Curso de nivelación Estadística y Matemática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso de nivelación Estadística y Matemática"

Transcripción

1 Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017

2 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

3 Modelo de Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 y la H 1, además del nivel de signicancia (α). Seleccionar el estadístico de prueba apropiado y calcular el valor del estadístico de prueba de los datos muestrales. Establecer la región crítica (cálcule los grados de libertad si es el caso). Tome la decisión. Si el valor del estadístico de prueba cae en la región crítica o si el P-value es menor que el nivel de signicancia, rechazar la H 0. Concluya en términos del problema.

4 Agenda Modelo de Asociación Medidas de asociación para variables intervalo y razón 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

5 Asociación Modelo de Asociación Medidas de asociación para variables intervalo y razón ¾Qué es la asociación? Es la relación entre dos variables. Existe una relación entre dos variables si los valores de una variable tienden a ocurrir con más frecuencia con ciertos valores de otra variable. Busca medir la fuerza o intensidad de la relación. Para determinar la medida de asociación a calcular se debe determinar primero el nivel de medición de las dos variables en estudio.

6 Modelo de Ejemplos medidas de Asociación Asociación Medidas de asociación para variables intervalo y razón Si tenemos variables nominales Clasicación Urbana Rural Total Fila (total marginal) Por encima del promedio Promedio Por debajo del promedio Frecuencia Conjunta Total columna (total marginal) Si tenemos variables de intervalo o razón ρ = cov (X,Y ) σ X σ Y

7 Agenda Modelo de Asociación Medidas de asociación para variables intervalo y razón 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

8 Modelo de Asociación Medidas de asociación para variables intervalo y razón Correlación de Pearson Pasos Primero realizar un gráco de dispersión. Para determinar la existencia o no de la relación entre las variables. Análizar la forma o patrón de la relación, aquí repasaremos la relación lineal Dirección de la relación. Luego se debe calcular el coeciente de correlación de Pearson: Cuanticar la relación lineal entre las variables Si ρ = 1, existe una asoción lineal positiva. Si ρ = 1, existe una asoción lineal negativa. Si ρ = 0, no hay relación lineal pero puede existir una asociación no lineal.

9 Modelo de Correlación de Pearson Asociación Medidas de asociación para variables intervalo y razón Pasos ( Xi X )( Y i Y ) ρ X,Y = n x=1 (n 1)σ X σ Y

10 Agenda Modelo de Lineal Simple 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

11 Modelo de lineal simple Lineal Simple

12 Modelo de Lineal Simple lineal simple El modelo de regresión se basa en métodos estadísticos para estimar relaciones teoricas y poner a prueba estas teorías así como poner en práctica algunas conclusiones. Es importante determinar si la relación entre las variables son deterministicas o estocásticas (aleatorias). Serie estocástica una parte conocida (sistemática) susceptible de predecir y de una parte totalmente desconocida (aleatoria). Serie determinística el futuro se puede predecir sin error. Es una variable que está determinada o ja y que no cambia de una muestra a otra. Ejemplo Y = β 0 + β 1 x + ε

13 Modelo de lineal simple Lineal Simple Datos muestrales Y i = ˆβ 0 + ˆβ 1 X i + ε i Y i = Ŷ i + ε i

14 Agenda Modelo de Lineal Simple 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

15 Modelo de Míminos Cuadrados Ordinarios Lineal Simple ¾Qué son los mínimos cuadrados ordinarios? Se basa en la idea de determinar una recta que se ajuste a los datos muestrales mejor que cualquier otra recta. Por lo tanto, busca mínimizar el error al cuadrado de los datos. MCO n i=1 n i=1 n i=1 ( ) Y i Ŷi = ε i ( Y i Ŷ i ) 2 = mínima ( Y i ˆβ 0 ˆβ 1 X i ) 2 = mínima

16 Modelo de lineal simple Lineal Simple

17 Modelo de Míminos Cuadrados Ordinarios Lineal Simple Modelo Simple ˆβ 0 = Ȳ ˆβ 1 X ˆβ 1 = Cov (X,Y ) Var (X ) Modelo Múltiple ˆβ = ( X X ) 1 X Y

18 Modelo de lineal multiple Lineal Simple

19 Supuestos MCO Modelo de Lineal Simple Supuestos de especicación y forma La variable X (explicativa) está dada. No correlación entre el término de error y las variables explicativas. El modelo esta bien especicado. Lineal en los parámetros. Supuestos sobre el residuo No autocorrelación. Homocedasticidad. Normalidad.

20 Agenda Modelo de Lineal Simple 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

21 Modelo de Error estándar de la estimación Lineal Simple Error estándar de la estimación Medida del grado de dispersión de los valores de Y i alrededor de la recta de regresión Fórmula ( ) 2 Y i Ŷi Se = n k

22 Modelo de Coeciente de Determinación Lineal Simple Coeciente de Determinación Mide que parte de la variabilidad total de la variable dependiente es explicada por el modelo. Fórmula R 2 = SCE SCR R 2 = (correlación) 2 = Cov (Y,X )2 σ 2 x σ 2 y

23 Modelo de Coeciente de Determinación Lineal Simple

24 Limitaciones Modelo de Lineal Simple Algunas limitaciones No pueden determinar relaciones Causa-Efecto. Problema cuando dos variables no relacionadas parecen presentar alguna relación (Correlación espurea). Restricción de linealidad de los parámetros.

25 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

26 Series de tiempo Modelo de Qué es una serie de tiempo? Las series de tiempo son colecciones de observaciones sobre un determinado fenómeno efectuadas en sucesivos momentos del tiempo, usualmente equiespaciados. Corresponde a una realización de un proceso generador de datos. Y t k,...,y t 2,Y t 1,Y t,y t+1,y t+2,...,y t+h

27 Series de tiempo Modelo de Tendencia (T): Es un movimiento de larga duración que se mantiene durante todo el período de observación. Movimientos cíclicos (C): Son oscilaciones alrededor de la tendencia producidos por periodos alternativos de prosperidad y depresión. Variación estacional (E): Son los movimientos que se producen dentro del año y que se repiten de un año a otro. Se observa en algunas series de periodicidad mayor al año (mensual, trimestral, semanal, etc). Movimientos irregulares (I): Son las oscilaciones erráticas o accidentales que obedecen a variadas causas. No siguen ningún patrón (son impredecibles).

28 Series de tiempo Modelo de

29 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

30 Modelo de Estadísticos Autocorrelación La correlación entre Y t y Y t k se conoce como autocorrelación de orden k y se denota como ρ k. (r k es el estimador muestral). Y t k se le conoce como rezagada k periodos. r k = n k t=1 (Y t Ȳ )(Y t k Ȳ ) n t=1(y t Ȳ ) 2

31 Estadísticos Modelo de Autocorrelación parcial La correlación parcial mide el grado de asociación entre Y t y Y t k, cuando el efecto de otros rezagos es removido. La correlación parcial es calculada mediante una ecuación de regresión, donde los coecientes de los rezagos de Y representan la correlación parcial, del siguiente modo Y t = ˆβ 0 + ˆβ 1 Y t 1 + ˆβ 2 Y t ˆβ k Y t k + ε i

32 Series de tiempo Modelo de

33 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

34 Modelo de Qué es la estacionariedad? Se dice que el proceso está en equilibrio estadístico alrededor de un valor medio. La distribución de probabilidad es común e invariante en el tiempo: La media es única (local y global) y representativa de todo el período analizado. La varianza es constante y nita. La función de autocorrelación decae rápidamente en el tiempo. Un shock en un momento dado tiene efecto en el corto plazo.

35 Serie estacionaria Modelo de

36 Serie no estacionaria Modelo de

37 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo y razón 3 Modelo de Lineal Simple 4

38 Modelo de Qué tipos de modelos se pueden utilizar Ar(p) Y t = c + φ 1 Y t 1 + φ 2 Y t φ p Y t p + ε t Ma(q) Y t = c + θ 1 ε t 1 + θ 2 ε t θ q ε t q + ε t Arma(p,q) Y t = c + φ 1 Y t φ p Y t p + θ 1 ε t θ q ε t q + ε t

39 Modelo de Pronóstico Autoselección del modelo Existen diversos algorítmos que permiten determinar el orden más adecuado para un modelo ARIMA, en nuestro caso se utiliza el siguiente cómando: Ejemplo auto.arima(x,d=na,d=na, max.p=5,max.q=5,max.p=2,max.q=2, max.order=5,max.d=2,max.d=1,start.p=2, start.q=2,start.p=1,start.q=1, stationary=false,seasonal=true)

40 Pronóstico Modelo de

41 Bibliografía Modelo de Woodridge, J. Introducción a la Econometría. Thomson Learning, Maddala, G. Introducción a la Econometría Prentice Hall, Woodridge, J. Econometric Analysis of Cross Section And Panel Data. MIT press, Webster L., Allen Estadística aplicada a los negocios y la economía Irwin McGraw-Hill, Tercera edición.

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

Análisis de Series de Tiempo

Análisis de Series de Tiempo CURSO REGIONAL SOBRE HOJA DE BALANCE DE ALIMENTOS, SERIES DE TIEMPO Y ANÁLISIS DE POLÍTICA MSc. Sandra Hernández sandra.hernandezro@gmail.com Sede Subregional de la CEPAL en México Ciudad de México, del

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Estimación del modelo lineal con dos variables

Estimación del modelo lineal con dos variables Estimación del modelo lineal con dos variables el método de mínimos cuadrados ordinarios (MCO) Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni Estimación del modelo lineal por MCO 1

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

La econometría : una mirada de pájaro

La econometría : una mirada de pájaro La econometría : una mirada de pájaro Contenido Objetivo Definición de Econometría Modelos determinista y estocástico Metodología de la econometría Propiedades de un modelo econométrico Supuestos de un

Más detalles

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16 Regresión Lineal Rodrigo A. Alfaro 2009 Rodrigo A. Alfaro (BCCh) Regresión Lineal 2009 1 / 16 Contenidos 1 Regresiones Lineales Regresión Clásica Paquetes estadísticos 2 Estadísticos de Ajuste Global 3

Más detalles

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal Estadística Inferencial Sesión No. 9 Regresión y correlación lineal Contextualización En la administración, las decisiones suelen basarse en la relación entre dos o más variables. En esta sesión se estudia

Más detalles

Más Allá del Modelo de Regresión Lineal. Dante A. Urbina

Más Allá del Modelo de Regresión Lineal. Dante A. Urbina Más Allá del Modelo de Regresión Lineal Dante A. Urbina CONTENIDOS 1. Modelos de Regresión No Lineales 2. Modelos de Respuesta Cualitativa 3. Datos de Panel 4. Modelos Autorregresivos y de Rezagos 5. Modelos

Más detalles

El Modelo de Regresión Lineal

El Modelo de Regresión Lineal ECONOMETRÍA I El Modelo de Regresión Lineal Dante A. Urbina CONTENIDOS 1. Regresión Lineal Simple 2. Regresión Lineal Múltiple 3. Multicolinealidad 4. Heterocedasticidad 5. Autocorrelación 6. Variables

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Estadística para la Economía y la Gestión IN 3401

Estadística para la Economía y la Gestión IN 3401 Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez. MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción

Más detalles

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA LICENCIATURA: ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS CURSO: CUARTO

Más detalles

TEMA 5. Modelos para Datos de Conteo

TEMA 5. Modelos para Datos de Conteo TEMA 5. Modelos para Datos de Conteo Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Datos de Conteo 2 Regresión de Poisson 3 Extensiones Datos de Conteo Variable de

Más detalles

Medidas de asociación lineal y el modelo lineal con dos variables

Medidas de asociación lineal y el modelo lineal con dos variables Medidas de asociación lineal y el modelo lineal con dos variables Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni El modelo lineal con dos variables 1 / 28 Introducción Nos interesa

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión

Más detalles

FACULTAD DE CIENCIAS EMPRESARIALES ASIGNATURA: Econometría de Negocios

FACULTAD DE CIENCIAS EMPRESARIALES ASIGNATURA: Econometría de Negocios FACULTAD DE CIENCIAS EMPRESARIALES ASIGNATURA: Econometría de Negocios CORPORACIÓN UNIVERSITARIA REMINGTON DIRECCIÓN PEDAGÓGICA Este material es propiedad de la Corporación Universitaria Remington (CUR),

Más detalles

Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1

Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1 Análisis financiero ANÁLISIS FINANCIERO 1 Lectura No. 7 Nombre: Métodos de Análisis Contextualización Los diferentes métodos de análisis que se pueden utilizar para evaluar y, en su defecto, emitir un

Más detalles

peso edad grasas Regresión lineal simple Los datos

peso edad grasas Regresión lineal simple Los datos Regresión lineal simple Los datos Los datos del fichero EdadPesoGrasas.txt corresponden a tres variables medidas en 25 individuos: edad, peso y cantidad de grasas en sangre. Para leer el fichero de datos

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Metodología Box-Jenkins Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es un resumen/modificación de la documentación elaborada

Más detalles

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Brindar al alumno los conocimientos de los métodos econométricos fundamentales y de los conceptos estadísticos que éstos requieren,

Más detalles

Prácticas Tema 5. Ampliaciones del Modelo lineal básico

Prácticas Tema 5. Ampliaciones del Modelo lineal básico Prácticas Tema 5. Ampliaciones del Modelo lineal básico Ana J. López y Rigoberto Pérez Dpto. Economía Aplicada, Universidad de Oviedo PRÁCTICA 5.1. Se ha examinado la evolución reciente de las ventas de

Más detalles

4. Regresión Lineal Simple

4. Regresión Lineal Simple 1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para

Más detalles

5. Regresión Lineal Múltiple

5. Regresión Lineal Múltiple 1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

Julio Deride Silva. 4 de junio de 2010

Julio Deride Silva. 4 de junio de 2010 Curvas ROC y Regresión Lineal Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 4 de junio de 2010 Tabla de Contenidos Curvas ROC y Regresión Lineal

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

ECONOMETRÍA DE NEGOCIOS CONTADURÍA PÚBLICA FACULTAD DE CIENCIAS CONTABLES

ECONOMETRÍA DE NEGOCIOS CONTADURÍA PÚBLICA FACULTAD DE CIENCIAS CONTABLES FACULTAD DE CIENCIAS CONTABLES El módulo de estudio de la asignatura Econometría de negocios es propiedad de la Corporación Universitaria Remington. Las imágenes fueron tomadas de diferentes fuentes que

Más detalles

(3620) ECONOMETRÍA (3620)

(3620) ECONOMETRÍA (3620) Programa de la asignatura Curso: 2013 / 2014 (3620) ECONOMETRÍA (3620) PROFESORADO Profesor/es: MARIA ISABEL LANDALUCE CALVO - correo-e: iland@ubu.es FICHA TÉCNICA Titulación: LICENCIATURA EN ADMINISTRACIÓN

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Multivariadas) Carlos Capistrán Carmona ITAM 1 Principios de Pronóstico. 2 Pruebas de Hipótesis. 3 Estimación

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL Msc. Lácides Baleta Octubre 16 Página 1 de 11 REGRESIÓN Y CORRELACIÓN LINEAL Son dos herramientas para investigar la dependencia de una variable dependiente Y

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

Prácticas Tema 2: El modelo lineal simple

Prácticas Tema 2: El modelo lineal simple Prácticas Tema 2: El modelo lineal simple Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 2.1- Se han analizado sobre una muestra de 10 familias las variables

Más detalles

Elaboró: Luis Casas Vilchis

Elaboró: Luis Casas Vilchis Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA LICENCIATURA: DERECHO Y ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

Más detalles

Qué es una regresión lineal?

Qué es una regresión lineal? Apéndice B Qué es una regresión lineal? José Miguel Benavente I. Introducción En varios capítulos de este libro se ocupan regresiones lineales y se afirma que el coeficiente de regresión indica cuánto

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010)

Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010) Nombre y Apellidos:... NIU:... Grupo:... EXAMEN ECONOMETRÍA II (Enero 2010) Lea cuidadosamente cada pregunta. Marque muy claramente la respuesta de cada pregunta en la hoja de respuestas. Observe que los

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN CIENCIAS POLÍTICAS Y ADMINISTRACIÓN PÚBLICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN CIENCIAS POLÍTICAS Y ADMINISTRACIÓN PÚBLICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN CIENCIAS POLÍTICAS Y ADMINISTRACIÓN PÚBLICA PROGRAMA DE ASIGNATURA CLAVE 4º SEMESTRE MODELOS LINEALES APLICADOS

Más detalles

LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS

LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS DEPARTAMENT D ECONOMIA APLICADA UNIVERSITAT DE VALENCIA LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA TEMA 1: INTRODUCCIÓN

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Ejercicio 5. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejercicio 5. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejercicio 5 Estimación del Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejercicio 5 Estimación

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas GUIA DOCENTE Curso Académico 2012-2013 1. ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1.1. Datos de la asignatura Tipo de estudios Licenciatura Titulación Administración y Dirección de Empresas Nombre

Más detalles

ESTADÍSTICA II Código: 8314

ESTADÍSTICA II Código: 8314 ESTADÍSTICA II Código: 8314 Departamento : Metodología Especialidad : Ciclo Básico Prelación : 8219 Tipo de Asignatura : Obligatoria Teórica y Práctica Número de Créditos : 3 Número de horas semanales

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

Tema 6. Multicolinealidad. Contenido Multicolinealidad perfecta Multicolinealidad de grado alto

Tema 6. Multicolinealidad. Contenido Multicolinealidad perfecta Multicolinealidad de grado alto Tema 6 Multicolinealidad Contenido 6.1. Multicolinealidad perfecta...................... 108 6.. Multicolinealidad de grado alto................... 110 108 Tema 6. Multicolinealidad A la hora de estimar

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

Tema 5: Planteamiento de los modelos de series temporales. Coro Chasco Yrigoyen Universidad Autónoma de Madrid (UAM) Asignatura: Econometría II

Tema 5: Planteamiento de los modelos de series temporales. Coro Chasco Yrigoyen Universidad Autónoma de Madrid (UAM) Asignatura: Econometría II Tema 5: Planteamiento de los modelos de series temporales Coro Chasco Yrigoyen Universidad Autónoma de Madrid (UAM) Asignatura: Econometría II 1 Parte II. Modelos univariantes de series temporales Tema

Más detalles

Ing. Teresa Pérez Sosa 1, Lic.Alberto Alfonso Jiménez 2

Ing. Teresa Pérez Sosa 1, Lic.Alberto Alfonso Jiménez 2 EL MODELO DE REGRESIÓN LINEAL SIMPLE COMO HERRAMIENTA BRINDADA POR LA ASIGNATURA ECONOMETRÍA EN LA CARRERA DE LICENCIATURA EN ECONOMÍA PARA LA REPRESENTACIÓN DE LAS RELACIONES ENTRE DOS VARIABLES. Ing.

Más detalles

Dr. Fidel Ulin Montejo M.C. Robert Jeffrey Flowers Jarvis Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010

Dr. Fidel Ulin Montejo M.C. Robert Jeffrey Flowers Jarvis Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010 PROGRAMA DE ESTUDIO Análisis de Regresión Programa Educativo: Licenciatura en Actuaría Área de Formación : Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Total de Horas: 5 Total de créditos:

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

TEMA 6. Modelos para Datos de Panel

TEMA 6. Modelos para Datos de Panel TEMA 6. Modelos para Datos de Panel Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Introducción 2 Modelos estáticos Modelo con Efectos Individuales: Fijos y Aleatorios

Más detalles

DIPLOMADO EN ECONOMETRÍA

DIPLOMADO EN ECONOMETRÍA DIPLOMADO EN ECONOMETRÍA Presentación La Coordinación de Educación Continua y Vinculación de la Facultad de Economía inauguró en 1987 el diplomado de Métodos Estadísticos Aplicados a la Economía, que fue

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE

CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE El objetivo de este curso es la presentación de las técnicas econométricas básicas, tanto clásicas como modernas, y su tratamiento con las herramientas más adecuadas

Más detalles

GRADO : ADE ASIGNATURA: ECONOMETRÍA I. Curso: 2 Cuatrimestre: 2 Asignaturas que se recomienda tener superadas: Estadística I y II

GRADO : ADE ASIGNATURA: ECONOMETRÍA I. Curso: 2 Cuatrimestre: 2 Asignaturas que se recomienda tener superadas: Estadística I y II FICHA DESCRIPTIVA DE LA ASIGNATURA GUIA DOCENTE Curso Académico 2012/2013 GRADO : ADE ASIGNATURA: ECONOMETRÍA I Módulo Materia Ampliaciones de Métodos Cuantitativos Econometría Créditos 6 Ubicación Carácter

Más detalles

Econometría dinámica y financiera

Econometría dinámica y financiera Econometría dinámica y financiera Introducción a la econometría financiera. Modelos ARCH Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Introducción Los modelos que hemos visto son lineales

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 3.1 Colinealidad Exacta 3.2 Los efectos de la multicolinealidad Del

Más detalles

Plan General del Curso. Análisis Econométrico con EViews. Instituto Científico del Pacífico

Plan General del Curso. Análisis Econométrico con EViews. Instituto Científico del Pacífico Plan General del Curso Análisis Econométrico con EViews Introducción El presente curso se basa en la teoría económica, en este curso se podrá realizar el análisis de las diversas variables económicas.

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Información general. Obligatoria básica o de fundamentación X. Obligatoria profesional. Horas de trabajo independiente del estudiante

Información general. Obligatoria básica o de fundamentación X. Obligatoria profesional. Horas de trabajo independiente del estudiante Guía de asignatura Formato institucional Rev. Abril 2013 Información general Asignatura E S T A D I S T I C A Código 73210011 Tipo de asignatura Obligatoria X Electiva Tipo de saber Número de créditos

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

ESTADISTICA INFERENCIAL

ESTADISTICA INFERENCIAL ESTADISTICA INFERENCIAL CODIGO 214543 (COMPUTACION) 224543 (SISTEMAS) 254443 (CONTADURIA) 264443 (ADMINISTRACION) 274443( GRH) HORAS TEORICAS HORAS PRACTICAS UNIDADES CREDITO SEMESTRE 02 02 03 IV PRE REQUISITO

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. Los modelos de regresión sirven, en general, para tratar de expresar una variable respuesta (numérica) en

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles