Resistividad eléctrica: Métodos de medición

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resistividad eléctrica: Métodos de medición"

Transcripción

1 / 28 eléctrica: Métodos de medición Galíndez E. F. Grupo de materiales nanoestructurados y sus aplicaciones Departamento de Física Universidad Nacional de Colombia Sede Bogotá MNYSA, 207

2 2 / 28 Contenido 2 3

3 3 / 28 Índice 2 3

4 4 / 28 Aspectos Generales

5 4 / 28 Aspectos Generales La función de trabajo, φ, es la energía mínima necesaria para arrancar un electrón de un sólido[].

6 4 / 28 Aspectos Generales La función de trabajo, φ, es la energía mínima necesaria para arrancar un electrón de un sólido[]. a

7 5 / 28 Índice 2 3

8 La ley de Ohm, establece que la diferencia de potencial V que aparece entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente I que circula por el.[2] 6 / 28

9 7 / 28 Índice 2 3

10 8 / 28 La resistividad es la resistencia eléctrica específica de un determinado material

11 8 / 28 La resistividad es la resistencia eléctrica específica de un determinado material Se designa por la letra griega rho minúscula (ρ) y se mide en Ωm

12 8 / 28 La resistividad es la resistencia eléctrica específica de un determinado material Se designa por la letra griega rho minúscula (ρ) y se mide en Ωm ρ = R S l, S es el área de la sección transversal, l la longitud y R la resistencia.

13 8 / 28 La resistividad es la resistencia eléctrica específica de un determinado material Se designa por la letra griega rho minúscula (ρ) y se mide en Ωm ρ = R S l, S es el área de la sección transversal, l la longitud y R la resistencia. Es el inverso de la conductividad: ρ = σ

14 9 / 28 Índice 2 3

15 0 / 28 Corriente alterna o directa: la diferencia en las resistividades es solo el tipo de excitación utilizado. Si el material es isotrópico la medida no depende de los puntos de medición. El contacto Óhmico conduce corriente en una ambas direcciones. + φ m < φ s para semiconductores n + φ m > φ s para semiconductores p[3]

16 / 28 Índice 2 3

17 2 / 28 Otros métodos Un puente de Wheatstone utiliza el equilibrio de los brazos R del puente. R x = R 2 3 R Se utiliza con materiales de poca resistencia de contacto.[4]

18 3 / 28 Índice 2 3

19 Dos puntas, o dos terminales. Alta densidad de portadores de carga Baja variación de la temperatura 4 / 28

20 5 / 28 Índice 2 3

21 Con altas resistencias: 0 9 Ω Problemas con estos materiales: + Interferencia, ruidos, efectos de superficie, inhomogeneidades, etc. 6 / 28

22 6 / 28 Con altas resistencias: 0 9 Ω superficial: ρ s = (d+g)π g abierto. volumétrica: ρ s = (d+g)2 π 4w c cerrado. V i, a en ; b cerrado; c V i, a en 2; b abierto;

23 7 / 28 Índice 2 3

24 contacto-terminal alta R t = V i = 2R c + 2R pr + R a () R t : Resistencia eléctrica total R c : Resistencia eléctrica de los contactos R pr : Resistencia eléctrica de propagación R a : Resistencia de la muestra 8 / 28

25 Solución: Método de Wenner Utilización de cuatro puntas: dos para Transportar la corriente y 2 para monitorear el voltaje. Voltímetro de alta impedancia. 9 / 28

26 20 / 28 Dependiendo de la forma de la muestra es necesario corregir la forma de cálculo. Los valores utilizados en los cálculos son los medidos, no los impuestos. V = ρi 2πa

27 Considerando: Distancias diferentes, en una muestra semiinfinita[4] 2 / 28

28 2 / 28 Considerando: Distancias diferentes, en una muestra semiinfinita[4] V = ρ 2 π ( s s2 )

29 2 / 28 Considerando: Distancias diferentes, en una muestra semiinfinita[4] V = ρ 2 V 2 = ρ 2 π π ( s s2 ) ( s s 2 +s 3 )

30 2 / 28 Considerando: Distancias diferentes, en una muestra semiinfinita[4] V = ρ 2 V 2 = ρ 2 V 3 = ρ 2 π π π ( s s2 ) ( s s 2 +s 3 ) ( s +s 2 s 3 )

31 2 / 28 Considerando: Distancias diferentes, en una muestra semiinfinita[4] V = ρ 2 V 2 = ρ 2 V 3 = ρ 2 V = V 2 V 3 = ρ 2 π π ( s s2 ) ( s π ( π s 2 +s 3 ) ) s +s 2 s 3 ( ) + s s3 s 2 +s 3 s +s 2

32 2 / 28 Considerando: Distancias diferentes, en una muestra semiinfinita[4] V = ρ 2 V 2 = ρ 2 V 3 = ρ 2 V = V 2 V 3 = ρ 2 ρ = 2πV i π π ( s s2 ) ( s π ( π s 2 +s 3 ) ) s +s 2 s 3 ( ) + s s3 s 2 +s 3 s +s 2 ( ) + s s 3 s 2 +s 3 s +s 2

33 2 / 28 Considerando: Distancias diferentes, en una muestra semiinfinita[4] V = ρ 2 V 2 = ρ 2 V 3 = ρ 2 V = V 2 V 3 = ρ 2 ρ = 2πV i π π ( s s2 ) ( s π ( π s 2 +s 3 ) ) s +s 2 s 3 ( ) + s s3 s 2 +s 3 s +s 2 ( ) + s s 3 s 2 +s 3 s +s 2 ρ = 2πa V i

34 22 / 28 Factores de corrección ρ = 2πa V i F e F dl F lp

35 23 / 28 Índice 2 3

36 24 / 28 Propiedades calculadas del material Tipo de dopado Densidad laminar de portadores del mayor portador movilidad de portadores

37 25 / 28 Condiciones Muestra plana, de grueso uniforme Muestra sin agujeros aislados Muestra Homogénea e isótropica Los cuatro contactos ubicados en los extremos El área de cada contacto debe estar un orden por debajo del área de la muestra El espesor debe ser mucho menor que el ancho y el largo De preferencia, una muestra simétrica

38 26 / 28 Bibliografía I Lopez R. Introducción a la Tecnología de los Computadores. Universidad de Huelva. John David Jackson. Classical Electrodynamics. John Wiley, third edition, 999. Kittel C. Introduccion to Solid State Physics. jhon Wiley & Sons: New York, 996.

39 27 / 28 Bibliografía II Emerson M. Giroto and Ivair A. Santos. Medidas de resistividade eléctrica dc em sólidos: Como efetuúa-las corretamente. Quim, Nova, 25(4): , 2002.

40 28 / 28 GRACIAS!

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

CURSO DE TÉCNICO EN SEGURIDAD DE REDES Y SISTEMAS CONCEPTOS SOBRE ONDAS JOSÉ MARÍA TORRES CORRAL 03/03/2011

CURSO DE TÉCNICO EN SEGURIDAD DE REDES Y SISTEMAS CONCEPTOS SOBRE ONDAS JOSÉ MARÍA TORRES CORRAL 03/03/2011 CURSO DE TÉCNICO EN SEGURIDAD DE REDES Y SISTEMAS CONCEPTOS SOBRE ONDAS JOSÉ MARÍA TORRES CORRAL 03/03/2011 1 Introducción Qué es un campo eléctrico? Qué es un campo magnético? Radiación electromagnética:

Más detalles

Electricidad y Medidas Eléctricas I 2009

Electricidad y Medidas Eléctricas I 2009 Electricidad y Medidas Eléctricas 2009 Carreras: Técnico Universitario en Microprocesadores Profesorado en Tecnología a Electrónica. Bolilla 3 Cargas en movimiento. Corriente eléctrica. Definición. n.

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

Laboratorio de Fundamentos de Física II - Ley de Ohm, Simetria y Resistencias Equivalentes

Laboratorio de Fundamentos de Física II - Ley de Ohm, Simetria y Resistencias Equivalentes Laboratorio de Fundamentos de Física II - Ley de Ohm, Simetria y Resistencias Equivalentes Pablo Javier Salazar Valencia. Ingeniero Físico 22 de junio de 2011 Resumen En esta práctica exploraremos los

Más detalles

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, miaguilar@ciudad.com.ar Mariana Ceraolo

Más detalles

Dependencia con la Temperatura Buenos Conductores Aisladores y Semi Conductores E emplo: E emplo: E e j r e cicio 1(Activ cicio 1(Activ dad 4): dad

Dependencia con la Temperatura Buenos Conductores Aisladores y Semi Conductores E emplo: E emplo: E e j r e cicio 1(Activ cicio 1(Activ dad 4): dad Electricidad y Medidas Eléctricas 2013 Carreras: Técnico Universitario en: Electrónica, Telecomunicaciones, Sonorización. Profesorado en Tecnología Electrónica. http://www.unsl.edu.ar/~eyme1/ Dpto. de

Más detalles

LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD

LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD No 4 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender que la resistencia eléctrica de un elemento conductor

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD TECNOLÓGICA Tecnología en Electricidad

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD TECNOLÓGICA Tecnología en Electricidad EJEMPLO MEDICIÓN DE LA RESISTENCIA ELÉCTRICA DE DIFERENTES CONDUCTORES ELÉCTRICOS Fecha del ensayo: Enero 20 de 2004 Ensayo realizado por: Ing. Helmuth Ortiz Condiciones ambientales del ensayo: Temperatura:

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

Tema 20 Propiedades eléctricas de los materiales.

Tema 20 Propiedades eléctricas de los materiales. Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor ey de Ohm y dependencia de la resistencia con las dimensiones del conductor Ana María Gervasi y Viviana Seino Escuela Normal Superior N 5, Buenos Aires, anamcg@ciudad.com.ar Instituto Privado Argentino

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Corriente, Resistencia y Fuerza Electromotriz

Corriente, Resistencia y Fuerza Electromotriz Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica

Más detalles

CIRCUITOS ELECTRICOS DE CORRIENTE CONTINUA (C.C.)

CIRCUITOS ELECTRICOS DE CORRIENTE CONTINUA (C.C.) .E.S. ZOCO (Córdoba) º Bachillerato. eoría. Dpto. de ecnología CCUOS ELECCOS DE COENE CONNU (C.C.) CCUO ELÉCCO: Es el conjunto de receptores y de fuentes de energía eléctrica conectados mediante conductores

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza

Más detalles

Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CIRCUITO ELÉCTRICO

Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CIRCUITO ELÉCTRICO CRCUTO ELÉCTRCO Conjunto de elementos conductores que forman un camino cerrado, por el que circula una corriente eléctrica. CRCUTO ABERTO CRCUTO CERRADO No existe continuidad entre dos conductores consecutivos.

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas. EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de

Más detalles

Contactos metal-semiconductor

Contactos metal-semiconductor Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Instrumentación y Ley de OHM

Instrumentación y Ley de OHM Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Leyes de Kirchoff El puente de Wheatstone

Leyes de Kirchoff El puente de Wheatstone Leyes de Kirchoff El puente de Wheatstone 30 de marzo de 2007 Objetivos Aprender el manejo de un multímetro para medir resistencias, voltajes, y corrientes. Comprobar las leyes de Kirchoff. Medir el valor

Más detalles

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

Tema 5.-Corriente eléctrica

Tema 5.-Corriente eléctrica Tema 5: Corriente eléctrica Fundamentos Físicos de la Ingeniería Primer curso de Ingeniería Industrial Curso 2006/2007 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Corriente eléctrica

Más detalles

10. La figura muestra un circuito para el que se conoce que:

10. La figura muestra un circuito para el que se conoce que: CORRIENTE ELÉCTRICA 1. Un alambre de Aluminio de 10m de longitud tiene un diámetro de 1.5 mm. El alambre lleva una corriente de 12 Amperios. Encuentre a) La Densidad de corriente b) La velocidad de deriva,

Más detalles

CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones.

CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones. CORRENTE CONTNU CONTENDOS. 1.- Carga eléctrica. Conservación. 2.- Corriente continua. Diferencia de potencial. ntensidad. 3.- Ley de Ohm. 4.- Fuerza electromotriz suministrada por un generador. 5.- Fuerza

Más detalles

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio:

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio: GUIA DE FÍSICA LEY DE OHM Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor Corriente eléctrica Una corriente eléctrica es un movimiento ordenado de cargas eléctricas (electrones libres) en un conductor.

Más detalles

Bolilla 9: Corriente Eléctrica

Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Corriente eléctrica es el flujo de cargas a lo largo de un conductor. Las cargas se mueven debido a una diferencia de potencial aplicada a

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: Magnitudes eléctricas básicas. La Ley de Ohm Las magnitudes fundamentales de los circuitos eléctricos son: Tensión o voltaje: Indica la diferencia de energía

Más detalles

Capítulo 27 Corriente y Resistencia

Capítulo 27 Corriente y Resistencia Capítulo 27 Corriente y Resistencia Es como movimiento a Través de un Fluido La fuerza original (en este ejemplo, gravedad) causa movimiento pero eventualmente es cancelada por la fuerza de fricción. Cuando

Más detalles

Resistencia eléctrica (parte 1)

Resistencia eléctrica (parte 1) Resistencia eléctrica (parte 1) En la práctica no existen conductores perfectos, es decir que no opongan ninguna resistencia al paso de la corriente eléctrica. Si tomamos varios conductores de iguales

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

CORRIENTE ELECTRICA. Presentación extraída de Slideshare.

CORRIENTE ELECTRICA. Presentación extraída de Slideshare. FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa

Más detalles

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1 Nº GUÍA PRÁCTICA Electricidad II: circuitos eléctricos Ejercicios PSU 1. La corriente continua es generada por I) pilas. II) baterías. III) alternadores. Es (son) correcta(s) A) solo I. B) solo II. C)

Más detalles

Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm

Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm Ejercicio resuelto nº 1 Una estufa está aplicada a una diferencia de potencial de 250 V. Por ella circula una intensidad de corriente de 5 A. Determinar

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS SOBRE LA LEY DE OHM

EJERCICIOS Y PROBLEMAS RESUELTOS SOBRE LA LEY DE OHM Ejercicio resuelto Nº 1 La plancha de mi madre se ha roto. Podía alcanzar la temperatura de 60 o C cuando pasaba por el circuito de la plancha una intensidad de 15 Amperios. Pero se rompió y no calienta.

Más detalles

PROGRAMA INSTRUCCIONAL ELECTIVA: SISTEMA PUESTA A TIERRA PARA SISTEMA COMPUTACIONALES

PROGRAMA INSTRUCCIONAL ELECTIVA: SISTEMA PUESTA A TIERRA PARA SISTEMA COMPUTACIONALES UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL ELECTIVA: SISTEMA PUESTA A TIERRA PARA SISTEMA COMPUTACIONALES CÓDIGO ASIGNADO SEMESTRE

Más detalles

Tc / 5 = Tf - 32 / 9. T = Tc + 273

Tc / 5 = Tf - 32 / 9. T = Tc + 273 ENERGIA TERMICA Energía Interna ( U ) : Es la energía total de las partículas que lo constituyen, es decir, la suma de todas las formas de energía que poseen sus partículas; átomos, moléculas e iones.

Más detalles

RESISTENCIAS EQUIVALENTES RESISTENCIAS. 1.- Calcular la resistencia equivalente de las siguientes asociaciones de resistencias:

RESISTENCIAS EQUIVALENTES RESISTENCIAS. 1.- Calcular la resistencia equivalente de las siguientes asociaciones de resistencias: jercicios de lectricidad (1/10) jercicios de lectricidad (2/10) RSISTNIS 1. alcula la resistencia de un hilo de aluminios de 29 m de longitud y 0.5 mm 2 de sección. 2. alcula la resistencia del hilo anterior

Más detalles

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO

Más detalles

Seleccione la alternativa correcta

Seleccione la alternativa correcta ITEM I Seleccione la alternativa correcta La corriente eléctrica se define como: a) Variación de carga con respecto al tiempo. b) La energía necesaria para producir desplazamiento de cargas en una región.

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Actividad III.22 Medición de resistencias a cuatro puntas o método de Kelvin.

Actividad III.22 Medición de resistencias a cuatro puntas o método de Kelvin. ctividad III.22 Medición de resistencias a cuatro puntas o método de Kelvin. Determinación de resistencias de bajo valor Objetivos Estudio de la técnica de cuatro puntas o método de Kelvin para medir resistencias

Más detalles

Experiment Spanish (Bolivia) Conductividad eléctrica en dos dimensiones (10 puntos)

Experiment Spanish (Bolivia) Conductividad eléctrica en dos dimensiones (10 puntos) Q1-1 Conductividad eléctrica en dos dimensiones (10 puntos) Por favor asegúrese de leer las instrucciones generales contenidas en el sobre adjunto antes de comenzar a resolver este problema. Introducción

Más detalles

El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales

El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales 13.2 - El circuito magnético principal de las máquinas lineales 13.2.1 - Líneas de fuerza principales de las máquinas lineales El flujo inductor que atraviesa el entrehierro y que constituye el flujo activo

Más detalles

TEORÍA DE PUESTAS A TIERRA. Johny Montaña

TEORÍA DE PUESTAS A TIERRA. Johny Montaña TEORÍA DE PUESTAS A TIERRA Johny Montaña Barranquilla - Bogotá Colombia, 2011 CONTENIDO Prólogo... xi 1. Análisis de electrodos de puesta a tierra en baja frecuencia...1 Punto fuente de corriente, 3. Línea

Más detalles

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos. APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE ELECTRICIDAD Y CALOR HERMOSILLO, SONORA, JUNIO DEL 2005 1 ELECTRICIDAD Y CALOR Datos de Identificación Nombre de la Institución

Más detalles

FÍSICA. 6 horas a la semana 10 créditos. 4 horas teoría y 2 laboratorio

FÍSICA. 6 horas a la semana 10 créditos. 4 horas teoría y 2 laboratorio FÍSICA 6 horas a la semana 10 créditos 4 horas teoría y 2 laboratorio Semestre: 3ero. Objetivo del curso: El alumno será capaz de obtener y analizar modelos matemáticos de fenómenos físicos, a través del

Más detalles

Consideremos la siguiente situación:

Consideremos la siguiente situación: Consideremos la siguiente situación: E Cuando un campo eléctrico se establece en un conducto cualquiera, las cargas libres ahí presentes entran en movimiento debido en la acción de este campo. Se entiende

Más detalles

ALTERNA (III) TRIFÁSICA: Problemas de aplicación

ALTERNA (III) TRIFÁSICA: Problemas de aplicación ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de

Más detalles

CONDUCTIVIDAD. Definición:

CONDUCTIVIDAD. Definición: CONDUCTIVIDAD Definición: La conductividad es la capacidad de una solución acuosa para conducir una corriente eléctrica. Es igual al recíproco de la resistividad de la solución. Las medidas de conductividad

Más detalles

FISICA III - Ejemplo - Primer Parcial

FISICA III - Ejemplo - Primer Parcial FSCA - Ejemplo - Primer Parcial 1) En cuatro de los cinco vértices de un pentágono regular de lado a se colocan sendas cargas q. a) Cuál es la magnitud de la carga que deberá colocarse en el quinto vértice

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

Tema 11: CIRCUITOS ELÉCTRICOS

Tema 11: CIRCUITOS ELÉCTRICOS Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias

Más detalles

CORRIENTE CONTINUA (I) CONCEPTOS BÁSICOS. IES La Magdalena. Avilés. Asturias. l R = ρ. Símil de la corriente eléctrica

CORRIENTE CONTINUA (I) CONCEPTOS BÁSICOS. IES La Magdalena. Avilés. Asturias. l R = ρ. Símil de la corriente eléctrica OENTE ONTNU () ONEPTOS ÁSOS ES La Magdalena. vilés. sturias enominamos corriente eléctrica a un flujo de cargas eléctricas entre dos puntos conectados físicamente mediante una sustancia conductora. Para

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez

Semiconductores. Lección Ing. Jorge Castro-Godínez Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Semiconductores

Más detalles

TEMA: ELECTRÓNICA ANALÓGICA.

TEMA: ELECTRÓNICA ANALÓGICA. TEMA: ELECTRÓNICA ANALÓGICA. INTRODUCCIÓN: La electrónica es una de las herramientas más importantes de nuestro entorno. Se encuentra en muchos aparatos y sistemas como por ejemplo: radio, televisión,

Más detalles

Resistencia eléctrica

Resistencia eléctrica CAPÍTUO 12 148 Capítulo 12 ETENCA EÉCTCA interacciones campos y ondas / física 1º b.d. esistencia eléctrica Una batería genera entre sus bornes una ddp aproximadamente constante. (Fig.1) i conectamos diferentes

Más detalles

MÉXICO ALAMBRE Y CABLE DE ACERO CON RECUBRIMIENTO DE COBRE SOLDADO (ACS) O RECUBRIMIENTO ELECTROLÍTICO ESPECIFICACIÓN CFE E

MÉXICO ALAMBRE Y CABLE DE ACERO CON RECUBRIMIENTO DE COBRE SOLDADO (ACS) O RECUBRIMIENTO ELECTROLÍTICO ESPECIFICACIÓN CFE E ALAMBRE Y CABLE DE ACERO CON RECUBRIMIENTO DE COBRE SOLDADO MARZO 2016 REVISA Y SUSTITUYE A LA EDICIÓN DE DICIEMBRE 2013 MÉXICO 1 de 5 1 OBJETIVO Esta especificación establece las características técnicas

Más detalles

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

PROGRAMA DE CURSO. Personal

PROGRAMA DE CURSO. Personal PROGRAMA DE CURSO Código Nombre EL6013 Puesta a tierra de Instalaciones Eléctricas y Electrónicas Nombre en Inglés Electrical and Electronic Grounding SCT es Horas de Horas Docencia Horas de Trabajo Docentes

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

Unidad 4. Circuitos eléctricos

Unidad 4. Circuitos eléctricos Unidad 4 Circuitos eléctricos ELEMENTOS DE FíSICA 115 4.1. Corriente eléctrica y unidades El movimiento de cargas eléctricas produce un fenómeno denominado corriente eléctrica. Si se considera una superficie

Más detalles

Ayudantía 10: Superconductores. Figura 1: Expulsión del campo magnético

Ayudantía 10: Superconductores. Figura 1: Expulsión del campo magnético Pontificia Universidad Católica de Chile Escuela de Ingenieria / Facultad de Física IEE1133/FIZ1433 Materiales Eléctricos Profesor: Roberto Rodriguez Ayudantía 10: Superconductores Joaquín Arancibia: jiaranci@puc.cl

Más detalles

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19 Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 1: Corriente Continua. 1.- Naturaleza de la electricidad El átomo es la parte más pequeña que puede existir de un cuerpo simple o elemento. Está constituido por un núcleo y una corteza.

Más detalles

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo. FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons

SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons SENSORES DE FLUJO Referencias bibliográficas Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons Sensores y acondicionamiento de señal, R. Pallás

Más detalles

Trabajo Práctico 3: Corriente Eléctrica

Trabajo Práctico 3: Corriente Eléctrica Universidad Nacional del Nordeste Facultad de Ingeniería Cátedra: Física III Profesor Adjunto: Ing. Arturo Castaño Jefe de Trabajos Prácticos: Ing. Cesar Rey Auxiliares: Ing. Andrés Mendivil, Ing. José

Más detalles

COMPORTAMIENTO DE LOS CIRCUITOS EN CORRIENTE CONTINUA Como Corriente Continua se define una corriente que no varía en el tiempo ni de magnitud ni de sentido. Siempre que la carga insertada en el circuito

Más detalles

RESISTORES Tipos de Resistores:

RESISTORES Tipos de Resistores: RESISTORES 2016 Tipos de Resistores: Teoría de Circuitos Por su composición o fabricación: De hilo bobinado (wirewound) Carbón prensado (carbon composition) Película de carbón (carbon film) Película óxido

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 10.Corriente eléctrica y Resistencia. i. El movimiento de la carga eléctrica. ii.

Más detalles

ANÁLISIS DE CONDUCTIVIDAD

ANÁLISIS DE CONDUCTIVIDAD Página 1 de 6 1. OBJETIVO Realizar el análisis de conductividad desde el agua cruda, durante el proceso de potabilización, agua tratada y los diferentes puntos de la red de distribución, vigilando que

Más detalles

Tema 5: Corriente Eléctrica

Tema 5: Corriente Eléctrica 1/45 Tema 5: Corriente Eléctrica Fátima Masot Conde Ing. Industrial 2007/08 Tema 5: Corriente Eléctrica 2/45 Índice: 1. Introducción 2. Intensidad de corriente 3. Densidad de corriente 4. Ley de Ohm 5.

Más detalles

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

SOLUCIONARIO GUÍAS ELECTIVO

SOLUCIONARIO GUÍAS ELECTIVO SOLUCIONIO GUÍS ELECTIO Electricidad II: circuitos eléctricos SGUICEL00FS11-161 Solucionario guía Electricidad II: circuitos eléctricos Ítem lternativa Habilidad 1 C econocimiento B plicación 3 C plicación

Más detalles

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3

Más detalles

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO 1. Carga eléctrica y materia. Distribuciones de carga 2. Ley de Coulomb 3. Campo eléctrico Departamento de Electrónica y

Más detalles

Torques y equilibrio de momentos. Bogotá D.C., 4 de marzo de 2014

Torques y equilibrio de momentos. Bogotá D.C., 4 de marzo de 2014 Torques y equilibrio de momentos Mara Salgado 1*, Diego Villota Erazo 1*, Diego Buitrago 1*, Katherine Aguirre Guataquí 1*. Bogotá D.C., 4 de marzo de 2014 Departamento de Matemáticas, Laboratorio de Física

Más detalles

LEY DE OHM Y PUENTE DE WHEATSTONE

LEY DE OHM Y PUENTE DE WHEATSTONE uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor

Más detalles