SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA"

Transcripción

1 SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. *

2 I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware repreentativo llamado MatLab 5.0 y u enfoque práctico para reolver problema de Control Cláico en el dominio del tiempo. III. VALORES Y ACTITUDES: HONESTIDAD (al evaluar la actividade, en la coevaluación), COMUNICACIÓN ASERTIVA, AUTOESTIMA, LIBERTAD (de expreión, de elección, de tránito), RESPONSABILIDAD (entrega puntual, limpieza), SOLIDARIDAD (colaboración y ayuda mutua), JUSTICIA (igualdad y equidad). IV. DESARROLLOS: A) PARTE TEÓRICA : INTRODUCCIÓN. MATLAB, e una abreviatura de MATriz LABoratory, conite de un oftware baado en el calculo matricial para dearrollar aplicacione matemática y de ingeniería. Por ello toda la variable que e manejan en MATLAB on matrice, i.e tienen un olo tipo de dato, una matriz ó un array rectangular de número. Ademá de poeer rutina para obtener alida gráfica epecífica y una ayuda en línea (HELP ). MATLAB tiene órdene predefinida para la repueta al ecalón, diagrama del lugar geométrico de raíce, diagrama de Bode y Nyquit, converión de itema continuo a dicreto, etc. En la página iguiente e muetran alguno comando uado en el área de Control Cláico. Si e deea ecribir comentario en un programa e ua el ímbolo %. INSTALACIÓN DEL SOFTWARE: Introduzca el CD-ROM que contiene una edición de etudiante del programa intruccione de pantalla. MatLab y iga la

3 B) PARTE PRÁCTICA : Análii de Sitema en el Dominio del Tiempo.- ANÁLISIS EN EL DOMINIO DEL TIEMPO: RESPUESTA AL ESCALÓN Tabla. Ordene en MATLAB y funcione matriciale Órdene y funcione matriciale uada normalmente en la olución de problema de ingeniería de control Explicación de lo que hacen la ordene y de lo que ignifican la funcione matriciale y la entencia ab angle an atan axix bode Valor aboluto, magnitud compleja Angulo de fae Repueta cuando no e aigna expreión Arco tangente Ecalado manual de eje Repreentación en el diagrama de bode clear clg computer conj conv corrcoef co coh cov deconv det diag eig exit exp expm eye filter format long format long e format hort format hort e freq freqz grid Borra el epacio de trabajo Borra la pantalla gráfica Tipo de computador Complejo conjugado Convolución, multiplicación Coeficiente de correlación Coeno Coeno hiperbólico Covarianza Deconvolución, diviión Determinante Matriz diagonal Valore propio y vectore propio Finalizar programa Exponencial bae e Matriz exponencial Matriz identidad Implementación de filtro directo Punto fijo ecalonado a 5 dígito (ejem: ) Punto flotante a 5 dígito (ejem: e+000) Punto fijo ecalonado a 5 dígito (ejem:.3333) Punto flotante a 5 dígito (ejem:.3333e+000) Repueta en frecuencia de la tranformada de Laplace Repueta en frecuencia de la tranformada z Dibujar rejilla 3

4 hold i imag inf inv j lengun linpace log loglog logm logpace log0 lqe lqr max mean median min NaN nyquit one pi plot polar poly polyfit polyval polyvalm prod quit rand rank real rem reidue rlocu root emilogx emilogy ign in inh ize qrt qrtm td ep um Mantener la gráfica actual en la pantalla parte imaginaría infinito ( ) invera longitud del vector vectore epaciado linealmente logaritmo natural gráfica x-y loglog logaritmo matricial vectore epaciado logarítmicamente logaritmo en bae 0 dieño del etimador lineal cuadrático dieño del regulador lineal cuadrático valor máximo valor medio mediana valor mínimo no e un número repueta en frecuencia en el diagrama de Nyquit contante Pi ( ) gráfica x-y lineal gráfica polar polinomio caracterítico ajute de curva polinomial Evaluación polinomial Evaluación polinomial matricial Producto de elemento Finalizar el programa Generación de número aleatorio y matrice Calcula el rango de una matriz Parte real Reto o módulo Expanión en fraccione parciale Diagrama del lugar de la raíce Raíce de un polinomio Diagrama emilogarítmico x-y(eje-x logaritmico) Diagrama emilogarítmico x-y(eje-y logaritmico) Función igno Seno Seno hiperbólico Dimenión de una matriz Raíz cuadrada Raíz cuadrada matricial Deviación etándar Repueta a un alto unitario Suma de elemento 4

5 tan tanh text title trace who xlabel ylabel zero Tangente Tangente hiperbólica Poicionado arbitrario de texto Titulo de una gráfica Traza de una matriz Lita de toda la variable actualmente en memoria Etiqueta en el eje x Etiqueta en el eje y cero La repueta tranitoria (tale como repueta a un alto o entrada ecalón, repueta impulional y repueta a una rampa) e utilizan frecuentemente para invetigar en el dominio temporal de lo itema de control. La caracterítica de repueta tranitoria tale como el tiempo de ubida, tiempo de pico, obreelongación máxima, tiempo de aentamiento y error en etado etacionario e pueden determinar a partir de la repueta a un alto. Si e conocen num y den ( el numerador y el denominador de la función de tranferencia en lazo cerrado) órdene tale como: Step(num,den) tep(num,den,t) generarán gráfica de repueta a un alto unitario. (El parámetro t en la orden ep e el tiempo epecificado por el uuario). RESPUESTA AL ESCALON Para un itema de control definido en el formato del epacio de etado, donde e conocen la matriz de etado A, la matriz de control B, la matriz de alida C y la matriz de tranmiión directa D de la ecuacione en el epacio de etado, la orden Step(A,B,C,D,iu,t) generará gráfica de repueta a un alto unitario. El vector de tiempo e determina automáticamente cuando el parámetro t no e incluye explícitamente en la órdene tep. Oberve que cuando la órdene tep tienen argumento en el lado izquierdo, tale como [y,x,t]tep(num,den,t) [y,x,t]tep(a,b,c,d,iu,t) [y,x,t]tep(a,b,c,d,iu,t) () ninguna gráfica e muetra en la pantalla. En ete cao, e neceario utilizar una orden plot para ver la cuerva de repueta. La matrice x e y contienen la repueta del etado y de la alida del itema repectivamente evaluada en lo intante de tiempo de cálculo t. ( y tiene tanta columna como alida y una fila para cada elemento de t, x tiene tanta columna como etado y una fila para cada elemento de t) Oberve en la ecuación () que el ecalar iu e un índice a la entrada del itema que epecifica que entrada e va a utilizar para la repueta, y t e el tiempo epecificado por el uuario. Si el itema conta de múltiple entrada y alida, la orden ep tal como viene dada por la ecuación () produce una erie de gráfica de repueta a un alto, una por cada combinación de entrada y alida de 5

6 X Ax + Bu Y Cx + Du REPRESENTACIÓN EN MATLAB DE SISTEMAS LINEALES La función de tranferencia de un itema (en el dominio o z) e repreenta mediante do array de número. Conidéree el itema: + 4 G ( Ete itema e repreenta como do array cada uno de ello conteniendo lo coeficiente de lo polinomio en potencia de tal como igue: Num[0 0 4] Den[.3 7 4] (Oberve que hay que rellenar con cero donde ea neceario ) E importante dare cuenta que i, por error, introducimo el denominador de eta función de tranferencia como Den[,3 7 4] Ete denominador e completamente diferente del correcto. Debido a la preencia de una como entre el y el 3, ete denominador ignifica Den[ 3 7 4] Por tanto, la repueta del itema original y del itema con el error de mecanografiado on totalmente ditinta. Evite iempre eta clae de errore inocente tale como ecribir una coma en lugar de un punto. OBTENCIÓN DE LA RESPUESTA A UNA ENTRADA ESCALÓN A PARTIR DE LA FUNCIÓN DE TRANSFERENCIA DEL SISTEMA Sea el itema Obtener una gráfica de la curva de repueta a un alto unitario. El programa en MATLAB dará una gráfica de la repueta a un alto unitario de ete itema. Una gráfica dela curva de repueta a un alto unitario e muetra en la Figura. 6

7 .4 Repueta a un alto unitario de G(?5/( +4+5) From: U(). Amplitude To: Y() Tim e (ec.) Figura Programa en MATLAB %-----Repueta a un alto unitario %******Repueta a un alto unitario de una función de tranferencia****** %***Introduzca el numerador y el denominador de la función de tranferencia**** num[0 0 5]; den[ 4 5]; %*****Introduzca la iguiente orden de repueta a un alto***** tep(num,den) %******Introduzca la rejilla y el título de la gráfica***** grid title('repueta a un alto unitario de G(5/(^+4+5)') Para obtener la repueta a un ecalón ó alto unitario del itema que e muetra en la Figura. La función de tranferencia en lazo cerrado e puede obtener como igue:

8 Gráfica de la curva de repueta marcada con o. Para tener una gráfica de la curva de repueta marcada con o, introduzca en el computador el programa MATLAB. La curva de repueta reultante e muetra en la Figura ( +.435) ( + )( a + 5) Figura Programa en MATLAB % Repueta a un alto unitario %******i e deea repreentar la repueta a un alto unitario con marca %'o', 'x', '--', etc, utilice el programa que e muetra a continuación ****** %******Introduzca el numerador y el denominador de la función de tranferencia %en lazo cerrado****** num[ ]; den[ ]; *****Introduzca la iguiente orden de repueta a un alto % y de repreentación gráfica****** [c,x,t]tep(num,den);plot(t,c,'o') %**introduzca la rejilla, título de la gráfica y etiqueta para lo eje x e y** grid title('repueta a un alto unitario') xlabel('t eg') ylabel('alida c') 8

9 .8 Repueta a un alto unitario.6.4. alida c teg Figura 3 Nota: La repueta impulional o la repueta a una entrada en rampa del itema de control e puede obtener multiplicando o dividiendo la función de tranferencia en lazo cerrado por y utilizando la orden tep..- ANÁLISIS EN EL DOMINIO DEL TIEMPO: RESPUESTA AL IMPULSO Ahora e trata la repueta impulional de lo itema de control. La idea báica ahora e que, cuando la condicione iniciale on cero, la repueta a un impulo unitario de G( e la mima que la repueta a un alto unitario G(. Conidere la repueta a un impulo unitario del iguiente itema: G( + Como para la entrada impulo unitario, tenemo G( + + 9

10 Podemo aí convenir la repueta a un impulo unitario de G( en la repueta a un alto unitario de G(. Si introducimo el numerador y denominador iguiente en el programa MATLAB Num[ 0] Den[ ] Y utilizamo la orden de repueta a un alto, tal como e hace en el programa 3 en MATLAB, podemo obtener una gráfica de la repueta a un impulo unitario del itema como e muetra en la Figura 4 Programa 3 en MATLAB % Repueta a un impulo unitario %*****Para obtener la repueta a un impulo unitario de un itema de primer %orden G(/(+), multiplicar por G( y utilizar la orden de repueta a %un alto unitario***** %*****Introduzca el numerador y el denominador de G(***** num[ 0];??? num[ Miing operator, comma, or emi-colon. num[ 0]; den[ ]; %*****Introduzca la orden de repueta a un alto unitario***** tep(num,den) grid title('repueta a un impulo unitario de G((+)') 0

11 repueta a un impulo unitario de G(/(+) From: U() Amplitude To: Y() Time (ec.) Figura 4 Sea la repueta a un impulo unitario del itema d egundo orden G( Para la entrada impulo unitario e tiene que /. Por tanto G( Coniderando que la repueta a un impulo unitario de G( e la repueta a un alto unitario de G(, introduzca el numerador y denominador iguiente en el programa: Num[0 0] Den[ 0. ] Un programa completo en MATLAB para obtener la repueta a un impulo unitario de ete itema e da en el programa 4 en MATLAB. En la Figura 5 e muetra una gráfica de la repueta a un impulo unitario del itema.

12 0.8 Programa 4 en MATLAB Repueta a un impulo unitario de G(/( +0.+) From: U() %------Repueta a un impulo unitario %*****Repueta a un impulo unitario de G(/(^+0.+)***** %*****Para obtener la repueta a un impulo unitario de G(, multiplique % 0.6por G( y utilice la orden de repueta a un alto unitario***** 0.4 %*****Introduzca el numerador y el denominador de G(***** Amplitude To: Y() 0. num[0 0]; den[ 0 0. ]; -0. %*****Introduzca la orden de repueta a un alto unitario***** -0.4 t0:0.:50; tep(num,den,t) -0.6 grid title('repueta a un impulo unitario de G(/(^+0.+)') Time (ec.) Figura 5 Nota: La repueta del tiempo de un itema para cualquier tipo de entrada, e poible también definir lo iguiente tiempo: t (tiempo de ubida, del 0 al 90% del Valor final), ta (tiempo de arranque, del 0 al 0% del valor final), tp (tiempo de otenimiento, del 90% del valor final acendente al otro 90% del valor final decendente), tb (tiempo de bajada, del 90% al 0% del valor final), tr (tiempo de retrao, del origen al inicio de la repueta en el tiempo). Como e muetra en la figura iguiente: Figura 6. Repueta Temporal motrando lo tiempo: ta,tr,tp.tb y t.

13 V. APRENDIZAJE OBTENIDO : A) RESULTADOS. B) CONCLUSIONES. C) COMENTARIOS. VI. AUTOEVALUACIÓN DEL APRENDIZAJE : A) Qué abía? B) Qué aprendí? C) Qué me faltó aber? D) Cómo voy a lograrlo? VII. CONSOLIDACIÓN DEL APRENDIZAJE: A) CUESTIONARIO:. Obtener la repueta al itema dado a una entrada ecalón unitario (Favor de contetar olo tre i. G( + ii iii Obtener la repueta al itema dado a una entrada impulo unitario iv

14 v. G( + vi. 6.33( +.435) ( + )( + 5) N vii. R E T Kp ( J + b ) C B) ACTIVIDADES EXTRACLASE: Invetigación de hareware, demo, freeware, obre imulación de itema en el tiempo (actividad individual opcional enviada al correo del docente del curo). C) ELABORACIÓN REPORTE TÉCNICO SUCINTO DE LAS ACTIVIDADES ANTERIORES. Entrega del reporte ecrito y u preentación multimedia al correo del docente del curo (actividad grupal obligatoria). Nota: El reporte ecrito e calificará tomando en cuenta la claridad de lo concepto utilizado, la coherencia, la ortografía, la preentación multimedia y en la olución del cuetionario el manejo adecuado de la( metodología( y/ó lo dearrollo matemático y/ó programa( empleado(. Todo lo anterior con la intención de concatenar lo conocimiento adquirido en éta actividad con u otra aignatura. VIII. BIBLIOGRAFÍA. (c.f. módulo bibliografía) IX. MATERIAL DIDÁCTICO: Secuencia didáctica, oftware y materiale divero en línea. X. SUGERENCIAS: (Crítica contructiva para mejorar la preente ecuencia didáctica) 4

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

Análisis En El Dominio De La Frecuencia

Análisis En El Dominio De La Frecuencia Análii En El Dominio De La Frecuencia.-Introducción..-Repueta en frecuencia...-diagrama cero-polar. 3.-Repreentación gráfica de la repueta en frecuencia. 3..-Diagrama de Bode. 3..-Diagrama polar (Nyquit.

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO

MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO XXV Jornada de Automática Ciudad Real, del 8 al de eptiembre de 4 MODELADO ANÁLISIS Y CONTROL DE UN EVAPORADOR DE DOBLE EFECTO Manuel Pérez Polo, Joé Ángel Berná Galiano, Javier Gil Chica Departamento

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

Álgebra Lineal Tutorial básico de MATLAB

Álgebra Lineal Tutorial básico de MATLAB Escuela de Matemáticas. Universidad Nacional de Colombia, Sede Medellín. 1 VECTORES Álgebra Lineal Tutorial básico de MATLAB MATLAB es un programa interactivo para cómputos numéricos y visualización de

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas MATEMÁTICA DISCRETA

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas MATEMÁTICA DISCRETA Facultad de Ciencia Báica e Ingeniería Programa Ingeniería de Sitema CURSO: MATEMÁTICA DISCRETA 1 SEMESTRE: II 2 CÓDIGO: 602202 3 COMPONENTE: 4 CICLO: 5 ÁREA: Báica 6 FECHA DE APROBACIÓN: 7 NATURALEZA

Más detalles

Matlab para Análisis Dinámico de Sistemas

Matlab para Análisis Dinámico de Sistemas Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control

Más detalles

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara CONTROL POR COMPUTADOR Temario. Ingeniería Informática. Realiado por: Juan Manuel Bardallo Gonále Miguel Ángel de Vega Alcántara Huelva. Curo 06/07. INDICE Tema. MODELIZACIÓN DE SISTEMAS DISCRETOS. Introducción..

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

INDICACIONES A PARTIR DEL CURSO ESCOLAR 2013-2014 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA.

INDICACIONES A PARTIR DEL CURSO ESCOLAR 2013-2014 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA. INDICACIONES A PARTIR DEL CURSO ESCOLAR 01-01 PARA LA ASIGNATURA MATEMÁTICA EN SECUNDARIA BÁSICA. La preente orientacione parten del análii de lo reultado obtenido en el curo ecolar 01 01, aí como de la

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL OBJETIVO Práctica N 1 del Laboratorio de Ingeniería de Control Introducción y Comandos de Matlab Familiarizarse

Más detalles

Contenido. Vision ME Guía del usuario s

Contenido. Vision ME Guía del usuario s GUÍA DEL USUARIO Contenido 1. Introducción...2 1.1. Viion ME Iniciar eión automáticamente...2 2. Invitar a lo alumno a unire a la clae...3 2.1. Ver a lo alumno en clae...6 2.2. Experiencia de lo alumno...7

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Univeridad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Documento UTN Nº EA3-5- Adaptación de impedancia en amplif de RF Introducción o amplificadore de potencia e uan generalmente

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

ROBERTO LUNA AROCAS Doctor enpsicología. Titular de Universidad. Dpto de Dirección de Empresas, Universidad de Valencia

ROBERTO LUNA AROCAS Doctor enpsicología. Titular de Universidad. Dpto de Dirección de Empresas, Universidad de Valencia REDONDO CASTÁN, JUAN CARLOS Doctor en Ciencia Económica y Empreariale. Decano y Titular de Univeridad de Educación Fíica y Deportiva, Univeridad de León. Area de trabajo: entrenamiento deportivo, evaluación

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

1) Como declarar una matriz o un vector.

1) Como declarar una matriz o un vector. MATLAB es un programa que integra matemáticas computacionales y visualización para resolver problemas numéricos basándose en arreglos de matrices y vectores. Esta herramienta posee infinidad de aplicaciones,

Más detalles

Documentación. HiPath 1100

Documentación. HiPath 1100 Documentación HiPath 1100 Attendant Conole (AC) Teléfono del Sitema OpenStage 15 T optipoint 500 economy optipoint 500 baic optipoint 500 tandard optipoint 500 advance Intruccione breve de manejo Communication

Más detalles

PLAN DOCENTE DE LA ASIGNATURA INVESTIGACIÓN DE MERCADOS II. 1. Datos descriptivos de la asignatura

PLAN DOCENTE DE LA ASIGNATURA INVESTIGACIÓN DE MERCADOS II. 1. Datos descriptivos de la asignatura PLAN DOCENTE DE LA ASIGNATURA INVESTIGACIÓN DE MERCADOS II 1. Dato decriptivo de la aignatura Nombre de la aignatura: Invetigación de Mercado II Área: Marketing e invetigación de mercado Perfil: Invetigación

Más detalles

TUTORIAL BASICO DE MATLAB

TUTORIAL BASICO DE MATLAB 1 COMANDOS GENERALES Help Demo Who What Size Length Clear Computer ^c Exit Quit Ayuda Demostraciones Muestra las variables en memoria Muestra archivos.m en el disco Numero de filas y columnas Longitud

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Proceamiento Digital de Señal Tema 5: Muetreo y recontrucción Teorema de muetreo: Shannon-Nyquit. Recontrucción Diezmado e Interpolación Cuantización Muetreo El muetreo digital de una eñal analógica trae

Más detalles

Se considerarán los títulos con contenidos afines al aquí presentado. Nº mínimo de ECTS a reconocer: Nº máximo de ECTS a reconocer:

Se considerarán los títulos con contenidos afines al aquí presentado. Nº mínimo de ECTS a reconocer: Nº máximo de ECTS a reconocer: 24 Criterio para realizar el reconocimiento: Se coniderarán lo título con contenido afine al aquí preentado Reconocimiento de ECTS por Acreditación de Experiencia Laboral y Profeional Nº mínimo de ECTS

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

GUÍA PARA EL USO DE MATLAB PARTE 1

GUÍA PARA EL USO DE MATLAB PARTE 1 GUÍA PARA EL USO DE MATLAB PARTE 1 GUÍA DE USUARIO BÁSICO PARA MATLAB El programa Matlab MatLab (MATrix LABoratory) es un programa para realizar cálculos numéricos con vectores y matrices. Una de las capacidades

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido

Más detalles

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO En el Capítulo e obtuvieron la ecuacione para lo flujo electrocinético en término del potencial electrotático promedio ψ() en el interior del poro cilíndrico.

Más detalles

2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL

2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL 2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 2: INTRODUCCIÓN A MATLAB. CARACTERÍSTICAS BÁSICAS DE MATLAB Funcionalidades

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail.

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail. Boot LENNY ANDRÉS HERNÁNDEZ FONSECA Ingeniero electrónico. Invetigador de la Univeridad Pedagógica y Tecnológica de Colombia. Sogamoo, Colombia. Contacto: landre87@hotmail.com DIEGO RICARDO GÓMEZ LEÓN

Más detalles

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico. 1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

Tema 4: Programación lineal con variables continuas: método del Simplex

Tema 4: Programación lineal con variables continuas: método del Simplex Tema 4: Programación lineal con variable continua: método del Simple Obetivo del tema: Reolver de forma gráfica un problema de programación lineal continuo Etudiar la forma equivalente de repreentación

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO: 6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

CALENDARIO - MATRIZ BIMESTRAL 2012. Profesora: Anita Espejo de Velasco Asignatura: Matemática Grado: 2º de Secundaria Bimestre: Segundo

CALENDARIO - MATRIZ BIMESTRAL 2012. Profesora: Anita Espejo de Velasco Asignatura: Matemática Grado: 2º de Secundaria Bimestre: Segundo Competencia Indicadore logro Unida Hr Criterio Repreenta patrone numérico y expreione algebraica e intifica el patrón formación y lo aplica en la reolución problema matemático Compren forma lógica e intuitiva

Más detalles

DETERMINACIÓN DEL TIEMPO DE VUELO DE SEÑALES ULTRASÓNICAS, CON RESOLUCIÓN SUPERIOR A UN PERIODO DE MUESTREO, POR ANÁLISIS DE FASE

DETERMINACIÓN DEL TIEMPO DE VUELO DE SEÑALES ULTRASÓNICAS, CON RESOLUCIÓN SUPERIOR A UN PERIODO DE MUESTREO, POR ANÁLISIS DE FASE DETERMINACIÓN DEL TIEMPO DE VUELO DE SEÑALES ULTRASÓNICAS, CON RESOLUCIÓN SUPERIOR A UN PERIODO DE MUESTREO, POR ANÁLISIS DE FASE REFERENCIA PACS: 43.58.Dj Ibáñez Rodríguez, A.; Parrilla Romero, M; García

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza un rayo paralelo al eje

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

INDICE 1. Introducción 1.2. Qué es Realimentación y Cuáles son sus Efectos? 1.3. Tipos de Sistemas de Control Realimentado

INDICE 1. Introducción 1.2. Qué es Realimentación y Cuáles son sus Efectos? 1.3. Tipos de Sistemas de Control Realimentado INDICE Prefacio XIX Prefacio al Software de Computadora para Sistemas de Control XXII 1. Introducción 1 1.1. Introducción 1 1.1.1. Componentes básicos de un sistema de control 2 1.1.2. Ejemplos de aplicaciones

Más detalles

Práctica 0: Introducción a Matlab. Series Temporales. Diplomatura en Estadística. 2009/2010

Práctica 0: Introducción a Matlab. Series Temporales. Diplomatura en Estadística. 2009/2010 Práctica 0: Introducción a Matlab. Series Temporales. Diplomatura en Estadística. 2009/200 Matlab es un programa inicialmente diseñado para realizar operaciones matriciales (MATrix LABoratory) que ha ido

Más detalles

UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Escuela de Ingeniería Electrónica

UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Escuela de Ingeniería Electrónica UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Ecuela de Ingeniería Electrónica Implementación de filtro digitale en controladore digitale de eñal Tei previa a la obtención del título de Ingeniero

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

Aplicando la Transformada de Laplace a Redes Eléctricas

Aplicando la Transformada de Laplace a Redes Eléctricas Aplicando la Tranformada de Laplace a Rede Eléctrica J.I. Huircán Univeridad de La Frontera April 5, 006 Abtract Se aplica la Tranformada de Laplace a ditinta rede eléctrica, primero excitacione báica

Más detalles

PROGRAMA DE CONTROL DE CALIDAD

PROGRAMA DE CONTROL DE CALIDAD WORK PAPER # 1 PROGRAMA DE CONTROL DE CALIDAD Nro. DE PROCEDIMIENTO: AC - PRO 01 Nro. DE HOJAS: 6 ELABORÓ: Ing. Víctor A. Laredo Antezana CÓDIGO: TÍTULO WORK PAPER: LO BÁSICO DE MATLAB DPTO: UDABOL LA

Más detalles

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Cálculo Numérico (521230) Laboratorio 1: Introducción al Matlab Matlab es una abreviatura para

Más detalles

MATLAB PARA LA INVESTIGACIÓN CIENTÍFICA, LA DOCENCIA Y LA INGENIERÍA NIVEL I. Por: Alberto Patiño Vanegas

MATLAB PARA LA INVESTIGACIÓN CIENTÍFICA, LA DOCENCIA Y LA INGENIERÍA NIVEL I. Por: Alberto Patiño Vanegas MATLAB PARA LA INVESTIGACIÓN CIENTÍFICA, LA DOCENCIA Y LA INGENIERÍA NIVEL I GRUPO DE INVESTIGACIÓN ÓPTICA MODERNA Universidad de Pamplona 1 PRIMERA SESIÓN MATLAB OPERACIONES NUMÉRICAS ELEMENTALES PRINCIPALES

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

Introducción al Cálculo Simbólico a través de Maple

Introducción al Cálculo Simbólico a través de Maple 1 inn-edu.com ricardo.villafana@gmail.com Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos

Más detalles

BONDAD DE AJUSTE Y ELECCIÓN DEL PUNTO DE CORTE EN REGRESIÓN LOGÍSTICA BASADA EN DISTANCIAS. APLICACIÓN AL PROBLEMA DE CREDIT SCORING.

BONDAD DE AJUSTE Y ELECCIÓN DEL PUNTO DE CORTE EN REGRESIÓN LOGÍSTICA BASADA EN DISTANCIAS. APLICACIÓN AL PROBLEMA DE CREDIT SCORING. Anale del Intituto de Actuario Epañole, 3ª época, 18, 2012/19-40 BONDAD DE AJUSTE Y ELECCIÓN DEL PUNTO DE CORTE EN REGRESIÓN LOGÍSTICA BASADA EN DISTANCIAS. APLICACIÓN AL PROBLEMA DE CREDIT SCORING. Terea

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Univeridad Central Del Ete U C E Facultad de Ciencia y Humanidade Ecuela de Pedagogía Mención Ciencia Fíica y Matemática Programa de la aignatura: (MAT351) Álgebra Superior Total de Crédito: 3 Teórico:

Más detalles

CA Nimsoft Monitor Snap

CA Nimsoft Monitor Snap CA Nimoft Monitor Snap Guía de configuración de Monitorización de Cico UCS Server Serie de cico_uc 2.1 Avio legale Copyright 2013, CA. All right reerved. Garantía El material incluido en ete documento

Más detalles

CONTROL DE TANQUES ACOPLADOS

CONTROL DE TANQUES ACOPLADOS ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACION Titulación: INGENIERIA TECNICA INDUSTRIAL (ELECTRICIDAD) CONTROL DE TANQUES ACOPLADOS Alumna: Sara Pérez Izquieta Tutore: Iñaki

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSICA Mención MATERIAL: FM-1 MAGNITUDES ESCALARES Y VECTORIALES La Fíica tiene por objetivo decribir la naturaleza y lo fenómeno que en ella ocurren, a travé de magnitude y relacione entre

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL Sitema Lineale II Unidad 4 EL MPLIFICDO OPECIONL Material de apy Indice 1. Intrducción.. Preentación. 3. Circuit equivalente. 4. Cnfiguración inverra. 4.1 Un circuit "ube y baja". 4. Ca de ganancia finita

Más detalles

LENGUAJE DE PROGRAMACIÓN SCILAB

LENGUAJE DE PROGRAMACIÓN SCILAB LENGUAJE DE PROGRAMACIÓN SCILAB CONTENIDO 1. Operaciones básicas. Suma. Resta. Producto. División. Potencia. Raíz cuadrada. Números complejos 2. Funciones. Exponencial. Logarítmica. Trigonométricas. Evaluación

Más detalles

Guía docente: Bases de la Ingeniería Química

Guía docente: Bases de la Ingeniería Química Guía docente: Bae la Ingeniería Química 1. Intificación la aignatura NOMBRE Bae la Ingeniería Química CÓDIGO GIQUIM01-1- 010 Graduado o Graduada en Ingeniería TITULACIÓN Química por la Univeridad Oviedo

Más detalles

Clase 2: Operaciones con matrices en Matlab

Clase 2: Operaciones con matrices en Matlab Clase 2: Operaciones con matrices en Matlab Hamilton Galindo UP Hamilton Galindo (UP) Clase 2: Operaciones con matrices en Matlab Marzo 2014 1 / 37 Outline 1 Definición de matrices desde teclado 2 Operaciones

Más detalles

Formatos y Operadores

Formatos y Operadores Formatos y Operadores Formatos numéricos format short long hex bank short e short g long e long g rational coma fija con 4 decimales (defecto) coma fija con 15 decimales cifras hexadecimales números con

Más detalles

FORMULARIO INDICADORES DE DESEMPEÑO AÑO 2015

FORMULARIO INDICADORES DE DESEMPEÑO AÑO 2015 FORMULARIO INDICADORES DE DESEMPEÑO AÑO 15 MINISTERIO MINISTERIO DE TRANSPORTE Y TELECOMUNICACIONES PARTIDA 19 SERVICIO SUBSECRETARIA DE TELECOMUNICACIONES CAPÍTULO Producto Etratégico al que e Vincula

Más detalles

Tema VI: Referencias de tensión y reguladores de tensión.

Tema VI: Referencias de tensión y reguladores de tensión. ESUELA ÉNA SUPEO DE NGENEOS NDUSALES Y DE ELEOMUNAÓN UNESDAD DE ANABA NSUMENAÓN ELEÓNA DE OMUNAONES (5º uro ngeniería de elecomunicación) ema : eferencia de tenión y reguladore de tenión. Joé María Drake

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

Diseño y simulación de sistemas microcontrolados en lenguaje C

Diseño y simulación de sistemas microcontrolados en lenguaje C Dieño y imulación de itema microcontrolado en lenguaje C Programación con MikroC PRO Simulación en Proteu ISIS Juan Ricardo Clavijo Mendoa Dedicado a mí epoa: Sandra, mi hijo Miguel, mi padre Jorge y

Más detalles

Comenzando con MATLAB

Comenzando con MATLAB ÁLGEBRA LINEAL INGENIERÍA INFORMÁTICA Curso 08/09 PRÁCTICA 1 Comenzando con MATLAB 1 Funcionamiento de Matlab MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería.

Más detalles

Práctica 1: Introducción al entorno de trabajo de MATLAB *

Práctica 1: Introducción al entorno de trabajo de MATLAB * Práctica 1: Introducción al entorno de trabajo de MATLAB * 1. Introducción MATLAB constituye actualmente un estándar dentro de las herramientas del análisis numérico, tanto por su gran capacidad y sencillez

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Localización de múltiples fugas usando la onda de presión

Localización de múltiples fugas usando la onda de presión 263 Localización de múltiple fuga uando la onda de preión A. Muñoz C. Verde L. Torre, Intituto de Ingeniería, UNAM, 04510 Coyoacan, México D.F. Cátedra CONACYT Reumen: En ete trabajo e propone determinar

Más detalles

ÍNDICE. Página. Pág. 2 de 23

ÍNDICE. Página. Pág. 2 de 23 PLIEGO DE PRESCRIPCIONES TÉCNICAS QUE REGIRÁ EN EL PROCEDIMIENTO ABIERTO, PARA LA CONTRATACIÓN DE LA GESTIÓN DE UN CENTRO DE SOPORTE A USUARIOS DE LOS SISTEMAS Y TECNOLOGÍAS DE LA INFORMACIÓN DEL INSTITUTO

Más detalles

Formato de salida : 1er Laboratorio de MN II. Comando format 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB

Formato de salida : 1er Laboratorio de MN II. Comando format 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB 1er Laboratorio de MN II 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB Para salir de MATLAB se escribe quit ó exit. Al terminar una sesión de MATLAB, las variables en el espacio de trabajo se borran.

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

Algunos comandos para tener en cuenta en las operaciones son: who enumera todas las variables usadas hasta el momento.

Algunos comandos para tener en cuenta en las operaciones son: who enumera todas las variables usadas hasta el momento. MATLAB El software MatLab se desarrolló como un Laboratorio de matrices, pues su elemento básico es una matriz. Es un sistema interactivo y un lenguaje de programación de cómputos científico y técnico

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

SEGUNDO PARCIAL - Física 1 30 de junio de 2010

SEGUNDO PARCIAL - Física 1 30 de junio de 2010 Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.

Más detalles

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES IDENTIFICACIÓN DE LA ASIGNATURA Nombre: Matemáticas Fundamentales Código: 0701479 Área Específica: Ciencias Básicas Semestre de Carrera: Primero JUSTIFICACIÓN El estudio de las matemáticas es parte insustituible

Más detalles

SÍLABO DE ADMINISTRACIÓN, PLANIFICACIÓN Y ORGANIZACIÓN

SÍLABO DE ADMINISTRACIÓN, PLANIFICACIÓN Y ORGANIZACIÓN SÍLABO DE ADMINISTRACIÓN, PLANIFICACIÓN Y ORGANIZACIÓN I. INFORMACIÓN GENERAL Carrera Profeional : Adminitración de Emprea Módulo : I Unidad Didáctica : Adminitración, Planificación y Organización Crédito

Más detalles

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO 2 ÓPTICA GEOMÉTRICA 2.. ORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO. En la imagen que e forma de un objeto en un epejo plano e invierten la izquierda la derecha, pero no la parte de arriba la parte de abajo

Más detalles

UNIDAD III UNIDAD IV

UNIDAD III UNIDAD IV UNIDAD III TEORIA DE PEQUEÑAS MUESTRAS Ditribución t de tudent. Intervalo de confianza para una media con varianza deconocida. Prueba de hipótei obre la media de una ditribución normal, varianza deconocida.

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

Tercer Congreso Nacional Segundo Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía HYFUSEN 2009

Tercer Congreso Nacional Segundo Congreso Iberoamericano Hidrógeno y Fuentes Sustentables de Energía HYFUSEN 2009 APLICACIÓN DEL ÍNDICE CAPACIDAD EVAPORATIVA PARA EVALUAR EL COMPORTAMIENTO DE UN SISTEMA DE SECADO INTEGRADO POR UN COLECTOR SOLAR Y UNA CABINA DE SECADO Pontin, M. I.; Lema, A. I.; Moretto, J. M.; Barral,

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

Guía de uso de MATLAB

Guía de uso de MATLAB Guía de uso de MATLAB Se necesitan unos pocos comandos básicos para empezar a utilizar MATLAB. Esta pequeña guía explica dichos comandos fundamentales. Habrá que definir vectores y matrices para poder

Más detalles