Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo."

Transcripción

1 Guía de ejercicios supletorio 2do BGU 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. a P A Parámetro Valor Unidad q a -6 µc q b +2 µc q c +1 µc a 50 cm b 90 cm b q c a. Representa en el esquema- el vector fuerza eléctrica resultante que aparece sobre la carga q b. Etiquétela con F b. b. Calcula el valor de dicha fuerza resultante. c. Represente en el esquema- el vector campo eléctrico, actuante sobre el punto P, producido solamente por la carga q a. Etiquételo con E PA.

2 d. Determine la energía potencial eléctrica que posee la carga q c. e. Determina la magnitud del potencial eléctrico en A. 2. Marque con una X la opción correcta. El campo eléctrico producido por una carga positiva es un vector, cuya magnitud: A. Disminuye cuando la distancia al centro de la carga aumenta. B. Aumenta cuando la distancia al centro de la carga aumenta. C. Se mantiene constante con la variación de la distancia al centro de la carga. D. Aumenta y luego disminuye con la variación de la distancia al centro de la carga.

3 3. Si el campo eléctrico producido por una carga Q positiva -a 2 m de distancia de su centro- es de 12 N/C. a) Represente la fuerza eléctrica que se produciría sobre una carga positiva q 1 = 3 C, situada a esa distancia de la carga Q. b) Obtenga el valor de esa fuerza eléctrica. c) Obtenga el valor de la carga Q. d) Obtenga la intensidad del campo eléctrico que produce la carga q 1 a 4 m de su centro 4. Si una carga eléctrica positiva de 4 kc se encuentra en un punto A del espacio con potencial eléctrico de 20V, entonces, la energía potencial eléctrica que experimenta la carga es: A. 0 J B. 80 J C J D. -80 J 5. La fuente electromotriz de un generador eléctrico tiene un voltaje de 240 V y suministra una corriente de 30 A. En 10 minutos de funcionamiento, e) Calcula la potencia eléctrica del generador. f) Cuánta carga eléctrica fluye por él? g) Cuánta energía suministra la fuente electromotriz? h) Cuántos electrones fluyen por el generador en ese tiempo?

4 6. El esquema muestra dos circuitos X e Y. En el circuito X, la resistencia interna de la fuente de poder se puede despreciar. En el circuito Y, la resistencia interna de la fuente de poder es 4 Ω. circuit X Circuito X ε = 30 V E circuit Y Circuito Y ε = 40 V E R = 20 Ω R R1 = 20 Ω R a) Determine la potencia eléctrica en el circuito X. R R2 = 10 Ω b) Determine la potencia disipada en el circuito Y. c) Calcule la corriente eléctrica que fluye por cada resistencia en el circuito Y.

5 7) Dos cargas de 5 y 8 µc se hallan situadas en los puntos (2;0) y (4;0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 8) Dos cargas de 6 µc y -4 µc se encuentran en los puntos (1,0) y (6,0) (las unidades están en metros) del eje 0X. Halla dónde habrá de colocarse una carga de 2 µc de tal forma que ésta permanezca inmóvil. 9) Cuatro cargas de 10 C están en los vértices de un cuadrado de 2 metros de lado. Calcula el campo eléctrico y el potencial eléctrico en el punto central. a) Qué sucedería si cambiásemos una de las cargas por otra de -10 C? 10) Una carga de 8 µc y 20 g de masa se sitúa en un campo eléctrico uniforme de 10 N/C. Calcula la aceleración que experimenta y su velocidad a los 5 segundos. 11) Se tienen tres cargas de 2 C, 4 C y 6 C situadas en los vértices del triángulo (2;0), (6;0) y (4;3), respectivamente. a) Calcula el campo eléctrico que producen esas tres cargas en el punto (4;0).

6 12). La batería de una calculadora de bolsillo tiene un voltaje de 4.5 V y suministra una corriente de 0.15 ma. En dos horas de funcionamiento, (a) cuánta carga fluye en el circuito? (b) cuánta energía suministra la batería al circuito de la calculadora? 13) Un dispositivo eléctrico usa para su funcionamiento dos baterías de 0,75 V y proporciona una corriente de 600 ma sobre un resistor. Determina la resistencia eléctrica del resistor. 14) Se tiene un cable de 200 m de longitud y sección transversal de 5 mm de diámetro. Se quiere que la resistencia eléctrica sea de 1 Ω. Qué resistividad eléctrica debe tener el cable? 15) Dos materiales tienen diferente resistividad. Se fabrican dos cables de la misma longitud, uno de cada uno de los materiales. Es posible que los cables tengan la misma resistencia? A Sí, si el material con la resistividad mayor se usa para un cable más fino. B Sí, si el material con la resistividad más grande se usa para un cable más grueso. C No es posible. Escoja la opción que considere correcta y justifique su respuesta. 16) Cómo varía la resistencia del cobre cuando tanto la longitud como el diámetro del cable se 17) duplican? A Disminuye en un factor de dos. B Aumenta en un factor de dos. C Aumenta en un factor de cuatro. D Disminuye en un factor de cuatro. E No varía. Escoja la opción que considere correcta y justifique su respuesta. 17. Dada una espira circular de diámetro 20 cm, que transporta una corriente de 8000 µa. a) Encontrar el campo magnético en el centro de una espira. b) Dibuje las líneas del campo magnético generado.

7 18. Una espira rectangular de lado menor: 25 cm y lado mayor: 40 cm por la que circula una corriente de 14 A en el sentido horario y sobre la que actúa un campo magnético uniforme de intensidad B y dirección horizontal. Se especifican algunos datos sobre las fuerzas magnéticas que actúan en los lados a) Determine el valor de las fuerzas no especificadas. b) Determine la magnitud del campo magnético que actúa sobre la espira. c) Represente el campo magnético actuante. F2 = 0 F1 = 5 F4 =? F3 = 0

8 19. Dada una espira circular de radio 25 cm, que produce un campo magnético en el centro de la espira de 0.04 T, actuando en el sentido mostrado. a) Encontrar la corriente que circula por la espira. b) Represente el sentido de la corriente en la espira. 20. Una espira rectangular de lado menor: 10 cm y lado mayor: 20 cm, se encuentra bajo la influencia de un campo magnético uniforme de intensidad 0.03 T, que forma 35 con la horizontal. Por la espira circula una corriente de 20 ka en el sentido antihorario. a) Determine el valor de las fuerzas en cada lado de la espira. b) Determine el sentido de las fuerzas en cada lado de la espira

9 21. Obtenga las lecturas de los instrumentos de medición señalados para la situación planteada: Variante Estado del interruptor S1 S2 S3 S4 1 Abierto Cerrado Abierto Abierto 2 Cerrado Cerrado Abierto Abierto 3 Cerrado Cerrado Abierto Cerrado 4 Cerrado abierto Cerrado Cerrado 5 Abierto Cerrado Abierto Cerrado No. V R1 R2 R3 R4 R5 R6 R7 R8 (V) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω)

10 22. En un circuito en serie, formado por n resistencias distintas, la corriente eléctrica que circula por esas resistencias es: a) Igual b) Diferente c) Cero d) Igual al voltaje de le f.e.m. 23. En un circuito en paralelo, formado por n resistencias distintas, la corriente eléctrica que circula por esas resistencias es: e) Igual f) Diferente g) Cero h) Igual al voltaje de la f.e.m 24. En un circuito en paralelo, formado por n resistencias distintas, la diferencia de potencial entre esas resistencias es: i) Igual j) Diferente k) Cero l) Igual al voltaje de la f.e.m 25. Obtenga los parámetros solicitados en el circuito que se muestra: a) Corriente eléctrica que circula por el punto: b) Diferencia de potencial entre los puntos: Obtenga los parámetros solicitados en el circuito que se muestra: a) Corriente eléctrica que circula por el punto: b) Diferencia de potencial entre los puntos: No. V (V) R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) R5 (Ω) R6 (Ω) R7 (Ω) R8 (Ω)

11 27. Cuál de los siguientes circuitos muestra el modo correcto de colocar amperímetros y voltímetros ideales para medir la corriente y la diferencia de potencial de la lámpara de filamento? A. A B. A V V C. D. A A V V 28. En el circuito mostrado, el voltímetro tiene resistencia interna de 20 kω. La batería tiene fuerza electromotriz de 6.0 V y resistencia interna despreciable. 6.0 V 10 k 20 k V 20 k La lectura del voltímetro es: A. 2.0 V. B. 3.0 V. C. 4.0 V. D. 6.0 V. 29. Una batería de fuerza electromotriz 30 V y resistencia interna despreciable, se conecta a tres resistores, cada uno de resistencia 20 Ω y a un interruptor. Al circuito se conecta un voltímetro ideal.

12 E R R V R a) Qué lectura tiene el voltímetro cuando el interruptor está cerrado? A. 0 B. 15 V C. 30 V D. 10 V 30. El circuito que se muestra está formado por una fuente de poder que genera 12 V y no posee resistencia interna, una lámpara de filamento de resistencia 8 Ω y un divisor de potencial de resistencia total 20 Ω. Si el deslizador S del divisor de potencial se encuentra en el centro de la longitud del mismo. a) Ubique apropiadamente un amperímetro y un voltímetro para medir la corriente eléctrica y la diferencia de potencial que fluyen a través de la lámpara de filamento. b) Determine las lecturas de dichos instrumentos.

13 31. En los circuitos que se muestran, las todas las fuentes de poder tienen la misma tensión igual a 40 V y no poseen resistencia interna. Todos los resistores tienen la misma resistencia interna igual a 20 µω. Circuito X Circuito Y Circuit X Circuit Y Circuit Z a) En cuál circuito se producirá el menor consumo de corriente eléctrica? Circuito Z A. X. B. Y. C. Z. D. En todos por igual. b) En el circuito que usted escogió, calcule el consumo de corriente que se produciría en el mismo si permanece encendido durante 72 horas y la tarifa horaria es de 0.60 $/kwh 32. En el circuito que se muestra, Qué medidor no se encuentra correctamente colocado? A 1 1 V 2 3 A 3 2 V 4 4 A. 1 B. 2 C. 3 D El diagrama muestra el circuito utilizado para medir el voltaje y la diferencia de potencial de un componente eléctrico X.

14 X En el diagrama anterior a) Etiquete el amperímetro con una A y el voltímetro con una V. (1) b) Marque la posición de contacto del potenciómetro que producirá una lectura de cero en el voltímetro. Etiquete esta posición con la letra P. 34. A continuación se muestra un circuito formado por una fuente de poder que genera una fuerza electromotriz igual a 12 V y tres resistencias. Una de ellas es un sensor de temperatura, cuya gráfica de sensibilidad aparece más abajo. a) Determine la diferencia de potencial alrededor de la resistencia de 10 kω, cuando la temperatura es 50 C.

15 35. Un delgado conductor de cobre hace pasar entre los polos de un magneto. 36. Una carga de 2 C, se mueve con rapidez constante de 200 m/s en la dirección mostrada. La carga entra un campo magnético uniforme de 0.1 T, que forma 90 con la dirección de la velocidad de la carga. Tanto la carga como el campo magnético están contenidos en el plano de la página. B a. Determine la magnitud de la fuerza magnética actuante sobre la carga q. v q = + 2 C Escoja el diagrama que mejor representa el sentido y dirección del vector fuerza magnética sobre la carga q. A. B. C. D. E. X F. G. 37. Dos conductores estrechos y largos se colocan sobre el plano de la página y conducen corrientes de 2.0 A y 3.0 A. El punto R está situado también en el plano de la página.

16 a. Determine la magnitud del campo magnético en R. 38. Un alambre que conduce una corriente eléctrica (I) es perpendicular a un campo magnético de magnitud B. Suponiendo una longitud de alambre fija, a) Cuáles de los siguientes cambios dará por resultado un aumento de la fuerza sobre el alambre en un factor de 2? A Disminuir el ángulo de 90 a 45. B Disminuir el ángulo de 90 a 30 C Aumentar la corriente al doble. D Aumentar del campo magnético a la mitad b) Justifique su respuesta. c) Escoja el diagrama que mejor representa el sentido y dirección del vector fuerza magnética resultante sobre el punto conductor de la corriente. A. B. C. D. E. X F. G.

17 39. Determine en número de vueltas necesario para que un solenoide de 50 cm de longitud, por el que circula una corriente de 3 A, produzca un campo magnético de 1.5 T. 40. Calcule la longitud que ha de poseer un solenoide de 8000 vueltas, por el que circula una corriente de 0.5 A para que produzca un campo magnético de intensidad 2 T.

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Seleccione la alternativa correcta

Seleccione la alternativa correcta ITEM I Seleccione la alternativa correcta La corriente eléctrica se define como: a) Variación de carga con respecto al tiempo. b) La energía necesaria para producir desplazamiento de cargas en una región.

Más detalles

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente: Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

0,7m.

0,7m. 1. Dos pequeñas esferas de plata, cada una con una masa de 10 g. están separadas 1 m. Calcule la fracción de electrones de una esfera que deberá ser transferida a la otra a fin de producir una fuerza de

Más detalles

Práctica 3 de Física General (Curso propedéutico 2_2007)

Práctica 3 de Física General (Curso propedéutico 2_2007) Práctica 3 de Física General (Curso propedéutico 2_2007) 1.- Si los valores de las cargas Q1, Q2, Q3 son de 30 C; 100 C y 160 C respectivamente, determinar la fuerza eléctrica resultante que actúa sobre

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

2- Un hilo metálico de 100m de longitud y 1 mm 2 de sección tiene una resistencia de 2,5 De qué metal se trata?.

2- Un hilo metálico de 100m de longitud y 1 mm 2 de sección tiene una resistencia de 2,5 De qué metal se trata?. CORRIENTE CONTINU 1- verigua el valor de la intensidad de corriente si a través de una sección transversal del hilo conductor circula una carga de 1 C cada 10 minutos. 2- Un hilo metálico de 100m de longitud

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una

Más detalles

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17 1º E.U.I.T.I.Z. Curso 2004 05. Electricidad y Electrometría. Problemas resueltos tema 6 1/17 4.- Calcular el vector inducción magnética, B, en el punto O, creado por una corriente eléctrica de intensidad

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD

DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD DIVISION DE CIENCIAS BASICAS DEPARTAMENTO DE FISICA EXAMEN FINAL DE FISICA ELECTRICIDAD - 24.11.15 NOMBRE: GRUPO: INSTRUCCIONES: Este examen consta de de cuatro componentes: Componente conceptual de 10

Más detalles

FISICA III - Ejemplo - Primer Parcial

FISICA III - Ejemplo - Primer Parcial FSCA - Ejemplo - Primer Parcial 1) En cuatro de los cinco vértices de un pentágono regular de lado a se colocan sendas cargas q. a) Cuál es la magnitud de la carga que deberá colocarse en el quinto vértice

Más detalles

Física de PSI - Inducción electromagnética. Preguntas de opción múltiple

Física de PSI - Inducción electromagnética. Preguntas de opción múltiple Física de PSI - Inducción electromagnética Preguntas de opción múltiple 1. Una espira de alambre se coloca en un campo magnético comienza a aumentar, Cuál es la dirección de la corriente 2. Una espira

Más detalles

10. La figura muestra un circuito para el que se conoce que:

10. La figura muestra un circuito para el que se conoce que: CORRIENTE ELÉCTRICA 1. Un alambre de Aluminio de 10m de longitud tiene un diámetro de 1.5 mm. El alambre lleva una corriente de 12 Amperios. Encuentre a) La Densidad de corriente b) La velocidad de deriva,

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

UNIDAD 4. CAMPO MAGNÉTICO

UNIDAD 4. CAMPO MAGNÉTICO UNIDAD 4. CAMPO MAGNÉTICO P.IV- 1. Un protón se mueve con una velocidad de 3 10 7 m/s a través de un campo magnético de 1.2 T. Si la fuerza que experimenta es de 2 10 12 N, qué ángulo formaba su velocidad

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA ELECTRICIDAD TEORÍA Establezca las siguientes definiciones o conceptos: 1.- Carga. 2.- Ley de Coulomb. 3.- Ley de Conservación

Más detalles

Guía de Ejercicios de Inducción Electromagnética

Guía de Ejercicios de Inducción Electromagnética UNIVERSIDAD PEDAGÓGICA EXPERIMENTA IBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO UIS BETRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURAES PROGRAMA DE FÍSICA EECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética 70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial

Más detalles

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Electricidad II: circuitos eléctricos GUICEL002FS11-A16V1 Nº GUÍA PRÁCTICA Electricidad II: circuitos eléctricos Ejercicios PSU 1. La corriente continua es generada por I) pilas. II) baterías. III) alternadores. Es (son) correcta(s) A) solo I. B) solo II. C)

Más detalles

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio:

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio: GUIA DE FÍSICA LEY DE OHM Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor Corriente eléctrica Una corriente eléctrica es un movimiento ordenado de cargas eléctricas (electrones libres) en un conductor.

Más detalles

3) El campo magnético entre los polos del electroimán de la figura es uniforme en cualquier momento, pero su magnitud se incrementa a razón de 0.

3) El campo magnético entre los polos del electroimán de la figura es uniforme en cualquier momento, pero su magnitud se incrementa a razón de 0. 1) Una espira cuadrada de alambre encierra una área A1, como se indica en la figura. Un campo magnético uniforme perpendicular a la espira se extiende sobre el área A2. Cuál es el flujo magnético a través

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos.

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 11. Sobre los esquemas dibujados en el ejercicio anterior indica mediante flechas el sentido de la corriente eléctrica: (considera que los

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS CORRIENTE ELÉCTRICA Y MOVIMIENTO DE CARGAS Problema 1: Una corriente de 3.6 A fluye a través de un faro de automóvil. Cuántos Culombios de carga fluyen

Más detalles

Actividad 0: Electromagnetismo

Actividad 0: Electromagnetismo Actividad 0: Electromagnetismo Ejercicio Nº 1: El esquema de la figura 1 representa una carga +q que se mueve con una velocidad v en un campo magnético representado por puntos. Indique la fuerza que aparece

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios. PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

Corriente Continua. 6. En el circuito de la figura 1(b) hallar la diferencia de potencial entre los puntos a y b.

Corriente Continua. 6. En el circuito de la figura 1(b) hallar la diferencia de potencial entre los puntos a y b. Corriente Continua 1. Un cable conductor de cobre cuyo diámetro es de 1.29 mm puede transportar con seguridad una corriente máxima de 6 A. a) Cuál es la diferencia de potencial máxima que puede aplicarse

Más detalles

Consideremos la siguiente situación:

Consideremos la siguiente situación: Consideremos la siguiente situación: E Cuando un campo eléctrico se establece en un conducto cualquiera, las cargas libres ahí presentes entran en movimiento debido en la acción de este campo. Se entiende

Más detalles

Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica

Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica Nombre y apellidos: Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica En determinados materiales, como los metales y las sustancias iónicas fundidas o disueltas

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas. EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO.

PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO. PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO. 1) Halla el radio de la órbita que describe un electrón que entra en un campo magnético de 10 T, con una velocidad de 10 4 m/s, de modo que forma un

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

ELECTROMAGNETISMO Profesor: Juan T. Valverde

ELECTROMAGNETISMO Profesor: Juan T. Valverde CAMPO MAGNÉTICO 1.- Considere un átomo de hidrógeno con el electrón girando alrededor del núcleo en una órbita circular de radio igual a 5,29.10-11 m. Despreciamos la interacción gravitatoria. Calcule:

Más detalles

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996

Más detalles

Tema 2: Campo magnético

Tema 2: Campo magnético Tema 2: Campo magnético A. Fuentes del campo magnético A1. Magnetismo e imanes Magnetismo. Imán: características. Acción a distancia. Campo magnético. Líneas de campo. La Tierra: gran imán. Campo magnético

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 4: ELECTROMAGNETISMO F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

EJERCICIOS DE ELECTRICIDAD ELEMENTOS ELÉCTRICOS

EJERCICIOS DE ELECTRICIDAD ELEMENTOS ELÉCTRICOS ELEMENTOS ELÉCTRICOS EJERCICIOS DE ELECTRICIDAD ELEMENTOS ELÉCTRICOS 1. Contesta los siguientes apartados: a) Cuánta energía consume una lámpara de 200 W en dos horas?, y cuánta potencia? b) Qué potencia

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

Cálculo aproximado de la carga específica del electrón Fundamento

Cálculo aproximado de la carga específica del electrón Fundamento Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

E 4.0. EJERCICIOS DE EXAMEN

E 4.0. EJERCICIOS DE EXAMEN E 4.0. EJERCICIOS DE EXAMEN E 4.0.01. El campo eléctrico producido por un anillo circular uniformemente cargado, en un punto cualquiera sobre su eje es (ver figura 1 Qz izquierda) E = k [N/C]. A 2 2 3

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

CUESTIONARIO 2 DE FISICA 2

CUESTIONARIO 2 DE FISICA 2 CUESTIONARIO 2 DE FISICA 2 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Cuestiones 1. a) (12) Fuerza magnética sobre una carga en movimiento; ley de Lorentz. b) Si la fuerza magnética sobre una partícula cargada

Más detalles

[ ] nea. FMPR Facultad de Ingeniería U.N.A.M. Departamento de Electricidad y Magnetismo Ejercicios Tema 3

[ ] nea. FMPR Facultad de Ingeniería U.N.A.M. Departamento de Electricidad y Magnetismo Ejercicios Tema 3 1 1. Se conocen 150 m. de alambre ( ρ 20 c :1.72x10 8( Ω) ) y α : 0.004 C ˆ-1 ) a una diferencia de potencial de 12 (V).Si la sección circular del alambre tiene un diámetro d: 0.511mm. Calcule: a) La resistencia

Más detalles

Electricidad y Medidas Eléctricas I 2009

Electricidad y Medidas Eléctricas I 2009 Electricidad y Medidas Eléctricas 2009 Carreras: Técnico Universitario en Microprocesadores Profesorado en Tecnología a Electrónica. Bolilla 3 Cargas en movimiento. Corriente eléctrica. Definición. n.

Más detalles

PRÁCTICAS CROCODILE CLIPS.

PRÁCTICAS CROCODILE CLIPS. PRÁCTICAS CROCODILE CLIPS. 3º ESO curso 2013-2014 1. Construye el siguiente circuito en serie, formado por dos bombillas idénticas, un generador de 4,5 V y un interruptor, a continuación completa la siguiente

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa

Más detalles

3. Calcular la corriente que circula por un conductor metálico de ρ = 0.17Ω m que tiene una longitud de 0.2m y un área de sección

3. Calcular la corriente que circula por un conductor metálico de ρ = 0.17Ω m que tiene una longitud de 0.2m y un área de sección Electromagnetismo: PROBLEMAS PROPUESTOS. 1. Calcular el campo eléctrico producido por q 1 y q en el punto a, si q 1 =q =3 μ c. Y d=10mm.. Calcular el potencial en el punto b, si q 1 =q y 1 μ c q 3 =q 4

Más detalles

EJERCICIOS CIRCUITOS ELÉCTRICOS CIRCUITOS EN SERIE Y CIRCUITOS EN PARALELO

EJERCICIOS CIRCUITOS ELÉCTRICOS CIRCUITOS EN SERIE Y CIRCUITOS EN PARALELO II EJERCICIOS CIRCUITOS ELÉCTRICOS CIRCUITOS EN SERIE Y CIRCUITOS EN PARALELO. Cuatro focos de 40 Ω están conectados en serie. Cuál es la resistencia total del circuito? Cuál sería la resistencia si estuvieran

Más detalles

CAMPO MAGNÉTICO Y FUERZAS MAGNÉTICAS

CAMPO MAGNÉTICO Y FUERZAS MAGNÉTICAS CAMPO MAGNÉTICO Y FUERZAS MAGNÉTICAS 1. Responda en forma breve y justifique: (CIV-ExFinal-2003-1) a) Si un condensador está descargado, su capacitancia es cero? b) Una plancha doméstica de resistencia

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

RESISTENCIAS EQUIVALENTES RESISTENCIAS. 1.- Calcular la resistencia equivalente de las siguientes asociaciones de resistencias:

RESISTENCIAS EQUIVALENTES RESISTENCIAS. 1.- Calcular la resistencia equivalente de las siguientes asociaciones de resistencias: jercicios de lectricidad (1/10) jercicios de lectricidad (2/10) RSISTNIS 1. alcula la resistencia de un hilo de aluminios de 29 m de longitud y 0.5 mm 2 de sección. 2. alcula la resistencia del hilo anterior

Más detalles

E 1 =24 V E 2 =24 V R 1 =10 E 3 =24 V R 3 =10 R 2 =10 R 4 = V v. 50 V. R 1 =20 R=5 Ω R 2. Ejercicios corriente continua 1-66

E 1 =24 V E 2 =24 V R 1 =10 E 3 =24 V R 3 =10 R 2 =10 R 4 = V v. 50 V. R 1 =20 R=5 Ω R 2. Ejercicios corriente continua 1-66 Ejercicios corriente continua 1-66 1. En el circuito de la figura, se sabe que con k abierto, el amperímetro indica una lectura de 5 amperios. Hallar: a) Tensión U AB b) Potencia disipada en la resistencia

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

EJERCICIOS CONCEPTUALES

EJERCICIOS CONCEPTUALES ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: CAMPOS ELÉCTRICOS GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: 2 EJERCICIOS CONCEPTUALES 1. Suponiendo que el valor de la carga del protón fuera un poco diferente de la

Más detalles

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria 6to de Primaria cálculos auxiliares al reverso de la página. Tiempo 2 horas. 1. (10%) Encierra en un círculo los incisos que corresponden a estados de la materia. a) líquido b) transparente c) gaseoso

Más detalles

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes

Más detalles

Física. fisica.ips.edu.ar

Física. fisica.ips.edu.ar Inducción Electromagnética 4º Año Cód- 7406-16 fisica.ips.edu.ar www.ips.edu.ar I g n a c i o T a b a r e s J u a n F a r i n a Dpto. de Físi ca Inducción Electromagnética Capítulo 4 Inducción electromagnética

Más detalles

s sufre, por ese campo magnético, una fuerza

s sufre, por ese campo magnético, una fuerza Problemas de Campo Magnético. 1. En el sistema de referencia ( O; i, j, k ) un hilo conductor colocado en la dirección del eje OY, tiene una intensidad de 10 A en el sentido positivo de dicho eje. Si hay

Más detalles

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N?

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N? BOLETÍN DE PROBLEMAS SOBRE CAMPO ELÉCTRICO Ley de Coulomb 1. Calcula la intensidad (módulo) de las fuerzas que dos cargas Q 1 =8µC y Q 2 =-6µC separadas una distancia r=30cm se ejercer mutuamente. Dibújalas.

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s

corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s UNA CORRIENTE i de electricidad existe en cualquier región donde sean transportadas cargas eléctricas desde un punto a otro punto de esa región.supóngase que la carga se mueve a través de un alambre.si

Más detalles

Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años

Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años Campo Magnético Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles