2.6*108 = 4.5*1020 J SEPTIEMBRE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2.6*108 = 4.5*1020 J SEPTIEMBRE"

Transcripción

1 RELATIVIDAD JUNIO 1997: 1.- Dos sucesos que ocurren en el mismo lugar y al mismo tiempo para un observador, serán también simultáneos para un segundo observador que se mueve respecto al primero? No SEPTIEMBRE 1997: 2.- Describir brevemente los resultados experimentales no predichos o explicados por la física clásica que se predicen o explican mediante la teoría especial de la relatividad. 3.- Una partícula de masa en reposo m o =2,4x10 28 Kg, viaja con una velocidad v=0.8c, siendo c la velocidad de la luz en el vacío. Cuál es la relación entre su energía cinética relativista y su energía cinética clásica? Ec = Ec o *2.8 JUNIO 1998: 4.- Supongamos dos sistemas de referencia O y O tales que O se desplaza respecto de O a lo largo del eje OX con velocidad constante V. Obtener a partir de las transformaciones de Galileo las relaciones entre las velocidades y aceleraciones de un punto en ambos sistemas de referencia. Qué conclusiones se pueden extraer del resultado? V = V o + V; a = a o SEPTIEMBRE 1998: 5.- Cuáles son los postulados de la teoría especial de la relatividad? JUNIO 1999: 6.- Cuál debería de ser la velocidad de una nave espacial con respecto a la Tierra, para que un observador situado en la Tierra mida que su longitud es la mitad de lo que mide un observador situado en la nave espacial? Cuál sería la energía cinética de la nave espacial, si su masa en reposo es de 5000 Kg? 2.6*10 8 m/s; Ec = 4.5*10 20 J SEPTIEMBRE 1999: 7.- Calcular la velocidad que debe poseer una partícula elemental para que su vida media se duplique respecto a la que tiene en estado de reposo. 2.6*10 8 m/s Dato: velocidad de la luz, c=3x10 8 m/s. 8.- Un electrón es acelerado por una fuerza conservativa desde el reposo hasta una velocidad final v, próxima a la velocidad de la luz. En este proceso su energía potencial disminuye en 4,2x10 14 J. Determinar la velocidad v del electrón. 2.25*10 8 m/s Datos: masa del electrón en reposo, m e =9,11x10 31 Kg; velocidad de la luz, c=3x10 8 m/s.

2 JUNIO 2000: 9.- Un electrón tiene una energía en reposo de 0,51 MeV. Si el electrón se mueve con una velocidad de 0,8c, se pide determinar su masa relativista, su cantidad de movimiento y su energía total. m = 1.51*10-30 kg; p = 3.62*10-22 kgm/s; E = MeV Datos: q electrón =1,6x10 19 C; c=3x10 8 m/s Con qué rapidez debe convertirse masa en energía para producir 20 Mw? Dato: v luz, c=3x10 8 m/s. 2.22*10-10 kg/s SEPTIEMBRE 2000: 11.- Demostrar que si la velocidad de una partícula es mucho menor que la velocidad de la luz, su energía cinética será mucho menor que su energía en reposo. JUNIO 2001: 12.- Se determina por métodos ópticos, la longitud de una nave espacial que pasa por las proximidades de la Tierra, resultando ser de 100 m. En contacto radiofónico los astronautas que viajan en la nave comunican que la longitud de su nave es de 120 m. A qué velocidad viaja la nave con respecto a la Tierra? 1.66*10 8 m/s Dato: c=3x10 8 m/s SEPTIEMBRE 2001: 13.- Comenta si son ciertas o falsas las siguientes afirmaciones, razonando la respuesta: a.- La velocidad de la luz depende del estado de movimiento de la fuente que la emite. F b.- Dos sistemas simultáneos lo son en cualquier sistema de referencia. F c.- Si aplicamos una fuerza constante durante un tiempo ilimitado a una partícula de masa en reposo m o, la energía cinética máxima que puede alcanzar es ½ m o c 2. F 14.- Si la vida media de los piones en reposo es de 2,6x10 8 s, a qué velocidad han de viajar los piones para qué su vida media, medida en el laboratorio, sea de 4,2x10 8 s. Dato: v luz, c=3x10 8 m/s. 2.36*10 8 m/s JUNIO 2002: 15.- Se hacen girar partículas subatómicas en un acelerador de partículas y se observa que el tiempo de vida medio es t 1 =4,2x10 8 s. Por otra parte se sabe que el tiempo de vida medio de dichas partículas, en reposo, es t o =2,6x10 8 s. A qué velocidad giran las partículas en el acelerador? Razona la respuesta. 2.36*10 8 m/s Dato: c=3x10 8 m/s.

3 JUNIO 2003: 16.- Se pretende enviar una muestra de 2 g del material radiactivo 90 Sr a un planeta de otro sistema estelar situado a 40 años-luz de la Tierra mediante una nave que viaja a una velocidad de 0 9c. El periodo de semidesintegración del material es de 29 años. a.- Calcula el tiempo que tarda la nave en llegar al planeta para un observador que viaja en la nave años b.- Determina los gramos de material que llegan sin desintegrar g SEPTIEMBRE 2003: 17.- Una nave se aleja de la Tierra a una velocidad 0 9 c. Desde la nave se envía una señal luminosa hacia la Tierra. Qué velocidad tiene esta señal luminosa respecto a la nave? c Y respecto a la Tierra? Razona tu respuesta. c JUNIO 2004: 18.- Enuncia los postulados en los que se fundamenta la teoría de la relatividad especial. JUNIO 2005: 19.- Qué velocidad debe tener un rectángulo de lados x e y, que se mueve en la dirección del lado y, para que su superficie sea ¾ partes de su superficie en reposo? 1.98*10 8 m/s SEPTIEMBRE 2006: 20.- Una determinada partícula elemental en reposo se desintegra espontáneamente con un periodo de semidesintegración T 1/2 =3 5x10 6 s. Determina T 1/2 cuando la partícula tiene velocidad v=0 95c, siendo c la velocidad de la luz. 1.12*10-5 s JUNIO 2008: 21.- Una nave espacial tiene una longitud de 50 m cuando se mide en reposo. Calcula la longitud que apreciará un observador desde la Tierra cuando la nave pasa a una velocidad de km/h m Dato: c = m/s. SEPTIEMBRE 2008: 22.- A qué velocidad la masa relativista de un cuerpo será el doble que la que tiene en reposo? 2.6*10 8 m/s JUNIO 2009: 23.- Una nave parte hacia un planeta situado a 8 años luz de la Tierra, viajando a una velocidad de 0 8c. Suponiendo despreciables los tiempos empleados en aceleraciones y

4 cambio de sentido, calcula el tiempo invertido en el viaje de ida y vuelta para un observador en la Tierra y para el astronauta que viaja en la nave. Δt = 20 años; Δt o = 12 años JUNIO 2011: 24.- Una partícula viaja a una velocidad cuyo módulo vale 0 98 veces la velocidad de la luz en el vacío. Cuál es la relación entre su masa relativista y su masa en reposo? Qué sucedería con la masa relativista si la partícula pudiera viajar a la velocidad de la luz? Razona la respuesta. m o = 0.2 m SEPTIEMBRE 2011: 25.- Desde la Tierra se lanza una nave espacial que se mueve con una velocidad constante de valor el 70% de la velocidad de la luz. La nave transmite datos a la Tierra mediante una radio alimentada por una batería, que dura 15 años medidos en un sistema en reposo. a.- Cuánto tiempo dura la batería de la nave, según el sistema de referencia de la Tierra? En cuál de los dos sistemas de referencia se mide un tiempo dilatado? 21 años b.- Según el sistema de referencia de la nave, a qué distancia se encuentra la Tierra en el instante en que la batería se agota? Justifica brevemente tus respuestas años-luz JUNIO 2012: 26.- Escribe los dos postulados de la teoría de la relatividad especial de Einstein, también conocida como teoría de la relatividad restringida. Explica brevemente su significado Considera una partícula y un protón con la misma longitud de onda asociada de De Broglie. Supón que ambas partículas se mueven a velocidades cercanas a la velocidad de la luz. Calcula la relación que existe entre: a.- Las velocidades de ambas partículas. v p = 4v α b.- Las energías totales de ambas partículas. Una vez realizado el cálculo teórico, sustituye para el caso en el que la velocidad del protón sea 0,4c. JUNIO 2013: 28.- A qué velocidad debe moverse una partícula relativista para que su energía total sea un 10% mayor que su energía en reposo? Expresa el resultado en función de la velocidad de la luz en el vacío, c c JULIO 2013: 29.- En un sincrotrón se aceleran electrones para la producción de haces intensos de rayos X que se emplean en experimentos de biología, farmacia, física, medicina y

5 química. En el sincrotrón ALBA (sito en Barcelona) se aceleran los electrones hasta una velocidad para la que su masa es 6000 veces el valor de la masa en reposo. Calcula la energía (en julios y en MeV) de los electrones. 4.91*10-10 J; 3070 MeV Datos: velocidad de la luz en el vacío, c = m/s; masa del electrón, me = 9, kg; carga elemental, e = 1, C 30.- Una nave se aleja de la Tierra con una velocidad de m/s. A su vez, desde la Tierra se emite un haz de luz láser en dirección a la nave. Cuál es la velocidad del haz láser para el observador de la nave? Justifica la respuesta. c JUNIO 2014: 31.-a.- Cuál debería ser la velocidad de una nave espacial respecto a la Tierra para que un observador situado en la Tierra mida que su longitud es la de dos tercios de la que mide un observador situado en la nave espacial? c b.- Cuál sería la energía cinética de la nave espacial si su masa en reposo es de 5000 kg? 2.25*10 20 J Dato: velocidad de la luz c = m/s. JULIO 2014: 32.- Un astronauta viaja en una nave que se aleja de la Tierra a una velocidad de 0.7 c. En un cierto instante el astronauta establece comunicación con la Tierra y canta la canción Space Oddity que dura 5 minutos según el reloj de la astronave. Cuánto tiempo ha durado la canción para los interlocutores de la Tierra? Razona adecuadamente tu respuesta. 7 min JUNIO 2015: 33.- La energía relativista de una partícula que se mueve a una velocidad v es el doble que la de su energía en reposo. Calcula su velocidad c Dato: velocidad de la luz c = m/s. JULIO 2015: 34.- En las partes altas de la atmósfera, y debido a los rayos cósmicos, se producen unas partículas elementales denominadas muones que se mueven a velocidades relativistas hacia la superficie de la Tierra. Un muón desciende verticalmente con una velocidad v = 0.9c. a.- Calcula la energía en reposo y la energía total del muón en MeV. E o = 1.06 MeV; E = 2.43 MeV

6 b.- El muón se ha producido a una altura de 10 Km. Calcula el intervalo de tiempo que tarda el muón en alcanzar la superficie, según un sistema de referencia ligado a la Tierra y según un sistema de referencia que viaje con el muón. Δt = 3.7*10-5 s; Δt o = 1.61*10-5 s Datos: velocidad de la luz c = m/s; masa (en reposo) del muón m= Kg; carga elemental e = C.

BLOQUE 5.3 RELATIVIDAD

BLOQUE 5.3 RELATIVIDAD BLOQUE 5.3 RELATIVIDAD RELATIVIDAD: UN NUEVO PUNTO DE ENFOQUE Ya en su época, Galileo estableció que las Leyes de la dinámica deben ser las mismas en todos los sistemas de referencia, si se mueven con

Más detalles

FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación.

FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. FÍSICA RELATIVISTA 1. Relatividad.. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. Física º bachillerato Física relativista 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos

Más detalles

física física conceptual aplicada MétodoIDEA La relatividad especial Entre la y la 1º de bachillerato Félix A. Gutiérrez Múzquiz

física física conceptual aplicada MétodoIDEA La relatividad especial Entre la y la 1º de bachillerato Félix A. Gutiérrez Múzquiz Entre la y la física física conceptual aplicada MétodoIDEA La relatividad especial 1º de bachillerato Félix A. Gutiérrez Múzquiz Contenidos 1. DILATACIÓ DEL TIEMPO 2. CO TRACCIÓ DE LA LO GITUD 3. TRABAJO

Más detalles

FÍSICA MODERNA CONCEPTOS

FÍSICA MODERNA CONCEPTOS FÍSICA MODERNA CONCEPTOS Física Clásica Sirve para resolver los diferentes problemas que nos enfrentamos día a día ( sistemas macroscópicos): Movimiento de objetos grandes en relación con los átomos y

Más detalles

Teoría de la Relatividad Especial

Teoría de la Relatividad Especial Teoría de la Relatividad Especial Albert Einstein 1.905 Página1 Postulados de la Teoría de la Relatividad Especial Un sistema de referencia es inercial si está en reposo o se mueve con movimiento rectilíneo

Más detalles

La longitud de la barra 2 vista desde el sistema de referencia de la barra 1 será: 1 v 2 c v2

La longitud de la barra 2 vista desde el sistema de referencia de la barra 1 será: 1 v 2 c v2 RELATIVIDAD ESPECIAL Dos barras de igual longitud propia l 0 se acercan moviéndose en dirección longitudinal paralelamente a un eje común con una misma velocidad v respecto al sistema de referencia del

Más detalles

INTRODUCCIÓN A LA FÍSICA MODERNA

INTRODUCCIÓN A LA FÍSICA MODERNA INTRODUCCIÓN A LA FÍSICA MODERNA CUESTIONES Física relativista (Ver Lección 12) 1. Teóricamente qué demostraba el experimento de Michelson Morley 2. Einstein desarrolló dos teorías de la relatividad: a.

Más detalles

FISICA RELATIVISTA FISICA 2º BACHILLERATO

FISICA RELATIVISTA FISICA 2º BACHILLERATO FISICA RELATIVISTA FISICA º BACHILLERATO En 1905, Albert Einstein, a la edad de 6 años, publica su Teoría Especial de la Relatividad, a cerca del movimiento en sistemas inerciales. En 1916 amplió su teoría

Más detalles

RELATIVIDAD. 1 1 ( v c ) 2 L mov = K$L rep K = t mov = t rep K m mov = K$m rep

RELATIVIDAD. 1 1 ( v c ) 2 L mov = K$L rep K = t mov = t rep K m mov = K$m rep Ecuaciones de Lorentz y Einstein RELATIVIDAD K = 1 1 ( v c ) 2 L mov = K$L rep t mov = t rep K m mov = K$m rep 1. Un astronauta está acostado en una nave espacial, paralelo a la dirección del movimiento;

Más detalles

Tema 8: Física cuántica

Tema 8: Física cuántica Tema 8: Física cuántica 1. Insuficiencia de la física clásica: Emisión del cuerpo negro Espectros atómicos discontinuos Efecto fotoeléctrico 2. Hipótesis de Planck. Cuantización de la energía. Fotón. 3.

Más detalles

Qué se tendría que esperar si uno de los móviles es un Fotón (o partícula de luz)?

Qué se tendría que esperar si uno de los móviles es un Fotón (o partícula de luz)? 4.1 Relatividad 4.1.1 Relatividad del Espacio y del Tiempo. Parte IV: Física Moderna a) El experimento de Michelson Morley (1887) Introducción a la Física Cómo se calcula la velocidad relativa de un móvil

Más detalles

FÍSICA de 2º de BACHILLERATO FÍSICA RELATIVISTA

FÍSICA de 2º de BACHILLERATO FÍSICA RELATIVISTA FÍSICA de 2º de BACHILLERATO FÍSICA RELATIVISTA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2015) DOMINGO

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10 11 m. Si Júpiter tiene un período de aproximadamente

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo:

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: EVALUACIÓN Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Por: Yuri Posadas Velázquez Contesta lo siguiente y haz lo que se pide. 1. Menciona los problemas que la física clásica no pudo resolver y que

Más detalles

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U FÍSICA CUESTIONES Y PROBLEMAS BLOQUE V: INTRODUCCIÓN A LA FÍSICA MODERNA PAU 2003-2004 RELATIVIDAD 1.- La física clásica llegó a explicar la mayor parte de los fenómenos conocidos hasta finales del siglo

Más detalles

ENUNCIADOS. Cuestiones

ENUNCIADOS. Cuestiones ENUNCIADOS Cuestiones 1 a) Cuál es la hipótesis cuántica de Planck?. b) Para la explicación del efecto fotoeléctrico, Einstein tuvo en cuenta las ideas cuánticas de Planck. En qué consiste el efecto fotoeléctrico?.

Más detalles

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO]

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO] Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [2 PUNTOS /UNO] 1. Al iluminar una célula fotoeléctrica con radiación electromagnética de longitud de onda 185

Más detalles

Junio Pregunta 4A.- a) b) Modelo Pregunta 5B.- a) b) Septiembre Pregunta 5A.- a) b) Modelo Pregunta 4A.

Junio Pregunta 4A.- a) b) Modelo Pregunta 5B.- a) b) Septiembre Pregunta 5A.- a) b) Modelo Pregunta 4A. Junio 2013. Pregunta 4A.- Los electrones emitidos por una superficie metálica tienen una energía cinética máxima de 2,5 ev para una radiación incidente de 350 nm de longitud de onda, Calcule: a) El trabajo

Más detalles

INTRODUCCIÓN A LA FÍSICA MODERNA MODELO 2016

INTRODUCCIÓN A LA FÍSICA MODERNA MODELO 2016 INTRODUCCIÓN A LA FÍSICA MODERNA MODELO 2016 1- La masa de cierto isótopo radiactivo decae a un octavo de su cantidad original en un tiempo de 5 h. Determine: a) La constante de desintegración de dicho

Más detalles

EXAMEN DE FÍSICA E32A_1516 OPCIÓN A

EXAMEN DE FÍSICA E32A_1516 OPCIÓN A EXAMEN DE FÍSICA E32A_1516 OPCIÓN A 04.05.2016 ORIENTACIONES: Comente sus planteamientos de tal modo que demuestre que entiende lo que hace. Tenga en cuenta que la extensión de sus respuestas está limitada

Más detalles

en una región del espacio en que coexisten un campo magnético B 0,2k T, se pide:

en una región del espacio en que coexisten un campo magnético B 0,2k T, se pide: CAMPO MAGNÉTICO. SEPTIEMBRE 1997: 1.- Una partícula cargada se introduce con velocidad v vi en una región del espacio en que coexisten un campo magnético B 0,2k T y un campo eléctrico E 100 j N/C. Calcular

Más detalles

Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A

Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A 1 PAU Física, modelo 2012/2013 OPCIÓN A Pregunta 1.- Un cierto planeta esférico tiene una masa M = 1,25 10 23 kg y un radio R = 1,5 10 6 m. Desde su superficie se lanza verticalmente hacia arriba un objeto,

Más detalles

COMUNIDAD VALENCIANA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

COMUNIDAD VALENCIANA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno realizará una opción de cada uno de los bloques. La puntuación máxima de los bloque es de puntos, y la de cada cuestión 1,5 puntos. BLOQUE I Si la Luna siguiera un órbita circular en torno a

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com FÍSICA MODERNA Y NUCLEAR 1- a) Enuncie y explique la Ley de desintegración exponencial radiactiva. El método de datación radiactiva 235 U- 207 Pb, se emplea para determinar la edad de las rocas. Se basa

Más detalles

Problemas de Física moderna. Cuántica 2º de bachillerato. Física

Problemas de Física moderna. Cuántica 2º de bachillerato. Física 1 Problemas de Física moderna. Cuántica 2º de bachillerato. Física 1. Un protón que parte del reposo es acelerado por una diferencia de potencial de 10 V. determine: a) La energía que adquiere el protón

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 24 septiembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 24 septiembre 2014 2015-Modelo A. Pregunta 5.- La longitud de onda umbral de la plata para el efecto fotoeléctrico es 262 nm. a) Halle la función de trabajo de la plata (trabajo de extracción). b) Sobre una lámina de plata

Más detalles

Física Física moderna 20/05/11

Física Física moderna 20/05/11 Física Física moderna /5/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [6 Ptos.] 1. El trabajo de extracción del sodio es,46 ev. a) Cuál es la longitud de onda de una radiación que al incidir sobre

Más detalles

FÍSICA. 2º BACHILLERATO BLOQUE V: INTRODUCCIÓN A LA FÍSICA MODERNA Examen 1

FÍSICA. 2º BACHILLERATO BLOQUE V: INTRODUCCIÓN A LA FÍSICA MODERNA Examen 1 Examen 1 1. En la explosión de una bomba atómica se produce Sr-90, que es un peligroso contaminante radiactivo, cuyo periodo de semidesintegración es de 28,8 años. Cuánto tiempo debe transcurrir para que

Más detalles

Ejercicios de Física cuántica y nuclear. PAU (PAEG)

Ejercicios de Física cuántica y nuclear. PAU (PAEG) 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

FÍSICA NUCLEAR. 3 1 H + 3 1H 4 2He n 1.13*10 7 ev

FÍSICA NUCLEAR. 3 1 H + 3 1H 4 2He n 1.13*10 7 ev FÍSICA NUCLEAR SEPTIEMBRE 1998: 1.- Las masas atómicas del 7 4Be y del 9 4Be son 7.01693 u y 9.012183 u respectivamente, determinar cuál es más estable. 9 4Be Masas atómicas. 1 0n = 1.008665 u; 1 1H =

Más detalles

FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA

FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Problemas de Física moderna 2º de bachillerato. Física

Problemas de Física moderna 2º de bachillerato. Física 1 Problemas de Física moderna 2º de bachillerato. Física 1. Un protón que parte del reposo es acelerado por una diferencia de potencial de 10 V. determine: a) La energía que adquiere el protón expresada

Más detalles

SOLUCIONES HOJA EJERCICIOS NAVIDAD

SOLUCIONES HOJA EJERCICIOS NAVIDAD SOLUCIONES HOJA EJERCICIOS NAVIDAD 1 - Un cuerpo realiza un movimiento vibratorio armónico simple. Escriba la ecuación del movimiento si la aceleración máxima es, el período de las oscilaciones 2 s y la

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

Capítulo 1 SEMINARIO CAMPO MAGNÉTICO

Capítulo 1 SEMINARIO CAMPO MAGNÉTICO Capítulo 1 SEMINARIO CAMPO MAGNÉTICO 1. Un electrón se acelera por la acción de una diferencia de potencial de 100 V y, posteriormente, penetra en una región en la que existe un campo magnético uniforme

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios de energía

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios de energía 1(5) 1.- Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. 2.- A qué altura debe

Más detalles

Relación Problemas Tema 11: Física Cuántica

Relación Problemas Tema 11: Física Cuántica 1.- Determinar la energía de un fotón para: a) Ondas de radio de 1500 khz b) Luz verde de 550 nm c) Rayos X de 0,06 nm Relación Problemas Tema 11: Física Cuántica Problemas (para todas, el medio de propagación

Más detalles

Teoría de la relatividad especial y la física nuclear

Teoría de la relatividad especial y la física nuclear Parte II Teoría de la relatividad especial y la física nuclear 1 Teoría de la relatividad especial Todos hemos escuchado del gran Einstein y sus grandes contribuciones a la Física (y al mundo, en general).

Más detalles

UNAS IDEAS DE LA FÍSICA RELATIVISTA

UNAS IDEAS DE LA FÍSICA RELATIVISTA UNAS IDEAS DE LA FÍSICA RELATIVISTA 1. INTRODUCCIÓN. Las leyes de Maxwell del Electromagnetismo muestran la constancia de la velocidad de propagación de las ondas electromagnéticas (entre ellas la luz)

Más detalles

FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco

FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco FÍSICA RELATIVISTA Relatividad especial José Luis Rodríguez Blanco RELATIVIDAD EN LA FÍSICA CLÁSICA Principio de relatividad de Galileo. [Diálogo sobre los dos máximos sistemas del mundo ptolemaico y copernicano

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

CAMPO ELÉCTRICO. JUNIO

CAMPO ELÉCTRICO. JUNIO CAMPO ELÉCTRICO. JUNIO 1997: 1.- Se sitúan tres cargas eléctricas q 1, q 2 y q 3, en los puntos A (0,0,0); B (0,4,0) y C (0,4,3), respectivamente, donde las coordenadas vienen dadas en metros. Se pide:

Más detalles

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la FÍSICA MODERNA 2001 1. Un haz de luz de longitud de onda 546 10-9 m incide en una célula fotoeléctrica de cátodo de cesio, cuyo trabajo de extracción es de 2 ev: a) Explique las transformaciones energéticas

Más detalles

EL CAMPO GRAVITATORIO

EL CAMPO GRAVITATORIO EL CAMPO GRAVITATORIO 1. A qué altura el valor de la gravedad se reduce a la mitad del valor que tiene en la superficie terrestre? S: h = 0,41 R T 2. Si la densidad de la Tierra fuese tres veces mayor,

Más detalles

Selectividad Física Andalucia. Interacción Electrostática. Problemas

Selectividad Física Andalucia. Interacción Electrostática. Problemas Problemas (97-E) Una carga puntual Q crea un campo electrostático. Al trasladar una carga q desde un punto A al infinito, se realiza un trabajo de 5 J. Si se traslada desde el infinito hasta otro punto

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

XIX OLIMPIADA NACIONAL DE FÍSICA

XIX OLIMPIADA NACIONAL DE FÍSICA XIX OLIMPIADA NACIONAL D FÍSICA FAS LOCAL-UNIVRSIDADS D GALICIA- 15 de febrero de 2008 APLLIDOS...NOMBR... CNTRO... 1- Para un objeto de forma cilíndrica, de longitud L y sección recta S, la relación entre

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

CASTILLA-LA MANCHA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA-LA MANCHA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno deberá contestar a una de las dos opciones propuestas A o B. Los problemas puntúan 3 puntos cada uno y las cuestiones 1 punto cada una. Se podrá utilizar una calculadora y una regla. OPCIÓN A

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Capítulo 1 SEMINARIO. 1. Suponiendo que el Sol se comporta como un cuerpo negro con una temperatura de 6000 K, determina:

Capítulo 1 SEMINARIO. 1. Suponiendo que el Sol se comporta como un cuerpo negro con una temperatura de 6000 K, determina: Capítulo 1 SEMINARIO FÍSICA CUÁNTICA 1. Suponiendo que el Sol se comporta como un cuerpo negro con una temperatura de 6000 K, determina: a) La energía por unidad de tiempo y de superficie radiada por el

Más detalles

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo

Más detalles

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL P1- JUNIO 2010 A) Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

TEMA 2: El movimiento. 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto no existe.

TEMA 2: El movimiento. 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto no existe. Física y Química Curso 2011/12 4º E.S.O. TEMA 2: El movimiento 1.- Por qué se dice que el movimiento es relativo? 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto

Más detalles

Guía de Repaso 18: La Segunda Ley de Newton

Guía de Repaso 18: La Segunda Ley de Newton Guía de Repaso 18: La Segunda Ley de Newton 1- La figura de este ejercicio muestra algunas posiciones que ocupa un auto en movimiento. El intervalo de tiempo entre dos posiciones sucesivas es el mismo.

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

=. En un instante dado, la partícula A se mueve con velocidad ( )

=. En un instante dado, la partícula A se mueve con velocidad ( ) Modelo 2014. Pregunta 3B.- En una región del espacio hay un campo eléctrico 3 1 E = 4 10 j N C y otro magnético B = 0,5 i T. Si un protón penetra en esa región con una velocidad perpendicular al campo

Más detalles

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s PAU MADRID JUNIO 2003 Cuestión 1.- Suponiendo un planeta esférico que tiene un radio la mitad del radio terrestre e igual densidad que la tierra, calcule: a) La aceleración de la gravedad en la superficie

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

Dpto. de Física y Química 2º BCH FÍSICA. Cuestiones:

Dpto. de Física y Química 2º BCH FÍSICA. Cuestiones: Cuestiones: 1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. 2. a) Enuncie la ley de gravitación universal y

Más detalles

Ejercicios de Física moderna

Ejercicios de Física moderna Ejercicios de Física moderna 1. Hasta principios del siglo XX la radiación de un cuerpo negro no fue explicada. a) Explica qué es un cuerpo negro y en qué consistía la llamada catástrofe del ultravioleta.

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DEPARTAMENTO DE FÍSICA E QUÍMICA Física Moderna 16/05/08 Nombre: Problemas 1. En la alta atmósfera, el 7 N, al ser bombardeado con neutrones procedentes de la radiación cósmica, se

Más detalles

CAMPO GRAVITATORIO º bachillerato FÍSICA

CAMPO GRAVITATORIO º bachillerato FÍSICA Ejercicio 1. Modelo 2.014 La masa del Sol es 333183 veces mayor que la de la Tierra y la distancia que separa sus centros es de 1,5 10 8 km. Determine si existe algún punto a lo largo de la línea que los

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Departamento de Ciencias y Tecnología Miss Yorma Rivera M. Prof. Jonathan Castro F. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Guía de repaso Prueba Semestral de Física

Más detalles

TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA

TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA 2º BACHILLERATO F Í S I C A TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA 1 2º BACHILLERATO FÍSICA TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA 6.1. Introducción. Sabemos de cursos anteriores que para hablar de movimiento

Más detalles

Cuestiones de Campo Gravitatorio propuestas para Selectividad

Cuestiones de Campo Gravitatorio propuestas para Selectividad 1 a) Explique el concepto de escape y deducir razonadamente su expresión. b) Qué ocurriría en la realidad si lanzamos un cohete desde la superficie de la Tierra con una velocidad igual a la velocidad de

Más detalles

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014 Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00

Más detalles

Departamento de Física y Química. Departamento de Física y Química

Departamento de Física y Química. Departamento de Física y Química 1. Un astronauta se aproxima a un planeta desconocido que posee un satélite. El astronauta lleva a cabo rápidamente las siguientes mediciones: i) radio del planeta; ii) radio de la órbita circular del

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

ENUNCIADOS. Cuestiones. Calcule el defecto de masa y la energía total de enlace del isótopo

ENUNCIADOS. Cuestiones. Calcule el defecto de masa y la energía total de enlace del isótopo ENUNCIADOS Cuestiones 1 a) 15 Calcule el defecto de masa y la energía total de enlace del isótopo 7 N, de masa atómica: 15,0001089 u. b) Calcule la energía de enlace por nucleón. Datos: Masa del protón:

Más detalles

Reunión de Coordinación PAU - Física. Las Palmas de Gran Canaria 12 de Enero de 2007

Reunión de Coordinación PAU - Física. Las Palmas de Gran Canaria 12 de Enero de 2007 Reunión de Coordinación PAU - Física Las Palmas de Gran Canaria 12 de Enero de 2007 Estructura de la PAU Actual La prueba actual consta de dos opciones, cada una con dos problemas y cuatro cuestiones.

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Guía de Repaso 1: Introducción

Guía de Repaso 1: Introducción Guía de Repaso 1: Introducción 1) La distancia de la Tierra al Sol es casi 104 veces mayor que el diámetro de la Tierra. Al estudiar el movimiento de ésta alrededor del Sol, diría usted que la podemos

Más detalles

Física Teórica 1. Segundo Cuatrimestre Relatividad Especial. Formulación covariante del EM

Física Teórica 1. Segundo Cuatrimestre Relatividad Especial. Formulación covariante del EM Física Teórica 1. Segundo Cuatrimestre 2004 Relatividad Especial. Formulación covariante del EM 1. Dos sistemas inerciales S y S tienen movimiento relativo con velocidad V. En O y O (orígenes de S y S

Más detalles

Física 2º Bachillerato Curso

Física 2º Bachillerato Curso 1 Cuestión (2 puntos) Madrid Junio 1996 Cuando una partícula se mueve en un campo de fuerzas conservativo sometida a la acción de la fuerza del campo, existe una relación entre las energías potencial y

Más detalles

Ejercicios de Física cuántica y nuclear. PAEG

Ejercicios de Física cuántica y nuclear. PAEG 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Ref: Cinemática Vectorial

Ref: Cinemática Vectorial Nombre: Curso: Introducción En la ciencia uno de las avances más notables es cuando la logra sistematizar la información en relación a la descripción del movimiento, utilizando los conceptos básicos de

Más detalles

FÍSICA de 2º de BACHILLERATO FÍSICA NUCLEAR

FÍSICA de 2º de BACHILLERATO FÍSICA NUCLEAR FÍSICA de 2º de BACHILLERATO FÍSICA NUCLEAR EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2015) DOMINGO

Más detalles

CUESTIONES DE FÍSICA CUÁNTICA

CUESTIONES DE FÍSICA CUÁNTICA CUESTIONES DE FÍSICA CUÁNTICA 2017 1) Se puede asociar una longitud de onda a cualquier partícula, con independencia de los valores de su masa y su velocidad? Justifique su respuesta. 2) Explique el principio

Más detalles

1. La energía mecánica inicial de un cuerpo es 800 J y luego de recorrer cierta distancia su energía mecánica es 600 J. Es correcto afirmar que:

1. La energía mecánica inicial de un cuerpo es 800 J y luego de recorrer cierta distancia su energía mecánica es 600 J. Es correcto afirmar que: 1. La energía mecánica inicial de un cuerpo es 800 J y luego de recorrer cierta distancia su energía mecánica es 600 J. Es correcto afirmar que: a) En el trayecto desaparecen 200 J de energía b) En el

Más detalles

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma Opción A. Ejercicio Una partícula de masa m = 0 g oscila armónicamente a lo largo del eje OX en la forma x A sen t, con A = 0,2 m y 0 (rad s ). [a] Determine y represente gráficamente la fuerza que actúa

Más detalles

XXVII Olimpiada Española de Física

XXVII Olimpiada Española de Física XXVII Olimpiada Española de Física FASE LOCAL-UNIVERSIDADES DE GALICIA- 26 de febrero de 2016 APELLIDOS...NOMBRE... CENTRO... Nota: En el caso de que la respuesta a alguna de las cuestiones planteadas

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEYES DE KEPLER 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10¹¹ m. Si Júpiter tiene un período de

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO OPCIÓN A 1. a) Enuncie la ley de inducción electromagnética y explique las características del fenómeno. Comente la veracidad o falsedad de la siguiente afirmación: un transformador eléctrico no realiza

Más detalles

DEPARTAMENT DE FÍSICA I QUÍMICA

DEPARTAMENT DE FÍSICA I QUÍMICA CAMPO GRAVITATORIO. PROBLEMAS PAU JUNIO 2007. COMUNIDAD VALENCIANA. PROBLEMAS Un objeto de masa M 1 = 100 kg está situado en el punto A de coordenadas (6, 0) m. Un segundo objeto de masa M2 = 300 kg está

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 3 octubre 2017

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 3 octubre 2017 2018-Modelo A. Pregunta 5.- a) Determine la longitud de onda de De Broglie de un electrón que posee una energía cinética de 40 ev. b) Un electrón alcanza en un ciclotrón una energía cinética de 2 GeV.

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE ONDAS Y SONIDO JUNIO 1997: 1.- Explica el efecto Doppler. SEPTIEMBRE 1997: 2.- La ecuación de una onda que se propaga por una cuerda es y(x,t) = 5 sen (0.628t 2.2x), donde x e y vienen dados en metros

Más detalles

COMUNIDAD VALENCIANA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

COMUNIDAD VALENCIANA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO COMUNIDAD VALENCIANA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN El alumno realizará una opción de cada uno de los bloques. La puntuación máxima de cada problema es de puntos, y la de cada cuestión de 1,5

Más detalles

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg MAGNETISMO 2001 1. Un protón se mueve en el sentido positivo del eje OY en una región donde existe un campo eléctrico de 3 10 5 N C - 1 en el sentido positivo del eje OZ y un campo magnetico de 0,6 T en

Más detalles

CAMPO MAGNÉTICO. j V m 1. Determine:

CAMPO MAGNÉTICO. j V m 1. Determine: CAMPO MAGNÉTICO Septiembre 2017. Pregunta 3A.- Una partícula alfa (núcleo de helio) inicialmente en reposo se acelera a través de una diferencia de potencial de 5 kv, y entra en una región con un campo

Más detalles