento, aunque parezca muy particular, es el que aparece cuando se hace girar el giroscopio alrededor del eje de revolución, inicialmente en reposo, con una ω y luego se abandona libremente a sus enlaces. Con estos requisitos resulta que, * llamando al ángulo formado por los ejes z (fijo en el espacio) y (eje de revolución, que es el de rotación propia): A = ω cos B = ω E' = Mglcos * * ( por qué?) A por tanto: cos 3 = = cos 3 = B * * luego: * ω (cos cos ) V ef ( ) = + Mglcos sen y de aquí se deduce ( hágalo!) que * = y además que siempre (en este caso particular) > (demuéstrelo). Lo que manifiesta que una trayectoria como la mostrada en la figura siguiente no es posible: e) Movimiento estacionario: Se llama movimiento estacionario aquél en el cual E = valor mínimo de V ( ). ef Las ecuaciones del movimiento del giroscopio de Lagrange son: TECNUN, 006

10 ( ϕ+ψ cos ) = B ψ sen + B cos = A TEMA 4: Dinámica del sólido indeformable con punto fijo Mecánica = (A B cos ) E' + V ef( ) donde V ef( ) = + Mgl cos sen Llamando 0 el ángulo para el cual el V ef es mínimo: dv ef d 0 = 0 y además: E' = V ef ( =0 ) De esta última ecuación se deduce (hágalo) que: 4 Mgl sen = (A Bcos )(B A cos ) (a) por lo que para un valor predeterminado de 0 es posible prefijar arbitrariamente una de las dos constantes A ó B: esto es, que existen infinitas posibilidades de obtener un movimiento estacionario en el que = 0. Si prefijamos B resulta que: A Bcos 0 = ψ sen A Bcos = (B ψ cos ) sen 0 0 Por lo que la ecuación (a) se convierte en: (haga las operaciones) Mgla 0ψ (B ψ cos 0) y de aquí se deduce que: B 4 ψ= Mgl cos 0 / ± ( ) (b) cos B 0 Lo que manifiesta que existen dos velocidades de precesión asociadas a ese movimiento estacionario: una rápida (la que corresponde al signo + ) y otra lenta. El valor de la rotación propia ϕ asociado a cada una de estas velocidades se obtiene fácilmente pues: ( ϕ + ψ cos ) = B finalmente, las E valen: E' = ψ sen + Mgl cos f) Movimiento estacionario con grandes velocidades de rotación propia: Si ϕ fuera muy grande B >>> 4Mglcos 0. La ecuación (b) podría reducirse a: TECNUN, 006

11 Mecánica B ψ= Mgl cos 0 ± ( ) cos B 0 ( por qué?) de aquí: B ϕ ψ = ψ = max max cos ( - ) cos 0 0 ( por qué?) : Mgl N ψ min = = ϕ ϕ sen 0 ( por qué?) donde N = mgl sen 0 es el momento del peso del giroscopio respecto del punto fijo. 5. Momento giroscópico Definición: Es el momento producido por las fuerzas de inercia del giroscopio en el punto fijo. dh dh N = N = 0 dt dt luego el momento giroscópico dh M : M = dt Determinación del momento giroscópico en el caso de un giroscopio de Lagrange con movimiento estacionario ( = 0 ). Como en este movimiento estacionario tanto ψ como ϕ son constantes: M [( ) sen cos sen ] = ψ ψ ϕ donde E es el versor correspondiente a la línea de nodos. ( por qué?) E Si ϕ >>> ψ se podría prescindir del primer término y entonces: M = ψϕ sen y como: N + M = N = ψ ϕ ψ N sen 0 = ϕ sen anterior. 0 que coincide con ψ min del apartado TECNUN, 006

12 Mecánica 6. Sólido libre Si se eligen como parámetros: - las tres coordenadas cartesianas del centro de masas: x G, y G, z G - y los tres ángulos de Euler que definen la posición de un triedro con origen en G: trirrectángulo y atado al sólido, respecto al triedro cartesiano paralelo al inercial de referencia El problema se descompone en dos, el movimiento del centro de masas, que se determina por la ecuación F= Ma G, y el movimiento del sólido respecto a unos ejes con origen en G que se trasladan permanentemente. Este último movimiento es el de un sólido con punto fijo (G), que se resuelve mediante las ecuaciones ya estudiadas anteriormente. FN DEL TEMA 4 TECNUN, 006

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

Resumen TEMA 3: Cinemática del movimiento plano

Resumen TEMA 3: Cinemática del movimiento plano TEM 3: Cinemática del movimiento plano Resumen TEM 3: Cinemática del movimiento plano 1. Condiciones del movimiento plano Definición: un sólido rígido se mueve con un movimiento plano si todos sus puntos

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

C E UNIVERSIDAD DE A CORUÑA. con un punto fijo. Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido rígido.

C E UNIVERSIDAD DE A CORUÑA. con un punto fijo. Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido rígido. H A C L U C E UNIVERSIDAD DE A CORUÑA Dinámica del sólido rígido con un punto fijo Ana Jesús López Díaz Objetivo Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica Mecánica Racional Ejercicio de Mecánica Vectorial y Analítica Profesor Dr. Ercoli Liberto Alumno Breno Alejandro Año 2012 1 Cinemática y cinética del cuerpo rígido: Universidad Tecnológica Nacional Ejercicio

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO.

ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO. ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO. Cualquier punto del interior de la Tierra está sometido a un complejo sistema de esfuerzos. Esto es debido a que sobre él actúa el

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos

TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 6 88 Ángulos entre rectas y planos TEMA 6 Ángulos, distancias, simetrías Problemas Resueltos Dadas las rectas r y s

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

TEMA 4. Geometría, cinemática y dinámica

TEMA 4. Geometría, cinemática y dinámica TEMA 4. Geometría, cinemática y dinámica 76 Índice: Geometría, cinemática y dinámica Geometría oordenadas propias y del mundo Representación de la posición. Tipos de coordenadas Matrices de rotación Representación

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

Geodesia Matemática. E. Calero Versión Madrid Parte II Geometría del elipsoide de revolución II-1

Geodesia Matemática. E. Calero Versión Madrid Parte II Geometría del elipsoide de revolución II-1 Geodesia Matemática. E. Calero Versión 1.0 31-01-2005 Madrid Parte II Geometría del elipsoide de revolución II-1 2.- GEOMETRÍA DEL ELIPSOIDE DE REVOLUCIÓN. ECUACIONES 2.1 Ecuaciones paramétricas 2.2 Ecuación

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

Contenido. Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/19 19

Contenido. Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/19 19 Contenido 1. Cuerpo rígido II: ecuaciones de movimiento 1.1 Movimiento compuesto: traslación + rotación 1.2 Tensor de inercia y momento de inercia 1.3 Ejes principales y momentos principales de inercia

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV INDICE Geometría Analítica Plana Capitulo Primero Artículo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5 5. Carácter de la geografía

Más detalles

Movimiento y Dinámica circular

Movimiento y Dinámica circular SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión.

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. EL GIRÓSCOPO 1. OBJETIVOS Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. 2. FUNDAMENTO TEÓRICO. Un giróscopo es un disco en rotación construido

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1)

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1) Recta Una propiedad importante de la recta es su pendiente. Para determinar este coeficiente m en una recta que no sea vertical, basta tener dos puntos (, y) & (, y) que estén sobre la recta, la pendiente

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL

GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO AREA DE TECNOLOGIA DEPARTAMENTO DE FÍSICA Y MATEMATICA COORDINACION DE LABORATORIOS DE FÍSICA GUÍAS DE LOS LABORATORIO

Más detalles

Tema 1. Leyes de Newton

Tema 1. Leyes de Newton Tema 1. Leyes de Newton Tercera parte: Sistemas de masa variable Los sistemas de masa variable, es decir, sistemas en los que la masa que se encuentra en movimiento depende del tiempo, no conservan la

Más detalles

x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t

x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t . [04] [EXT-A] Dados los puntos A(,0,-), B(,-4,-), C(5,4,-) y D(0,,4) a) Calcular el área del triángulo de vértices A, B y C. b) Calcular el volumen del tetraedro ABCD.. [04] [EXT-A] Dados los planos x-z-

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose

Más detalles

Lección 4. Integrales múltiples. 4. Superficies parametrizadas.

Lección 4. Integrales múltiples. 4. Superficies parametrizadas. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r. PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen

Más detalles

RECOMENDACIÓN UIT-R S.1256

RECOMENDACIÓN UIT-R S.1256 Rec. UIT-R S.1256 1 RECOMENDACIÓN UIT-R S.1256 METODOLOGÍA PARA DETERMINAR LA DENSIDAD DE FLUJO DE POTENCIA TOTAL MÁXIMA EN LA ÓRBITA DE LOS SATÉLITES GEOESTACIONARIOS EN LA BANDA 6 700-7 075 MHz PRODUCIDA

Más detalles

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Problema 717.- a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Hallar el lugar geométrico de los puntos comunes a

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

DINÁMICA DE ROTACIÓN DE UN SÓLIDO

DINÁMICA DE ROTACIÓN DE UN SÓLIDO Laboratorio de Física General Primer Curso (Mecánica) DINÁMICA DE ROTACIÓN DE UN SÓLIDO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la ley de la dinámica de rotación de un sólido rígido alrededor

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO TEMA 7 Ejercicios / TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO. Calcula el ángulo que forman las rectas x y 4 z 5 y x y 4 z 5 Como los vectores directores u,4,5 y v,4,5 son perpendiculares, las rectas son

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 INDICE Geometría Analítica Plana Capitulo Primero Sistema de Coordenadas Articulo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5

Más detalles

Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular.

Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular. Movimiento circular La Luna se mueve casi en forma circular alrededor de la Tierra. La Tierra se mueve casi circularmente alrededor del Sol, a ese movimiento le llamamos de traslación. Y, además, la Tierra

Más detalles

Problemas métricos. Ángulo entre rectas y planos

Problemas métricos. Ángulo entre rectas y planos Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #4: El rodamiento y el Teorema de trabajo-energía I. Objetivos. Determinar el trabajo

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

Tema 6. Planos y rectas en el espacio. Problemas métricos (Ángulos, paralelismo y perpendicularidad, simetrías, distancias )

Tema 6. Planos y rectas en el espacio. Problemas métricos (Ángulos, paralelismo y perpendicularidad, simetrías, distancias ) Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: Problemas métricos 7 Tema 6 Planos rectas en el espacio Problemas métricos (Ángulos, paralelismo perpendicularidad, simetrías, distancias

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles