Segunda Parcial Lapso /8

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Segunda Parcial Lapso 2013-1 175-176-177 1/8"

Transcripción

1 Segunda Parcial Lapso /8 Universidad Nacional Abierta Matemática I ( ) Vicerrectorado Académico Cód. Carrera: Área De Matemática Fecha: OBJ 7 PTA 1 MODELO DE RESPUESTAS Objetivos 7, 8, 9, 10 y 11. Un tipo de bacterias se reproduce por bipartición cada cuarto de hora: Cuántas bacterias habrá después de 6 horas? n 1 Sugerencia: El término general la progresión geométrica es: a n = ar 1., y tome en cuenta que al reproducirse por bipartición, cuando la primera se divide en dos desaparece, y así sucesivamente. ( ) (ver páginas del Módulo III). Se trata de una progresión geométrica con a 1 = 1 y r = 2. Formemos la progresión para aclarar la situación planteada: 1, 2, 4, 8, 16, 32, Primero calculamos los cuartos de hora que hay en 6 horas; esto es: 6.4=24 Es decir, n = 24. Al reproducirse por bipartición, cuando la primera se divide en dos desaparece, y así sucesivamente. Ahora, el número total de bacterias será obtenido al calcular a 24, esto es: Para n = 24 en ( n 1) a n = a1. r, con a 1 = 1 y r = 2 se tiene: ( ) ( ) (24 1) 23 a 24 = 1. 2 = 2 = OBJ 8 PTA 2 Señala con una V si las siguientes afirmaciones son verdaderas y con una F si son falsas: Dado la siguiente gráfica de la función : { 1} h dada por: 4 x si x < 1 ( ) = 2 h x 4x x si x> 1

2 Segunda Parcial Lapso /8 a. El punto( 1, 3) pertenece a la grafica de h. b. Los límites laterales son: lim f ( x) = 3 y lim f ( x) + x 1 c. En conclusión, lim h x no existe.. x 1 ( ) x 1 = 3. Criterio de Dominio: Para el logro de este objetivo debes responder correctamente dos opciones. a. F 1 Dom( h). Ver páginas del Módulo III del texto. b. V Al evaluar los límites laterales: c. F Porque contradice la proposición 8.1 en la página 92 del Módulo III del texto. OBJ 9 PTA 3. Para el logro de este objetivo debes responder correctamente tres partes. Completa los espacios subrayados en los siguientes enunciados para que sean correctos. Dada la grafica de la siguiente función f, se puede decir en cuanto a si es o no continúa que:

3 Segunda Parcial Lapso /8 Justifica tus respuestas. a. Al observar la grafica de la función se observan dos en los puntos x 0 = 3 y x 1 = 1, por ello, la función es. b. En el intervalo ( 3, 1) la función es.. c. En el intervalo ( 4, 0) la función es continua solamente en el caso en que f ( 3) =. d. Finalmente, en los intervalos y la función es discontinúa. (Ver los ejemplos en las páginas , Módulo III del texto). a. Al observar la grafica de la función se observan dos saltos en los puntos x 0 = 3 y x 1 = 1, por ello, la función es discontinua. b. En el intervalo ( 3, 1) la función es continua. c. En el intervalo ( 4, 0) la función es continua solamente en el caso en que f ( 3) = 2. En este caso la grafica de f se ilustra como: d. Finalmente, en los intervalos ( 4, 0) y [0, 3] la función es discontinúa. Es valido cualquier intervalo en los que este presente las dos discontinuidades.

4 Segunda Parcial Lapso /8 EDUCACION, MENCION DIFICULTAD DE APRENDIZAJE Y PREESCOLAR 175 OBJ 10 PTA 4 Al cortar la superficie de un cono de una hoja mediante un plano α que corta a todas las generatrices del cono se obtiene a. Una circunferencia b. Una elipse c. Una hipérbola d. Una parábola Justifica tu respuesta : Opción correcta la b. Ver respuesta al ejercicio propuesto 2.2.2, en la página 45, del Módulo IV del texto. OBJ 11 PTA 5 Indica cuál es el valor de x en la siguiente sucesión: a, b, a + b, a + 2b, x, 3a + 5b, 5a + 8b,... a. a + 2b b. 3a + 2b c. 2a + 3b d. 2a + b Justifica tu respuesta Al observar la sucesión podemos notar que ésta es la sucesión de Fibonacci, ya que verifica la siguiente relación: a 1 = a, a 2 = b, a n+2 = a n + a n 1, n > 2. Así resulta que: x = a 5 = a + 2b + a + b = 2a + 3b. Opción correcta la c.

5 Segunda Parcial Lapso /8 OBJ 10 PTA 4 ADMINISTRACIÓN Y CONTADURÍA 176 Si las ecuaciones de la demanda y de la oferta de un determinado bien está dadas respectivamente por: Q + 115,25P = ; S = 578P Indica las coordenadas del punto de equilibrio, a. ( ,5 ; 1808,87). b. (1901,93 ; ,6). c. ( ,6 ; 1808,87). d. (1901,93 ; ,5). Justifica tu Respuesta Las coordenadas del punto de equilibrio se obtienen hallando el punto de intersección entre las curvas de demanda y de oferta del bien considerado. (Ver definición 1.3 de la página 37 del Módulo IV (176) del texto. Despejando a Q en la ecuación de la curva de la demanda obtenemos De la curva de la oferta se tiene S = 578P. Entonces Q = ,25P S = Q si y sólo si 578P = ,25P Despejando P se tiene 693,25P = , por lo tanto P = 1808,87. Entonces la cantidad de equilibrio es S = 578P = 578.(1808,87) = ,6 y el punto de equilibrio es ( ,6 ; 1808,87). De esta manera la opción correcta es la c.

6 Segunda Parcial Lapso /8 OBJ 11 PTA 5 Un bien cuyo valor es de Bs , tiene al final del 3er año un valor de Al usar el método de suma de los dígitos anuales se obtiene una cuota de depreciación al final del 2do año de: Justifica tu respuesta a b c d Por consideraciones del problema: V = r = 3 V = D = = Por lo que: Así: 2 La cuota al final del año 2 es: = Luego, la opción correcta es la d SDIG = = ( )( ) = 6

7 Segunda Parcial Lapso /8 OBJ 10 PTA 4 MATEMÁTICA, EDUCACIÓN MENCIÓN MATEMÁTICA INGENIERÍA 177 En el cuadro que se te da al final de los siguientes enunciados están las posibles respuestas que corresponden a los espacios en blanco de cada uno de ellos, para que sean enunciados verdaderos: a. todo enunciado que se precisa verdadero pero no existe ni prueba ni reputación del mismo. b. El razonamiento mediante el cual se establece la verdad de un enunciado matemático se denomina. c. y son las partes que integran un teorema. Cuadro de posibles respuestas: tesis teorema conjetura demostración corolario axioma proposición contraejemplo lema hipótesis contradicción teorema y proposición sofisma y falacia tesis y conclusión : a. Conjetura. b. Demostración. c. Hipótesis y tesis.

8 Segunda Parcial Lapso /8 OBJ 11 PTA 5 Considera los siguientes datos sobre la población de Venezuela: Año Población Representa estos datos con una curva continua. En primer lugar representamos en el plano de puntos cuyas primeras coordenadas son los años y segundas coordenadas son las poblaciones en esos años. Ahora podemos unir los puntos obtenidos por varias curvas continuas. A continuación presentamos dos maneras de unir los puntos. En la primera, los unimos con segmentos de recta y en la segunda con una curva y y x x FIN DEL MODELO

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS SEGUNDA PRUEBA INTEGRAL LAPSO 2 007-2 734-1/6 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 15/12/2 007 Cód. Carrera: 610-612 - 613 PRUEBA DE DESARROLLO / CORRECCIÓN

Más detalles

forma explícita forma implícita Por ejemplo cuando: a) representa la forma implícita a una. representa implícitamente a

forma explícita forma implícita Por ejemplo cuando: a) representa la forma implícita a una. representa implícitamente a FUNCIONES IMPLÍCITAS Profesora Claudia Durnbeck Una curva C contenida en ó puede estar definida por una ecuación: forma explícita forma implícita En muchos casos se puede pasar de una forma a otra, pero

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA CALCULO AVANZADO SEGUNDO CUATRIMESTRE 8 TRABAJO PRÁCTICO 4 Campos escalares Límite continuidad Página de Cálculo Avanzado http://www.uca.edu.ar Ingeniería

Más detalles

Clave: 107-5-V-2-2013

Clave: 107-5-V-2-2013 Clave: 107-5-V-2-2013 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática Clave de Examen: 107-5-V-2-2013 Curso: Matemática Intermedia 1 Semestre: Segundo Código del

Más detalles

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS SEGUNDA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 10/01/2 009 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

INTEGRAL LAPSO 2 008-2 751-1/ 6

INTEGRAL LAPSO 2 008-2 751-1/ 6 INTEGRAL LAPSO 8-751 - 1/ 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS PRIMERA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 25/10/2 008 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V) UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS.. 2 2 TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS 5 3.1 CIRCUNFERENCIAS FOCALES 6 3.2

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

Caracterización geométrica

Caracterización geométrica Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

MATEMÁTICAS EMPRESARIALES II:

MATEMÁTICAS EMPRESARIALES II: MATEMÁTICAS EMPRESARIALES II: FUNCIÓN REAL DE VARIAS VARIABLES ÓPTIMOS DE UNA FUNCIÓN ESCALAR MATERIAL DIDÁCTICO DE SOPORTE González-Vila Puchades, Laura Ortí Celma, Francesc J. Sáez Madrid, José B. Departament

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

EJERCICIOS RESUELTOS DE CÓNICAS

EJERCICIOS RESUELTOS DE CÓNICAS EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN

Más detalles

NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: MATEMÁTICA I CÓDIGO ASIGNATURA: 1215-101 PRE-REQUISITO:

Más detalles

Tema 9. Funciones de varias variables.

Tema 9. Funciones de varias variables. Tema 9. Funciones de varias variables. 9.1 Introducción 9.2 Límite continuidad. 9.3 Derivadas parciales. Derivadas de orden superior. Teorema Schwart. 9.4 Diferencial. 9.5 Regla de la cadena. Derivación

Más detalles

Hasta ahora hemos evitado entrar en la cuestión de qué significa el símbolo

Hasta ahora hemos evitado entrar en la cuestión de qué significa el símbolo Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Límites y continuidad 1. Límite de funciones de dos variables Hasta ahora hemos evitado entrar en la

Más detalles

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS.

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso 008-009 MATEMÁTICAS II ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. Bloque 1. Dado el número real a, se considera el sistema a) Discuta el sistema según los valores

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICA APLICADA A LA CIENCIA OCIALE EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ECOGER UNA DE LA DO OPCIONE Y DEARROLLAR LA

Más detalles

Introducción al Análisis Complejo

Introducción al Análisis Complejo Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa: NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

Ejercicios de Funciones, límites y continuidad.

Ejercicios de Funciones, límites y continuidad. Matemáticas 1ºBach CNyT. Ejercicios Funciones. Pág 1/12 Ejercicios de Funciones, límites y continuidad. 1. Estudia el dominio de las siguientes funciones 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Geometría Analítica. Efraín Soto Apolinar

Geometría Analítica. Efraín Soto Apolinar Geometría Analítica Efraín Soto Apolinar TÉRMINOS DE USO Derechos Reservados c 010. Todos los derechos reservados a favor de Efraín Soto Apolinar. Soto Apolinar, Efraín. Geometría Analítica 010 edición.

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES IDENTIFICACIÓN DE LA ASIGNATURA Nombre: Matemáticas Fundamentales Código: 0701479 Área Específica: Ciencias Básicas Semestre de Carrera: Primero JUSTIFICACIÓN El estudio de las matemáticas es parte insustituible

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

RELACIÓN DE EXÁMENES DE GEOMETRÍA III

RELACIÓN DE EXÁMENES DE GEOMETRÍA III RELACIÓN DE EXÁMENES DE GEOMETRÍA III Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría III Licenciatura: Matemáticas

Más detalles

MATEMATICAS 1. GUIA DE EJERCICIOS DE MATEMÁTICAS 1 con SOLUCIONES Temas presentes en la guía.

MATEMATICAS 1. GUIA DE EJERCICIOS DE MATEMÁTICAS 1 con SOLUCIONES Temas presentes en la guía. MATEMATICAS 1 GUIA DE EJERCICIOS DE MATEMÁTICAS 1 con SOLUCIONES Temas presentes en la guía. 1. Propiedades de los números reales. Lógica. Desigualdades. 2. Valor Absoluto. Desigualdades con valor absoluto.

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

JAVIER ORDUÑA FLORES Red Tercer Milenio

JAVIER ORDUÑA FLORES Red Tercer Milenio 1 Geometría analítica JAVIER ORDUÑA FLORES Red Tercer Milenio GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA JAVIER ORDUÑA FLORES RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO

Más detalles

9 Funciones elementales

9 Funciones elementales Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

LA DEMOSTRACIÓN EN MATEMÁTICAS

LA DEMOSTRACIÓN EN MATEMÁTICAS LA DEMOSTRACIÓN EN MATEMÁTICAS En estas notas, a modo de aterrizaje en los estudios del Grado en Matemáticas, se pretende que el alumno entre en contacto con el quehacer en Matemáticas, que el aroma del

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. SISTEMAS PLANOS. TEOREMA DE POINCARÉ-BENDIXSON. La aplicación de Poincaré Recordemos que un subconjunto H de R n es una subvariedad de codimensión uno (o una

Más detalles

Universidad de Antioquia

Universidad de Antioquia Índice general Prefacio II 0.1. Algunos conjuntos de números.................. 1 0.2. DEFINICIONES Y TEOREMAS................. 2 1. Lógica - Teoría de Conjuntos 5 1.1. Operación binaria.........................

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

La obtención de la norma en espacios de funciones analíticas p. 1/?

La obtención de la norma en espacios de funciones analíticas p. 1/? La obtención de la norma en espacios de funciones analíticas Julio C. Ramos Fernández (joramos@ull.es) DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ORIENTE - VENEZUELA - La obtención de la norma en espacios

Más detalles

1. Teorema del Valor Medio

1. Teorema del Valor Medio 1. l Valor Medio Uno de los teoremas más importantes del cálculo diferencial de funciones reales de una variable real es el l Valor Medio, del que se obtienen consecuencias como el Taylor y el estudio

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:

Más detalles

Cónicas. Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas

Cónicas. Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas Cónicas Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas Eres un arquitecto y tu trabajo es construir una letrina según las normas higiénicas, para ayudar a mejorar la salud

Más detalles

Objetivos específicos de aprendizaje

Objetivos específicos de aprendizaje Introducir un cambio en la metodología de la enseñanza de las Matemáticas en general, y de la geometría en particular, con la ayuda de las NTIC, consiguiendo un mayor dinamismo en las clases, que repercuta

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Resolución Guía de Trabajo. Geometría Analítica.

Resolución Guía de Trabajo. Geometría Analítica. Universidad de la Frontera Facultad de Ingeniería TEMUCO, Agosto 8 de 2013 Departamento de Matemática y Estadística Resolución Guía de Trabajo. Geometría Analítica. Fundamentos de Matemáticas. Profesores:

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

UNIDAD 2: DERIVADAS Y APLICACIONES

UNIDAD 2: DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES ÍNDICE DE LA UNIDAD - INTRODUCCIÓN 6 - DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7 - INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA 8 4- CONTINUIDAD

Más detalles

Calculadora ClassPad

Calculadora ClassPad Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos

Más detalles

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.

Más detalles

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las

Más detalles

Razonamiento inductivo

Razonamiento inductivo LECCIÓN CONDENSADA 2.1 Razonamiento inductivo En esta lección Aprenderás cómo se usa el razonamiento inductivo en la ciencia y en las matemáticas Usarás el razonamiento inductivo para hacer conjeturas

Más detalles

Teoría de Conjuntos y Funciones

Teoría de Conjuntos y Funciones Elaborado por: Lic. Eleazar J. García República Bolivariana de Venezuela. Tinaco.- Estado Cojedes Teoría de Conjuntos Funciones Este capítulo comienza con el estudio de las nociones de la teoría de conjuntos

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL VALLEJO ÁREA DE MATEMÁTICAS CÁLCULO DIFERENCIAL E INTEGRA I TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN ELEAZAR

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

(x + y) + z = x + (y + z), x, y, z R N.

(x + y) + z = x + (y + z), x, y, z R N. TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas

Más detalles

Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010

Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010 Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010 Juro solemnemente abstenerme de copiar o de incurrir en actos que puedan conducir a la trampa o al fraude en las pruebas académicas

Más detalles

Elementos de topología usados en Cálculo. R. Parte II: SUCESIONES

Elementos de topología usados en Cálculo. R. Parte II: SUCESIONES Elementos de topología usados en Cálculo. R. Parte II: SUCESIONES Eleonora Catsigeras Versión preliminar: 25 de marzo de 2004 Nota: Las partes del texto comprendidas entre dos marcas son esenciales y las

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

Paso 1. Sustituimos la condición y=0 en la ecuación original

Paso 1. Sustituimos la condición y=0 en la ecuación original Expresión algebraica Expresión que combina variables y constantes reales por medio de operaciones algebraicas de suma, resta, multiplicación, división, exponenciación y radicación. Expresión trascendente

Más detalles

Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones

Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

7 Aplicaciones de las derivadas

7 Aplicaciones de las derivadas Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula

Más detalles

b) 3 c) 1 d) 2 6. Si ( ) ( ) ( 1,3) Cuál es el valor de u v + 2w

b) 3 c) 1 d) 2 6. Si ( ) ( ) ( 1,3) Cuál es el valor de u v + 2w Elaborada por José A. Barreto. Master of Arts The University of Teas at Austin. En el conjunto de los números reales se define la relación Ry ( está relacionado con y si > y + 0. Cuál de los siguientes

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

Capítulo 9 Vectores en el espacio

Capítulo 9 Vectores en el espacio Capítulo 9 Vectores en el espacio Introducción El concepto de vector es muy amplio y su aplicación se evidencia en los diferentes campos de las ciencias. En matemáticas, un vector es un elemento de una

Más detalles