LA TRANSFORMADA DE LAPLACE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA TRANSFORMADA DE LAPLACE"

Transcripción

1 Circuio y Siema Diámico (3º IIND) Tema 2 A TRANSFORMADA DE APACE Curo 23/24 Tema 2: a Traformada de aplace 2. Iroducció: de dóde veimo y a dóde vamo 2.2 Defiició de la raformada de aplace 2.3 Traformada de fucioe báica 2.4 Propiedade de la raformada de aplace 2.5 a fució de raferecia 2.6 Polo y cero 2.7 a raformada ivera 2.8 Teorema del valor fial e iicial Algo obre Pierre Simo, Marqué de aplace CSD-Tema 2: a raformada de aplace - 2

2 2. Iroducció: De dóde veimo... Por lo que hemo vio aeriormee, o parece fácil el eudio de lo feómeo raiorio de circuio de u orde uperior a 2 Icluo e lo de orde 2, el eudio e complica i omeemo a eo circuio a eñale de exciació compleja Hace fala ua herramiea que implifique y iemaice el eudio del comporamieo raiorio de circuio y oro iema diámico CSD-Tema 2: a raformada de aplace - 3 y a dóde vamo Ea herramiea e llama Traformada de aplace: coviere ec. difereciale e algebraica Domiio del iempo Domiio de la frecuecia Problema de ecuacioe difereciale co valor iicial Tra. de aplace Problema de ecuacioe algebraica Difícil Muy fácil Solució del problema de ecuacioe difereciale co valor iicial - Tra. ivera de aplace Solució problema algebraico CSD-Tema 2: a raformada de aplace - 4

3 2.2 Defiició Traformada uilaeral de aplace { } F ( ) = f () = f () e d [] [ - ] E ua iegral impropia: de a Coverge e la fucioe que repreea magiude fíica (la que o ierea) E uilaeral No ierea la evolució de la fució para iempo poiivo CSD-Tema 2: a raformada de aplace Traformada de fucioe báica Ecaló uiario u () Traformada fucioale E ua fució que permie ecribir la expreió maemáica de fucioe fiia e el iempo u () = < u () = > Codició iicial u ( - )= u () Valor iicial u ( + )= CSD-Tema 2: a raformada de aplace - 6

4 Traformada de fucioe báica (2) Ecaló u () Se puede combiar a a 2 u (-a) u (a-) = - u (-a) u ()-u (-2) 2 3 f()=2 u () - 4(-) u (-) + + 4(-3) u (-3) - 2(-4) u (-4) CSD-Tema 2: a raformada de aplace - 7 Traformada de fucioe báica (3) Ecaló u () Su raformada: { } + u () = u () e d = e d = e = = + CSD-Tema 2: a raformada de aplace - 8

5 Traformada de fucioe báica (4) Expoecial: e a { () } a a e u e e d + = = a ( a ) = e + d = + + CSD-Tema 2: a raformada de aplace - 9 Traformada de fucioe báica (5) jω Expoecial compleja: e = co( ω) j e( ω) ω { () } {( co( ω ) e( ω )) ( )} j jω e u e e d + = = ( + jω ) = e d = + jω = = jω + ω ω j u = j ω + ω { co( ω) } j{ e( ω) } CSD-Tema 2: a raformada de aplace -

6 Traformada de fucioe báica (6) Rampa: { ()} u e d + = = = e e d = + + = + e 2 = + = 2 u dv= u v v du CSD-Tema 2: a raformada de aplace - Traformada de fucioe báica (7) Impulo uiario δ (): ( Dela de Dirac ) E úil porque... No permie defiir la derivada e la dicoiuidad Hay algua eñale reale que e aproxima a ella Tiee la iguiee propiedade: Su duració e ula Tiee ua ampliud ifiia Su área e δ () k δ () d k δ () ; = = CSD-Tema 2: a raformada de aplace - 2

7 Traformada de fucioe báica (8) Impulo δ () Cómo e fabrica? f () df ( ) d /(2ε) ε ε ε Área = ε δ () = lim f '() ε CSD-Tema 2: a raformada de aplace - 3 Traformada de fucioe báica (9) Impulo δ () Propiedad de muereo (o deja paar ada excepo el valor e a) f δ a d = f a Su raformada { } () ( ) ( ) δ () = δ () e d = δ () d = Traformada de derivada uceiva d δ ( ) = d + CSD-Tema 2: a raformada de aplace - 4

8 Traformada de fucioe báica (y) Ora a e u( ) a e e( ω) u ( ) a e co( ω) u ( ) 2 ( + a) ω 2 2 ( + a) + ω + a 2 2 ( + a) + ω CSD-Tema 2: a raformada de aplace Propiedade de la raformada iealidad { } Traformada operacioale k f ( ) + k f ( ) = k F( ) + k F ( ) Produco!!! Derivada { } f () f () F( ) F ( ) 2 2 df () = F() f () d Difereciació e el domiio del iempo Operació algebraica e el domiio de la frecuecia CSD-Tema 2: a raformada de aplace - 6

9 Demoració de la derivada df () Derivada = F() f () d df () df () = e d = d u dv= u v v du d ] = e f() + f() e d = = f( ) + F( ) Expreió geeral: = d d d d f() 2 df() d f() F () f() CSD-Tema 2: a raformada de aplace - 7 Propiedade de la raformada (2) Iegració { f( x) dx } = F() Reardo { } a f( a) u ( a) = e F( ) ; a> Tralació e frecuecia a { } e f() = F( + a) Cambio de ecala f( a ) = F ; a> a a { } CSD-Tema 2: a raformada de aplace - 8

10 Propiedade de la raformada (3) Ora raformacioe f () F() df() f() d d F() f() ( ) d f() F( d ) CSD-Tema 2: a raformada de aplace - 9 Propiedade de la raformada (y4) Covolució: g() f() = g( v) f( v) dv { g() v f( v) dv} = F( ) G( ) Ea propiedad iee mucha aplicacioe e igeiería CSD-Tema 2: a raformada de aplace - 2

11 Repuea al impulo y covolució Sea u iema TI (ieal Ivariae e el Tiempo) co ua eñal de erada x() y ua eñal de alida y () = Sx [ ()]. Sx [ ( ) + x2( )] = Sx [ ( )] + Sx [ 2( )] Sa [ x ( )] = a Sx [ ( )] ieal y ( T) = Sx [ ( T)] Ivariae e el iempo Se deomia repuea al impulo a la repuea del iema cuado la erada e el impulo uiario, pariedo de codicioe iiciale ula. CSD-Tema 2: a raformada de aplace - 2 Repuea al impulo y covolució (2) a repuea al impulo uele deoare por h(), y u raformada de aplace por H() Si coocemo h(), podremo obeer la repuea del iema TI ae cualquier ora erada: y () = hv ( ) x ( vdv ) = h () x () hp://www.jhu.edu/~igal/covolve/idex.hml CSD-Tema 2: a raformada de aplace - 22

12 Repuea al impulo y covolució (3) Coidéree como eñal de erada u pulo D k e el iae k como el iguiee: k k D k k Cuado, eoce k a alida erá: h = h( ) k k D ( ) k δ k Siema ivariae k CSD-Tema 2: a raformada de aplace - 23 Repuea al impulo y covolució (4) Cualquier eñal de erada e puede aproximar como la uma de u re de eo pulo, poderado por el valor de la eñal: =+ x() x( ) D k = k k k k Para cada uo de lo umado, e poible ecorar la alida: x ( k) k D x( k) k h( k ) k CSD-Tema 2: a raformada de aplace - 24

13 Repuea al impulo y covolució (y5) Aplicado el pricipio de uperpoició, la eñal de alida oal, erá la uma de la alida de cada uo de lo érmio del umaorio: =+ y () x ( ) h ( ) k = k k k k E el límie, el umaorio e coviere e iegral: k + y () = xv ( ) h ( v ) dv = xv ( ) h ( v ) dv = x () h () CSD-Tema 2: a raformada de aplace - 25 Ejemplo de aplicació I = C (codicioe iiciale ula) R v() aperura del ierrupor v () dv () i = ; + v( ) d+ i ( ) + C = I u ( ) R d V() V() + + C V() v() I R = CSD-Tema 2: a raformada de aplace - 26

14 Ejemplo de aplicació (2) I = C R v() (codicioe iiciale ula) V ( ) + + C = R I I V ( ) = + + C R Se implifica la reolució de ecuacioe difereciale Qué habría que hacer ahora? raformada ivera... CSD-Tema 2: a raformada de aplace Fució de raferecia o modelo maemáico de lo iema que empleamo geeralmee decribe la ifluecia de ua eñal de erada x() obre ora eñal de alida y() mediae ua EDO de orde : x () iema y () 2 2 m dy () d y () d y () dx () d x () d x () αy () + α + α2 + + α 2 = βx () + β + β2 + + β 2 m m d d d d d d (upoiedo codicioe iiciale ula) A () i= Y() A() = X() B() m B() i = α i = β i= i i CSD-Tema 2: a raformada de aplace - 28

15 Fució de raferecia (y2) Y() A() = X() B() B () Y() = X() = F() X() A () F( ) Salida = F.de raferecia Erada CSD-Tema 2: a raformada de aplace - 29 Ejemplo de Fució de Traferecia I V ( ) = + + C R Y() = V() X() = I F () = + + C R CSD-Tema 2: a raformada de aplace - 3

16 2.6 Polo y cero Hemo vio que la fució de raferecia e puede exprear como u cociee de do poliomio. Tao el umerador como el deomiador e puede exprear como produco de moomio que repreea la raíce. B () ( z)( z2) ( zm) F () = = k A() ( p )( p ) ( p ) 2 i = zi F( ) = "cero" i = p F( ) = "polo" i CSD-Tema 2: a raformada de aplace Traformada ivera de aplace Queremo raformar ua fució e e ua σ+ jω fució e - () = { ()} = ( ) Aplicamo la defiició? σ jω x X X e d iegral e el plao complejo Uff! o mejor ería implificar de algua forma la fucioe e de maera que obuviéemo fucioe co airaformada coocida Por ejemplo, i que: y() =.2 e Y() = +.2, abemo por abla CSD-Tema 2: a raformada de aplace - 32

17 Traformada ivera de aplace (2) Qué forma iee la fucioe de la que queremo hallar u raformada ivera? Para circuio lieale de parámero cocerado e ivariae e el iempo e cumple que: So racioale: e puede exprear e fució de cociee de poliomio m N () b m + b + + b+ b Y() = F() X() = = D () a + a + + a+ a m m CSD-Tema 2: a raformada de aplace - 33 Traformada ivera de aplace (3) a fució racioal e puede ecribir ambié... ( z )( z ) ( z ) ( )( ) ( ) 2 m Y() = k p p 2 p El objeivo e reducir la fució a fraccioe parciale, por ejemplo, del ipo: R R2 R3 R4 Y () = ( + ) ( + ) { } = ( ) Y() R R e Re R e u () Cero Polo CSD-Tema 2: a raformada de aplace - 34

18 Traformada ivera de aplace (y4) El procedimieo a eguir para fucioe propia (>m) e el iguiee: a) Ideificar la raíce del deomiador: lo polo. b) Calcular lo reiduo de la fraccioe parciale Raíce diia: polo imple Raíce repeida: polo múliple c) Obeer la ivera a parir de la abla CSD-Tema 2: a raformada de aplace - 35 Expaió e fraccioe parciale Si odo lo polo o diio, la decompoició e fraccioe imple reula muy ecilla: R Y()= i p Dode lo reiduo e puede calcular como: i i ( ) Ri = Y() pi = pi o polo complejo va por pare cojugado, reulado reiduo ambié complejo y cojugado ere í. CSD-Tema 2: a raformada de aplace - 36

19 Polo múliple U polo de muliplicidad k da lugar a k umado, reulado: Dode: R = ( k j) R k j j= i! ( p ) j k ( () ( i ) ) k j d Y p j k j d = pi CSD-Tema 2: a raformada de aplace - 37 Oro méodo de obeció de reiduo De forma complemearia, e puede uilizar oro méodo: Paricularizar para diio valore de, obeiedo x ecuacioe co x icógia Dearrollar la expaió e f.p., reduciedo al mimo deomiador, e ideificar érmio a érmio lo umeradore. CSD-Tema 2: a raformada de aplace - 38

20 Fucioe racioale impropia E el cao e que el umerador ea de grado mayor o igual que el deomiador (m ), Y() e ua fució impropia. Eoce: Primero hay que efecuar la diviió de lo poliomio. El reulado e puede airaformar El reo, parido por el deomiador, e ua fució racioal propia: expaió e fraccioe parciale Co ello reula que y() coiee impulo y derivada de impulo. CSD-Tema 2: a raformada de aplace - 39 Traformacioe ivera báica U polo real p = -a da lugar a ua expoecial de coae de iempo τ = /a: Re ϕ R = a R e = ( + a) ( + a jb) ( + a+ jb) R e U par de polo complejo p = -a ± jb da lugar a ua expoecial de coae de iempo τ = /a por ua eoidal de pulació b: τ ϕ Re a + = 2Re co + ( b ϕ ) CSD-Tema 2: a raformada de aplace - 4

21 Traformacioe ivera báica (y2) o polo múliple da lugar a érmio emejae a lo de lo polo imple, pero muliplicado por poecia del iempo: R R = ( ) ( )! e j + a j j j j a CSD-Tema 2: a raformada de aplace - 4 o polo y la forma de repuea o polo de Y() deermia la fucioe emporale preee e y(): o reiduo ifluye e la ampliude y e lo defae. CSD-Tema 2: a raformada de aplace - 42

22 2.8 Teorema del valor fial e iicial Teorema del valor iicial y fial Permie relacioar el valor de f() e = y e co la raformada F() lim + f ( ) = lim F( ) lim f ( ) = lim F( ) Codicioe: T. Valor iicial: f() o puede coeer fucioe impulo T. Valor fial: o polo de F() iee que ear e el emiplao izq. del plao excepo u polo de primer orde e el orige. Eo equivale a que f() iee que eder a u valor para (e cao corario el eorema del valor fial proporcioa el valor medio de régime permaee) CSD-Tema 2: a raformada de aplace - 43 Demoració de lo eorema Valor iicial Valor fial df () lim ( F ( ) f( )) = lim e d = d + df () df () = d + d + d = d + = f( ) f( ) lim F ( ) = lim f( ) + df () lim ( F ( ) f( )) = lim e d = d df () d f ( ) f ( = = ) d lim F ( ) = lim f( ) CSD-Tema 2: a raformada de aplace - 44

23 Algo obre Pierre Simo de aplace 749 (Beaumo-e-Auge) (Parí) Coocido pricipalmee por u rabajo e aroomía y e la eoría de la probabilidade Tiee ora mucha aporacioe Maemáica Fíica y Química "El Uivero e exprea mediae el leguaje de la maemáica" CSD-Tema 2: a raformada de aplace - 45 Algo obre Pierre Simo de aplace (y2) a aécdoa aplace fue miiro del ierior co Napoleó ólo 6 emaa Eo e lo que dijo Napoleó de él: Geómera de primer rago, aplace o ardó e morare como u admiirador má que mediocre: dede u primer rabajo uvimo que recoocer que o habíamo equivocado. aplace o aacaba igua cueió dede el puo de via acerado: bucaba uileza por oda pare, ólo eía idea problemáica y fialmee llevaba el epíriu de lo "ifiiamee pequeño" [e decir, ifiieimale] haa la admiiració. CSD-Tema 2: a raformada de aplace - 46

RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE

RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE A.4. TEORÍA DE CIRCUITOS I CAPÍTUO RESOUCIÓN DE CIRCUITOS APICANDO TRANSFORMADA DE APACE Cáedra de Teoría de Circuio I Edició 03 RESOUCION DE CIRCUITOS APICANDO TRANSFORMADA DE APACE.. Iroducció El cálculo

Más detalles

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA.

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA. APÍTULO UTOS EN EL DOMNO DE LA FEUENA... SSTEMAS LNEALES NAANTES. roducció. U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x ( Siema lieal

Más detalles

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA APÍTULO UTOS EN EL DOMNO DE LA FEUENA.. SSTEMAS LNEALES NAANTES roducció U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x () Siema lieal

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

José Morón SEÑALES Y SISTEMAS

José Morón SEÑALES Y SISTEMAS SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

Consideraciones metodológicas para la evaluación de la sostenibilidad y vulnerabilidad fiscal

Consideraciones metodológicas para la evaluación de la sostenibilidad y vulnerabilidad fiscal Colecció Baca Ceral y Sociedad BANCO CENTRAL DE VENEZUELA Coideracioe meodológica para la evaluació de la oeibilidad y vulerabilidad fical Elizabeh Ochoa Lizbeh Seija Harold Zavarce Serie Documeo de Trabajo

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

Resolución numérica de problemas de valor inicial (versión preliminar)

Resolución numérica de problemas de valor inicial (versión preliminar) (versió prelimiar) Cocepos iiciales.- Sea la ecuació diferecial de primer orde co las codició iicial x = f(,x) x( 0 ) = x 0 Para resolverla uméricamee será ecesario previamee comprobar si hay solució y

Más detalles

Apuntes Sistemas Lineales Dinámicos - 543 214

Apuntes Sistemas Lineales Dinámicos - 543 214 Uiversidad de Cocepció Faculad de Igeiería Depo. de Igeiería Elécrica Apues Sisemas Lieales Diámicos - 543 4. f () = si(5) f (kt) = f (kt) f () = si() kt -..5..5. 4 ava edició Prof. José R. Espioza C.

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Análisis de Series de Tiempo

Análisis de Series de Tiempo Aálii de Serie de Tiempo Noe que dada la erucura de difereciar la fució de veroimiliud e mu complicado por ao difícil de opimizar. eo cao e aplica méodo umérico co eimadore iiciale dado e la eimació prelimiar.

Más detalles

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010 FUNCIONES ACUARIALES COMO VARIABLES ALEAORIAS SOBRE UNA SOLA VIDA Por Oscar Arada Maríez Nadia Araceli Casillo García Abril E ese primer documeo se presea el ueo efoque del cálculo acuarial, e dode las

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

CONVERSORES D/A Y A/D

CONVERSORES D/A Y A/D Uiversidad Nacioal de osario Faculad de iecias Exacas, Igeiería y Agrimesura Escuela de Igeiería Elecróica eparameo de Elecróica ELETÓNIA III ONVESOES /A Y A/ Federico Miyara A / 11010110 00001011 11000110

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemática Fiaciera Fracico Pérez Herádez Departameto de Fiaciació e Ivetigació de la Uiveridad Autóoma de Madrid Objetivo del curo: Profudizar e lo fudameto del cálculo fiaciero, eceario para u aplicació

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

11 Análisis en el dominio de la

11 Análisis en el dominio de la Aálii e el domiio de la frecuecia Para el etudio de la repueta diámica de lo itema ate ua excitació extera e ha empleado, hata ahora, do método. El primero e realizaba e el domiio del tiempo a travé de

Más detalles

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Análisis de flujos en lámina libre y su interacción con sólidos y estructuras por el método de partículas y elementos finitos (PFEM)

Análisis de flujos en lámina libre y su interacción con sólidos y estructuras por el método de partículas y elementos finitos (PFEM) Aálisis de flujos e lámia libre y su ieracció co sólidos y esrucuras por el méodo de parículas y elemeos fiios (PFEM) E. Oñae B. Suárez F. Salazar R. Morá M.A. Celiguea S. Laorre Publicació CIMNE Nº-365,

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION Págia de 34 Uiversidad Nacioal de Cordoba FILTROS ADAPTIVOS LMS RMS Filro Kalma INTRODUCCION El cocepo de filro adapaivo, sugiere el de u disposiivo que iea modelizar la relació ere señales e iempo real

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Diseño y desarrollo de un Software para el análisis y procesamiento de señales de voz

Diseño y desarrollo de un Software para el análisis y procesamiento de señales de voz Diseño y desarrollo de u Sofware para el aálisis y procesamieo de señales de voz. Laforcada *, D. Miloe, C. Maríez,. Rufier Laboraorio de Ciberéica, Deparameo de Bioigeiería, Faculad de Igeiería, Uiversidad

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Ete documeto e de ditriució gratuita llega gracia a Ciecia Matemática www.cieciamatematica.com El maor portal de recuro educativo a tu ervicio! Itituto Tecológico de Apizaco Departameto de Ciecia Báica

Más detalles

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones apítulo 7. Simetría Molecular ) Elemeto y operacioe de imetría.) Defiicioe Se puede obteer mucha iformació cualitativa de la fucioe de oda y propiedade moleculare (epectro, actividad óptica, ) a partir

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquia Eléctrica I - G86 Tema 3. Máquia Aícroa o de Iducció. Problema reuelto Miguel Ágel Rodríguez Pozueta Departameto de Igeiería Eléctrica y Eergé5ca Ete tema e publica bajo Licecia: Crea5ve Commo BY-

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

Media aritmética, media geométrica y otras medias Desigualdades Korovkin

Media aritmética, media geométrica y otras medias Desigualdades Korovkin Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

Para las comparaciones hay que tener en cuenta dos aspectos importantes:

Para las comparaciones hay que tener en cuenta dos aspectos importantes: Esadísica Descriiva: Números Ídices Faculad Ciecias Ecoómicas y Emresariales Dearameo de Ecoomía Alicada Profesor: Saiago de la Fuee Ferádez NÚMEROS ÍNDCES Los úmeros ídices so ua medida esadísica que

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

Un modelo para el cálculo de la pérdida esperada en una cartera de préstamos hipotecarios

Un modelo para el cálculo de la pérdida esperada en una cartera de préstamos hipotecarios U modelo para el cálculo de la pérdida esperada e ua carera de présamos hipoecarios Jua Bazerque a Jorge ader b BCU F Depo. Esudios BCU F Depo. Esudios Resume E ese rabao se aaliza u aspeco deado de lado

Más detalles

6 Análisis en el dominio del

6 Análisis en el dominio del 6 Aálii e el omiio el tiempo e itema e primer y eguo ore Báicamete, la propieae iámica e la plata puee er aproximaa por la caracterítica temporale e itema má imple. Se etiee por moelo imple, aquello que

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

TEMA 3. ANALISIS DE LA DINAMICA DE PROCESOS EN EL DOMINIO DE LAPLACE: FUNCIONES DE TRANSFERENCIA.

TEMA 3. ANALISIS DE LA DINAMICA DE PROCESOS EN EL DOMINIO DE LAPLACE: FUNCIONES DE TRANSFERENCIA. álisis de la Diámica de Procesos e el Domiio de Laplace. Fucioes de Trasferecia.- TEM 3. NLISIS DE L DINMIC DE PROCESOS EN EL DOMINIO DE LPLCE: FUNCIONES DE TRNSFERENCI. La trasformada de Laplace permite

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año:

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año: COLEGIO COLOMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS PROGRESIONES/ SECUENCIAS/ SUCESIONES PROFESORES: RAÚL MARTÍNEZ Y JESÚS VARGAS Problema Jua Guillermo ivierte milloe de peo durate año, le pagará a

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED.

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. CURSO REDES ELECTRICAS I CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. En ee curo, eamo uoniendo que en la red rifáica coniderada, la 3 corriene que circulan or la red forman un iema equilibrado

Más detalles

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008 alor de escae Elemeos Acuariales ara su Deermiació Por: Pedro Aguilar Belrá Ocubre de 28 El alor de rescae es u coceo que se refiere al moo que le oorgará la aseguradora al asegurado o beeficiario, e caso

Más detalles

4. CONCEPTO BASICOS DE PROBABILIDADES

4. CONCEPTO BASICOS DE PROBABILIDADES 4. CONCEPTO BASICOS DE PROBABILIDADES Dr. http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 41 4.1 Espacio Muestral y Evetos 4.1.1 1 Experimetos Aleatorios y Espacios

Más detalles

denomina longitud de paso, que en un principio se considera que es constante,

denomina longitud de paso, que en un principio se considera que es constante, 883 Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Métodos uméricos de u paso El objetivo de este capítulo es itroducir los métodos uméricos de resolució

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

5n la Unidad 4 hemos estudiado las razones trigonométricas de un ángulo y sus relaciones;

5n la Unidad 4 hemos estudiado las razones trigonométricas de un ángulo y sus relaciones; UNIDAD Fucioes trigoométricas y úmeros complejos la Uidad hemos estudiado las razoes trigoométricas de u águlo y sus relacioes; E e esta vamos a estudiar las fucioes circulares a que da lugar las mecioadas

Más detalles

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema Sitema de cola Ua cola e produce cuado la demada de u ervicio por parte de lo cliete excede la capacidad del ervicio. Se eceita coocer (predecir) el ritmo de etrada de lo cliete y el tiempo de ervicio

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS.

ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS. UNIDAD Nº 3 ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS. 3.- Iroducció. Como se vio e los emas aeriores, el primer paso para aalizar u sisema de corol es obeer el modelo maemáico del mismo. Ua vez

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Apuntes De Análisis Numérico.

Apuntes De Análisis Numérico. Aputes De. Prof. Alberto Agarita. Departameto De Ciecias Básicas, Uidades Tecológicas de Satader. y P 1 (x) P 2 (x) P 3 (x) P i (x) P (x) P(x) I 1 I 2 I 3 I x 1 x 2 x 3 x 4 x 1 x x P(x) = P 1 (x) P 2 (x)

Más detalles

UNAM. renueva su oferta de carreras

UNAM. renueva su oferta de carreras reueva u oferta carrera El Coejo Uiveritario aprobó e diciembre paado la creació d ueva liceciatura: Ciematografía y Fíica Biomédica, aí la Uiveridad amplía u oferta etudi uperiore a 107 carrera. Ete diplomado

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

Inteligencia de redes y comunicaciones. Celestino. Eduardo García Ballestero Julio F. Borreguero Ballesteros

Inteligencia de redes y comunicaciones. Celestino. Eduardo García Ballestero Julio F. Borreguero Ballesteros Iteligecia de rede y comuicacioe Celetio Eduardo García Balletero Julio F. Borreguero Balletero CELESTI 1. Itroducció Cuáta de la peroa que coocemo tiee pareja?, cuáta tiee dificultade para ecotrarla?...ya

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 REVITA IVETIGACIO OPERACIOAL Vol. 4, o., 3 TEORIA DE LA VALORACIO MEDIATE MODELO FIACIERO ETOCATICO, E TIEMPO DICRETO Y E TIEMPO COTIUO Josefia Maríez arbeio, Uiversidade de A Coruña, España Julio García

Más detalles

Ley de los números grandes

Ley de los números grandes Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.

Más detalles

CAPÍTULO 1: ESTIMACIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS

CAPÍTULO 1: ESTIMACIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS Pare II: Esimació de la esrucura emporal de los ipos de ierés a ravés de subcojuos borrosos y esimació de los ipos de ierés fuuros APÍTULO : ESTIMAIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS

Más detalles