Planeación experimental

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Planeación experimental"

Transcripción

1 Planeación experimental Diseño de Experimentos

2 Diseño de Experimentos Ventajas Identifica uno o más factores influyen dentro de la variable de respuesta. Permite establecer la combinación adecuada de tratamientos Cuantifica el aporte de los factores de interés dentro de la variabilidad de la variable de respuesta. Se eliminan el efecto de las variables perturbadoras del proceso. Eficiencia en la cantidad de pruebas experimentales. Ofrece herramientas de optimización para encontrar la combinación óptima de tratamientos. Desventajas Requiere análisis intrusivo del proceso. Dificultad de la interpretación de interacciones múltiples. Se requieren muchas corridas para desarrollar un modelo de superficie de respuesta.

3 Componentes Variable de respuesta Variable sobre la cual se desea realizar el estudio Factores Variables que pueden afectar la variabilidad de la variable de respuesta. Niveles Diferentes valores que pueden tomar los factores. Efecto Son las diferencias que se producen al comparar los resultados de un nivel con la media total Tratamiento Combinación de factores implementados para analizar la variable de respuesta. Unidad Experimental Sobre quien se aplican los tratamientos para analizar la variable de respuesta.

4 Objetivos Determinar las principales causas de variación Encontrar condiciones experimentales donde se encuentre un valor extremo de la variable de respuesta. Comparar las respuestas en diferentes niveles de observación de variables controladas. Obtener un modelo estadístico-matemático que permita hacer predicciones de respuestas futuras. Identificar los caminos adecuados para realizar optimización sobre el proceso.

5 Principios Aleatorización De la aplicación de los tratamientos para evitar que factores incontrolables y desconocidos influyan en la variable de respuesta. Replicación Número de veces que debe correrse el tratamiento. Permiten obtener una estimación de la variabilidad dentro de cada tratamiento. Bloqueo Bloquear la influencia de otras variables en la respuesta.

6 Pasos en el Diseño Experimental 1. Observar y comprender el Proceso. 2. Identificar las variables, parámetros, experimentales e indicadores de desempeño. factores, niveles, unidades 3. Establecer objetivos, hipótesis y un plan de trabajo. 4. Levantamiento de datos, mediciones, toma de tiempos, consulta a expertos. 5. Análisis de los datos de entrada. 6. Plantear los contrastes (Si se tienen conjeturas previas) 7. Análisis de varianza ANOVA (u otras técnicas) 8. Pruebas estadísticas de comparaciones Post-Hoc. 9. Codificación de Variables (Si aplica) 10. Modelo de regresión (Si aplica) 11. Selección del tratamiento más adecuado (Contrastes, Post-Hoc). 12. Propuestas de mejoramiento. 13. Implementación de propuestas. 14. Verificación de resultados (DOE)

7 Observar y entender el Proceso Es crucial conocer y entender el comportamiento del proceso antes de crear un modelo estadístico. Se debe definir las fronteras del sistema a ser modelado. Es preciso analizar si características del entorno (fuera de control en el proceso) se deben tener en cuenta en el modelo. El grado de complejidad de la descripción del proceso debe ser sólo lo necesario para responder las hipótesis planteadas. Se recomienda una estrecha colaboración entre el experto del proceso y el consultor en las siguientes etapas: Alcance del proyecto, Creación de hipótesis y contrastes, toma de mediciones, análisis de los resultados de salida y estructuración de las recomendaciones finales.

8 Identificar las variables, parámetros e indicadores de desempeño Definir cuáles son las variables de interés en el estudio. Variables dependientes (Indicadores de desempeño). Definir valor típicos de la variable. Definir la unidad experimental Requisitos de la unidad experimental. Medidas repetidas? Identificar los factores (fuentes de variación). Definir los niveles de los factores (usualmente 2 a 4) Detallar la naturaleza del factor (nominal - ordinal). Crear las combinaciones de tratamientos. Si se considera necesario agregar covariables. Agregar variables de bloqueo. Definir el mínimo valor de significancia en el estudio.

9 Fuentes de Variación Tratamientos Conjunto de factores aplicados en diferentes niveles para medir el cambio en la variable de respuesta. Bloques Permiten eliminar su influencia dentro del análisis de los factores. Variables que aportan variación a la variable respuesta, pero se pueden controlar y medir. Covariables Variables que aportan variación a la variable respuesta, no se pueden controlar pero sí medir.

10 Unidad Experimental Variable a través de la cuál se medirá el impacto de la variable de respuesta. Es preciso identificar los cambios marcados en sus características para que con la intervención del conocedor del proceso se decida bloquear las diferencias marcadas. Identificar si la unidad experimental sufre cambios en el tiempo. Identificar si las mediciones replicadas serán sobre los mismos sujetos experimentales. Crear grupos de control

11 Establecer objetivos, hipótesis y un plan de trabajo Determinar junto con el equipo de trabajo cuál es el propósito de la investigación? El propósito puede ir más allá de querer probar una hipótesis, puede estar ligado con la comprensión de profundas características del sistema. Se deben especificar los contrastes que se requiere probar. Se pueden establecer múltiples objetivos en diferentes etapas de tiempo. Las hipótesis a probar deben ser claras y precisas, además de definir valores de aceptación y rechazo.

12 Obtención de datos La legitimidad de un modelo estadístico depende en gran medida de la calidad de sus datos de entrada. Aleatorización. Replicación. Los no deben ser históricos No hay aleatorización. Inconsistencia de los datos. Variables correlacionadas. Rango limitado de variables. Crear un orden aleatorio de los tratamientos Escribir las diferentes combinaciones y darle un orden aleatorio. Para la recolección de datos se pueden implementar técnicas como: Toma de tiempo. Consulta a Expertos.

13 Obtención de datos (C) Identificar el tipo de variabilidad Sistemática y planificada (instrumento de medición), sistemática y no planificada. Determinar Variable de medición Instrumento de medición Sistema de medición Instante de medición Unidades de medición

14 Prueba Piloto (Opcional) Permite identificar posibles ajustes necesarios al estudio. Facilita la estimación previa de la varianza de la observación. Hace posible la estimación del tamaño de muestra. Tamaño de muestra Según resultados de prueba piloto. Según experimentos pasados. Según presupuesto. Modelo estadístico Simple Factorial Jerárquico Anidado Medidas Repetidas

15 Análisis de datos de entrada Es preciso analizar la calidad de los datos de entrada para evitar que estén sesgados. Se debe hacer un análisis descriptivo para conocer y entender el conjunto de datos. De ser necesario no se deben tomar en consideración los datos obtenidos en situaciones extremas o casos fortuitos. Probar la aleatoriedad de las mediciones sobre la unidad muestral.

16 Realizar el experimento Aleatorizar la aplicación de tratamientos. Realizar transformaciones (De ser necesario). Efectuar el análisis de Varianza (u otra técnica). Análisis de datos de salida Homogeneidad de varianzas. Normalidad de los residuos.

17 Modelo de Regresión Codificación de variables nominales. Identificación del modelo de regresión (interacciones, efectos polinomiales). Análisis de supuestos del modelo de regresión. Selección del tratamiento más adecuado Gráficas de efectos. Contrastes. Pruebas Post-Hoc.

18 Selección de propuestas de mejora Se debe tener en cuenta: Análisis de superficie de Respuesta. Conclusiones del diseño experimental. Limitaciones del proceso. Opiniones de expertos.

19 Implementación y verificación. Realizar otro diseño experimental una vez implementadas las propuestas de mejora para confirmar los resultados. Usar simulación para medir impactos esperados de la implementación de las propuestas. Establecer funciones objetivo y restricciones de superficie de respuesta.

20 En resumen Principios del diseño de Experimentos Replicación. Aleatorización. Bloqueo. Fuentes de variabilidad. Medición. Factores. Bloques. Covariables. Prueba de Supuestos (ANOVA). Análisis descriptivo. Datos de entrada aleatorios (residuos). Normalidad de los datos de entrada (residuos). Homogeneidad de varianzas. Selección del mejor tratamiento. Contrastes. Pruebas Post-Hoc. Superficie de Respuesta. Simulación.

21 Ejercicio Un tomatero quiere comparar el efecto de tres fertilizantes (A, B y C) en el crecimiento de sus plantas de tomate. Seleccionó 15 plantas de tomate de una semana y las plantó en diferentes maceteros. Asignó los 3 fertilizantes y se los administró a las plantas por 45 días. Se desea analizar si existe algún fertilizante mejor que los demás. Si se desea probar causalidad del fertilizante sobre la altura, qué otras variables que pueden afectar la altura de los tomates deberían controlarse? cómo las controlaría?

Diseño de Experimentos

Diseño de Experimentos Diseño de Experimentos p. Diseño de Experimentos Isabel Casas Despacho: 10.0.04 mcasas@est-econ.uc3m.es Hector Cañada jcanada@est-econ.uc3m.es Introducción Los modelos que vamos a estudiar son usados para

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Diseño de Experimentos

Diseño de Experimentos Diseño de Experimentos Tema 3. Introducción al Diseño de Experimentos JAIME MOSQUERA RESTREPO QUE ES UN EXPERIMENTO? Pruebas o una serie de pruebas en las que se hacen cambios deliberados en las variables

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

INDICE. Introducción Capitulo uno. La idea nace un proyecto de investigación Como se originan las investigaciones? 2 Resumen Conceptos básicos

INDICE. Introducción Capitulo uno. La idea nace un proyecto de investigación Como se originan las investigaciones? 2 Resumen Conceptos básicos INDICE Introducción Capitulo uno. La idea nace un proyecto de investigación 1 1.1. Como se originan las investigaciones? 2 Resumen 6 Ejemplo 7 Capitulo dos. El planteamiento del problema objetivos, preguntas

Más detalles

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ Resumen de Psicología Experimental 1 PSICOLOGÍA EXPERIMENTAL Manuel Miguel Ramos Alvarez. I. FUNDAMENTOS METODOLÓGICOS DE LA

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Servicios: análisis digital. Integración de soluciones de mercadotecnia en el análisis de consumidor y negocio digital.

Servicios: análisis digital. Integración de soluciones de mercadotecnia en el análisis de consumidor y negocio digital. Servicios: análisis digital Integración de soluciones de mercadotecnia en el análisis de consumidor y negocio digital. Introducción Debido a la creciente necesidad de simplificar la información y generar

Más detalles

Estadística II. Carrera: INB Participantes. Representante de las academias de ingeniería industrial de Institutos Tecnológicos.

Estadística II. Carrera: INB Participantes. Representante de las academias de ingeniería industrial de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística II Ingeniería Industrial INB - 0408 4 0 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

INDICE Capitulo 1. Panorama de la Experimentación Capitulo 2. El Problema

INDICE Capitulo 1. Panorama de la Experimentación Capitulo 2. El Problema INDICE Prefacio a la Primera Edición XV Prefacio a la Sexta Edición XVII Capitulo 1. Panorama de la Experimentación 1 La naturaleza de la ciencia 1 Definiciones de ciencia 1 Disciplinas científicas y no

Más detalles

Técnicas de validación y experimentación

Técnicas de validación y experimentación Técnicas de validación y experimentación Clase nro 11 Introducción Todo modelo debe ser testeado para asegurarnos que es confiable, no tiene errores y que es aceptado por aquellos que lo van a usar. Luego

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Curso de actualización en investigación educativa. Lic. Jorge Barceló

Curso de actualización en investigación educativa. Lic. Jorge Barceló Curso de actualización en investigación educativa Diseño metodológico Qué me dice mi objeto de estudio? Discutir la opción metodológica: tipo de investigación Tomar decisiones muestrales Tipo de muestra,

Más detalles

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA

Más detalles

Diseños Factoriales. Diseño de experimentos p. 1/18

Diseños Factoriales. Diseño de experimentos p. 1/18 Diseños Factoriales Diseño de experimentos p. 1/18 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de

Más detalles

Estadística. Presentación general

Estadística. Presentación general Estadística Presentación general Definiciones, conceptos y alcance En lo que sigue voy a formular algunas preguntas y también presentarles algunas respuestas, algunas ideas y algunos comentarios, que espero

Más detalles

INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques

INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques cuantitativo y cualitativo hacia un modelo integral 3 Qué enfoques se han presentado par

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

En escenarios de incertidumbre: Medir para tomar decisiones.

En escenarios de incertidumbre: Medir para tomar decisiones. Seminario: En escenarios de incertidumbre: Medir para tomar decisiones. Jorge Manzi Director MIDE UC Por qué es central la medición y evaluación para las organizaciones? Usted se ha preguntado alguna vez?

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE MEDICINA

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE MEDICINA UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE MEDICINA Módulo I Bioestadística Maestría en Investigación Médica PROGRAMA ACADÉMICO 2011-2 M.C. Enrique Villareal Ríos 1. ASIGNATURA: MÓDULO I BIOESTADÍSTICA

Más detalles

Universidad Nacional Autónoma de México Facultad de Estudios Superiores Aragón. División de Ciencias Sociales

Universidad Nacional Autónoma de México Facultad de Estudios Superiores Aragón. División de Ciencias Sociales Universidad Nacional Autónoma de México Facultad de Estudios Superiores Aragón División de Ciencias Sociales Licenciatura en Comunicación y Periodismo Programa de la asignatura: ESTADÍSTICA APLICADA A

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Biometría II / Repaso Modelos

Biometría II / Repaso Modelos Variable respuesta cuantitativa Variable explicatoria cualitativa (o cuantitativa*) ANOVA Factores Fijos Aleatorios Cruzados Anidados Entre Dentro Anova de 1, 2, 3, etc. Factores Fijos Anova de 1, 2, 3,

Más detalles

UNIVERSIDAD MARÍA AUXILIADORA UMA

UNIVERSIDAD MARÍA AUXILIADORA UMA CARRERA PROFESIONAL DE ENFERMERIA SÍLABO DE BIOESTADÍSTICA I. DATOS GENERALES: 1.1. Carreras profesionales : Enfermería 1.2. Semestre académico : 2015 - I 1.3. Ciclo : III 1.4. Pre-requisito : Matemática

Más detalles

4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC:

4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC: 4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC: A continuación se muestran los objetivos así como los mapas funcionales según la línea de acentuación y la línea

Más detalles

La lógica del diseño experimental y del análisis estadístico de los datos

La lógica del diseño experimental y del análisis estadístico de los datos La lógica del diseño experimental y del análisis estadístico de los datos TEMA 1 Susana Sanduvete Chaves Diseños experimentales curso 2005-2006 1 TIPOS DE DISEÑO De menor a mayor control: M. observacional

Más detalles

CAPÍTULO III I. MARCO METODOLÓGICO. Este capítulo hace mención a los aspectos metodológicos de la

CAPÍTULO III I. MARCO METODOLÓGICO. Este capítulo hace mención a los aspectos metodológicos de la CAPÍTULO III I. MARCO METODOLÓGICO Este capítulo hace mención a los aspectos metodológicos de la investigación utilizados para la solución del problema. Antes de todo, es necesario definir lo que es una

Más detalles

Epidemiologia y Salud Pública Salud. Diplomado presencial

Epidemiologia y Salud Pública Salud. Diplomado presencial Epidemiologia y Pública Diplomado presencial Epidemiologia y Pública Intensidad horaria 128 horas Horarios. Lunes, miércoles y viernes de 5:00 p.m. a 9:00 p.m. Objetivo Proveer a los estudiantes el conocimiento

Más detalles

MODULO 1. Herramientas Básicas De Gestión. Ing. Carlos Enrique Ríos

MODULO 1. Herramientas Básicas De Gestión. Ing. Carlos Enrique Ríos MODULO 1 Herramientas Básicas De Gestión Métodos para la Solución de Problemas Qué es un Problema? Es el resultado indeseado d de un proceso. Es una meta no alcanzada. Es la diferencia existente entre

Más detalles

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN Espinoza Cárdenas Sara Dalila Flores Balderas Mayra Celeste Gómez Llanos Sandoval Ana Isabel LOS ESMALTES DE UÑAS

Más detalles

Métodos de Investigación e Innovación -Metodologías de Investigación-

Métodos de Investigación e Innovación -Metodologías de Investigación- 1 Sesión 2 Métodos de Investigación e Innovación -Metodologías de Investigación- Dr. Hugo Terashima M. 25 de Enero de 2008 2 Page 1 Contenido de la Sesión Metodologías de Investigación Mapa conceptual

Más detalles

Métodos para la Solución de Problemas. Es el resultado indeseado de un proceso.

Métodos para la Solución de Problemas. Es el resultado indeseado de un proceso. MODULO Herramientas Básicas De Gestión Métodos para la Solución de Problemas Qué es un Problema? Es el resultado indeseado de un proceso. Es una meta no alcanzada. Es la diferencia existente entre el resultado

Más detalles

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística Asignatura: Probabilidad y Estadistica para Investigadores en ciencias del comportamiento I Tipo: Optativa Créditos: 15 Fecha tentativa: de 12:30 a 17:00 hrs desde el 23/04/2014 Lugar: Salón 9 Cupos: 20

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Control Estadístico de Procesos Capacidad de Proceso

Control Estadístico de Procesos Capacidad de Proceso Control Estadístico de Procesos Capacidad de Proceso Un proceso de fabricación es un conjunto de equipos, materiales, personas y métodos de trabajo que genera un producto fabricado. Maquinaria Métodos

Más detalles

ESQUEMA GENERAL PLANTEAMIENTO DE ESTUDIOS EXPERIMENTALES Y CUASI- EXPERIMENTALES

ESQUEMA GENERAL PLANTEAMIENTO DE ESTUDIOS EXPERIMENTALES Y CUASI- EXPERIMENTALES TEMA I ESQUEMA GENERAL Fases de la investigación científica Diseños de investigación Variables de la investigación experimental Objetivos de la investigación experimental Control experimental Clasificación

Más detalles

ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth

ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth ANÁLISIS DE DATOS 1 Tipos de Análisis en función de la Naturaleza de los Datos Datos cuantitativos Datos cualitativos Análisis cuantitativos Análisis cuantitativos de datos cuantitativos (Estadística)

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

Carrera: ADT Participantes Representante de las academias de Administración de los Institutos Tecnológicos.

Carrera: ADT Participantes Representante de las academias de Administración de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Estadística administrativa II Licenciatura en Administración ADT-0427 2-3-7 2.-

Más detalles

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia Marco de referencia a) Es útil saber si la estrategia de tratamiento sin un biológico (menos costosa), tiene mejor o igual eficacia que la estrategia con un biológico en AR temprana. b) No hay estudios

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

BLOQUE III: SENTIDO ESTADÍSTICO COMO OBJETO DE ENSEÑANZA/APRENDIZAJE. MODULO 6: Probabilidad MODULO 7: Estadística

BLOQUE III: SENTIDO ESTADÍSTICO COMO OBJETO DE ENSEÑANZA/APRENDIZAJE. MODULO 6: Probabilidad MODULO 7: Estadística BLOQUE III: SENTIDO ESTADÍSTICO COMO OBJETO DE ENSEÑANZA/APRENDIZAJE. MODULO 6: Probabilidad MODULO 7: Estadística 1 MODULO 6: Probabilidad 6.1. La probabilidad cuando se considera como contenido en Primaria

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO CONTENIDO DE CARTA DESCRIPTIVA 1.- IDENTIFICACIÓN Curso: Bioestadística Programa: Doctorado en Inmunobiología

Más detalles

Modelos, Simulación, y Optimización

Modelos, Simulación, y Optimización Modelos, Simulación, y Optimización Aplicaciones en la industria, logística, y operaciones de negocios. Como ahorrar costos, reducir riesgos y obtener el máximo retorno de las inversiones Agenda Que es

Más detalles

INDICADORES DE GESTIÓN

INDICADORES DE GESTIÓN INDICADORES DE GESTIÓN Sistema de Gestión de Calidad UNIVERSIDAD SURCOLOMBIANA SISTEMA DE MEDICIÓN Lo que más impresiona de los sistemas de medición es la cantidad de datos que se llegan a recibir y lo

Más detalles

CAPITULO III MARCO METODOLOGICO. Tipo de Investigación

CAPITULO III MARCO METODOLOGICO. Tipo de Investigación CAPITULO III MARCO METODOLOGICO Tipo de Investigación En este aspecto usted debe describir el tipo de investigación, en el cual se ubica el estudio. Cada investigador podrá construir su método, de acuerdo

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

Carrera: Ingeniería Civil CIM 0531

Carrera: Ingeniería Civil CIM 0531 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Proyecto PropULSA: Estadística y Probabilidad Breviario Académico

Proyecto PropULSA:  Estadística y Probabilidad Breviario Académico Estadística y Probabilidad Breviario Académico Estadística: Es la ciencia que tiene por objetivo recolectar, escribir e interpretar datos, con la finalidad de efectuar una adecuada toma de decisiones en

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial

UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera. Asignatura: Método Cuantitativo Empresarial UNIVERSIDAD ABIERTA PARA ADULTOS (UAPA) Maestría en Dirección Financiera Asignatura: Método Cuantitativo Empresarial CLAVE: PDF-421 Prerrequisitos: Licenciatura No. de Créditos: 03 I. PRESENTACION El método

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592

Más detalles

Metodología de las Ciencias del Comportamiento y de la Salud. Antonio Pardo Merino Miguel Ángel Ruiz Díaz

Metodología de las Ciencias del Comportamiento y de la Salud. Antonio Pardo Merino Miguel Ángel Ruiz Díaz Diseños de caso único en ciencias sociales y de la salud PROYECTO EDITORIAL: Metodología de las Ciencias del Comportamiento y de la Salud Directores: Antonio Pardo Merino Miguel Ángel Ruiz Díaz Diseños

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA

UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA I. DATOS INFORMATIVOS 1.1 Asignatura : Estadística para el Comunicador Social 1.2 Código : 1001-1023 1.3 Pre-requisito

Más detalles

Semana 12. Metodología de la investigación

Semana 12. Metodología de la investigación Semana 12. Metodología de la investigación Introducción Este texto definirá lo que es un diseño de investigación, cómo está compuesto, así como la descripción de cada tipo de diseño. Clasifica a los tipos

Más detalles

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) PROCEDIMIENTOS ESTADISTICOS CONSTRUCCION DE MODELOS DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS Cada procedimiento es aplicable a un

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Simulación de eventos discretos.

Simulación de eventos discretos. Simulación de eventos discretos http://humberto-r-alvarez-a.webs.com Qué es simulación? Consiste en diseñar y desarrollar un modelo computarizado de un sistema o proceso y conducir experimentalmente con

Más detalles

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta Test Compara la distribución de una variable continua normal en mas de dos poblaciones (niveles o categorías) H 0 : No existen diferencias entre los k niveles H : La hipótesis nula no es cierta Parte de

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

Bloque I. Técnicas de Investigación Cualitativa y Mixta

Bloque I. Técnicas de Investigación Cualitativa y Mixta Bloque I. Técnicas de Investigación Cualitativa y Mixta Sesión 3. Diseños de investigación cualitativos, cuantitativos y mixtos Alejandra Martínez Monés Curso 2012-2013 Planes y procedimientos de investigación

Más detalles

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL 1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico

Más detalles

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE

PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Estadística CÓDIGO : IIM313A DURACIÓN : UN SEMESTRE ACADÉMICO PRE - REQUISITO : PROBABILIDADES CO REQUISITO : NO TIENE UBICACIÓN : TERCER AÑO,

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Asignatura: Prácticas empresariales

Asignatura: Prácticas empresariales Master Universitario en Turismo Asignatura: Prácticas empresariales Programa MTU25 Curso 2014-2015 1. PRINCIPALES HABILIDADES Y COMPETENCIAS QUE DESARROLLA LA MATERIA Las competencias genéricas que se

Más detalles

Obligatoria Optativa Extracurricular Curso Seminario Taller. Clave seriación 45 Laboratorio. Horas prácticas de campo

Obligatoria Optativa Extracurricular Curso Seminario Taller. Clave seriación 45 Laboratorio. Horas prácticas de campo Carta descriptiva Datos de identificación Programa Nombre de la asignatura Tipo de Asignatura Maestría en Economía Aplicada Econometría I Ciclo Primer semestre Obligatoria Optativa Extracurricular Curso

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

Métodos, técnicas e instrumentos de recolección de datos

Métodos, técnicas e instrumentos de recolección de datos Métodos, técnicas e instrumentos de recolección de datos Un buen instrumento determina en gran medida la calidad de la información, siendo esta la base para las etapas subsiguientes y para los resultados.

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

SISTEMA DE GESTIÓN INTEGRAL ITBOY Código: PD-CDG-01 PROCESO Versión: 4 CONTROL DE GESTIÓN Pág.: 1 de 4 AUDITORÍAS INTERNAS DE CALIDAD Y DE GESTION

SISTEMA DE GESTIÓN INTEGRAL ITBOY Código: PD-CDG-01 PROCESO Versión: 4 CONTROL DE GESTIÓN Pág.: 1 de 4 AUDITORÍAS INTERNAS DE CALIDAD Y DE GESTION SISTEMA DE GESTIÓN INTEGRAL Código: PD-CDG-01 1. OBJETIVO Establecer las directrices para efectuar Auditorías Internas, evaluar la eficacia, eficiencia y efectividad del Sistema integrado de Gestión del.

Más detalles

METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL

METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL María Pérez Marqués Metodología Seis Sigma a través de Excel María Pérez Marqués ISBN: 978-84-937769-7-8 EAN: 9788493776978 Copyright 2010 RC Libros RC Libros es

Más detalles

Herramientas de Calidad y Productividad

Herramientas de Calidad y Productividad Índice General Herramientas de Calidad y Productividad Presentación Los esfuerzos de mejora de la calidad y productividad constituyen un cambio de cultura para el mundo empresarial de occidente. Las empresas

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

CARGA HORARIA Horas totales: 80 Horas totales de resolución de problemas de aplicación: 32

CARGA HORARIA Horas totales: 80 Horas totales de resolución de problemas de aplicación: 32 PROBABILIDAD Y ESTADISTICA OBJETIVOS: 1. Extraer y sintetizar información de un conjunto de datos. 2. Aprehender los conceptos de aleatoriedad y probabilidad. 3. Estudiar los modelos más importantes de

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Modelo ADDIE Steven J. McGriff. Instructional Systems, College of Education, Penn State University 09/2000

Modelo ADDIE Steven J. McGriff. Instructional Systems, College of Education, Penn State University 09/2000 Modelo ADDIE Steven J. McGriff. Instructional Systems, College of Education, Penn State University 09/2000 1 Proceso de desarrollo de un curso: El proceso de desarrollo de cursos de entrenamiento o currícula

Más detalles

Construcción de Instrumentos de Medición en Ciencias Sociales

Construcción de Instrumentos de Medición en Ciencias Sociales Universidad Pedagógica Experimental Libertador Instituto Pedagógico Luis B. Prieto Figueroa Barquisimeto Construcción de Instrumentos de Medición en Ciencias Sociales Carlos Ruiz Bolívar, PhD cruizb14@gmail.com

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

FACULTAD: CIENCIAS DE LA EDUCACION CURSO: ESTADISTICA SOCIAL

FACULTAD: CIENCIAS DE LA EDUCACION CURSO: ESTADISTICA SOCIAL INFORMACIÓN GENERAL FACULTAD: CIENCIAS DE LA EDUCACION CURSO: ESTADISTICA SOCIAL Carrera: LICENCIATURA EN TRABAJO SOCIAL Nombre del Curso: ESTADISTICA SOCIAL Pre-requisito: Ciclo: Código: Código: Plan:

Más detalles

Gestión de Procesos en la Gestión de la Calidad. Ing. Gustavo Jara Rivas UDEP

Gestión de Procesos en la Gestión de la Calidad. Ing. Gustavo Jara Rivas UDEP Gestión de Procesos en la Gestión de la Calidad Ing. Gustavo Jara Rivas UDEP Cómo hacemos las cosas? IMPROVISACIÓN No ayuda a aprender. PROCESOS Repetitivos; requieren un propietario. PROYECTO Su objetivo

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles