La porció limitada per una línia poligonal tancada és un

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La porció limitada per una línia poligonal tancada és un"

Transcripción

1 PLA Si n és el nombre de costats del polígon: El nombre de diagonals és La suma dels seus angles és 180º ( n 2 ). La porció limitada per una línia poligonal tancada és un Entre les seves propietats destaquem POLÍGON Elements Vèrtex Costat Diagonal Angles Interiors Es classifiquen Segons els costats Segons els angles TRIANGLES QUADRILÀTERS PENTÀGONS HEXÀGONS HEPTÀGONS.. CONVEXOS >180º CÒNCAUS <180º Dels quals se n estudia la classificació per els seus costats els seus angles 1

2 TRIANGLES QUADRILÀTERS 2

3 ELEMENTS DEL POLÍGON vèrtex costat diagonal angle TRIANGLE RECTANGLE 3

4 RECTES NOTABLES DEL TRIANGLE ELEMENTS DE LA CIRCUMFERÈNCIA diàmetre corda radi 4

5 Repassa l esquema i completa: a) Un quadrilàter que té quatre angles rectes i els quatre costats iguals s anomena... b) Un quadrilàter que sols té dos costats oposats paral lels s anomena... c) Un quadrilàter que té els costats oposats iguals és un... d) Els quadrilàters que tenen els costats oposats paral lels són... e) Els quadrilàters que no tenen cap costat paral lel s anomenen... f) Un quadrilàter que té els quatre costats iguals pot ser un... o un... g) Un quadrilàter que té els costats oposats iguals pot ser un... o un... h) Un quadrilàter amb els costats oposats paral lels i els angles oposats iguals és un... 1.) Repassa l esquema i completa: a) Un triangle que té un angle recte s anomena... b) Si un triangle té un angle obtús s anomena... c) Un triangle amb dos costats iguals i un diferent s anomena... d) Els triangles amb els tres costats iguals són... e) Si un triangle té els tres angles menors de 90º s anomena... f) Un triangle amb els tres costats diferents s anomena... 5

6 g) Si en un triangle els tres angles mesuren el mateix, quant mesura cada angle? Quin nom rep aquest triangle?... h) Si en un triangle rectangle hi ha dos angles que mesuren el mateix, quina és la mesura de cada angle?... 2.) En un triangle, l angle més gran és de 100º. Sabent que l angle més petit és la quarta part del gran, determina la mesura de l angle mitjà. 4.) Quant mesura cadascun dels angles aguts d un triangle rectangle isòsceles? 5.) Completa la taula següent: Polígons Regulars A B C D E F Triangle equilàter Quadrat Pentàgon Hexàgon Heptàgon Tingues en compte que les lletres de les columnes representen: A) Nombre de costats, de vèrtexs i d angles. B) Nombre total de diagonals. C) Nombre de diagonals que es poden fer des d un vèrtex. D) Nombre de triangles, a partir de les diagonals d un vèrtex. E) Suma de tots els angles del polígon. F) Mesura de cada angle del polígon. 6

7 6.) Calcula la mesura dels angles aguts d un trapezi isòsceles, sabent que cadascun dels angles obtusos fa 110º. 7.) Quant mesuren els angles i el perímetre de la figura? 8 cm 143 º 6 cm 8.) Determina el valor de l angle que falta: 9.) Determina el valor de l angle A de la figura següent: 7

8 10.) Si un dels angles d un trapezi isòsceles mesura 75º, quina és la mesura dels altres tres angles? 11.) Considera un decàgon regular inscrit en una circumferència i respon: a) Quantes diagonals té aquest polígon? b) Quantes se n poden dibuixar des d un mateix vèrtex? c) Quin és el nombre mínim de triangles en què es pot descompondre? d) Quant val la suma de tots els angles? e) Quina és l amplitud de cadascun dels angles? 12.) Per què en un triangle no hi pot haver dos angles rectes? 13.) Si el perímetre d un octàgon regular és d 1 m, quina és la longitud de cada costat expressada en centímetres? 14.) Es vol tancar amb un filat un camp rectangular de costats 2 dam i 230 m. El preu del filat és de 3,5 el metre. Quant valdrà el filat necessari per tancar el camp? 8

9 9

10 1.) Quina és la superfície d una piscina quadrada de 23 m de costat? 2.) Quina és l àrea d un rectangle que mesura 12 m de llarg i 5 m d amplada? 3.) Calcula la superfície d una habitació que mesura 3 m d ample per 60 dm de llargada? 4.) Quant mesura la superfície d un camp de futbol de 105 m de llarg i 60 m d amplada? 5.) Quina és l àrea d un triangle que mesura 5,2 m de base i 8,6 m d alçada? 6.) Troba l àrea d un triangle que fa 9,5 m de base i 45 dm d altura. 10

11 7.) Calcula l àrea d un triangle de base 463 cm i d altura 4,5 m. 8.) Busca l àrea d un triangle que fa 124 cm de base i d una altura que fa la meitat de la base. 9.) Calcula l àrea d un rombe la mida de les diagonals del qual són 58 cm i 10 dm, respectivament. 10.) Troba l àrea i el perímetre d un rombe les diagonals del qual fan 24,6 i 16,8 cm, respectivament, i el costat 14,9 cm. 11.) Troba el perímetre i l àrea de cada una de les figures següents: a) b) 4,5 m 3 m 7,9 m P = A = P = A = c) d) 5, 8 m P = 9,3 m e) f) A = 5,62 m P = A = 7,4 m P = A = 12,3 m 6,8 m P = A = 11

12 12.) Troba l àrea de cada una de les figures següents: A) B) C) D) 13.) Troba l àrea de cada una de les figues següents: A) B) C) D) 12

13 14.) Troba l àrea d un trapezi amb bases de 85 dm i 570 cm, respectivament, i l altura de 4,36 m. 15.) Calcula la superfície dels camps representats en els següents dibuixos: 16.) Troba l àrea d un trapezi que té de bases 9 m i 56 dm, respectivament, i d altura 420 cm. 17.) Troba l àrea de cada una de les figures següents: 13

14 18.) El perímetre d un triangle equilàter fa 54,6 m. Quina és l àrea si l alçada fa 25,64 dm? 19.) La base d un triangle isòsceles fa 8,4 cm i l alçada 3,6 cm. Troba n l àrea. 20.) El costat d un triangle equilàter fa 12,5 cm. Quant fa la superfície si l alçada és de 8,5 cm? 21.) Calcula l àrea d un rombe les diagonals del qual fan 7,4 i 9,4 dm, respectivament. 14

15 22.) L àrea d un rectangle és equivalent a la d un quadrat de 9,8 m de costat. Si la base amida 12,8 cm, quant fa d alçada? 23.) Troba l àrea d un polígon regular de 16 m de perímetre i 2 m d apotema. 24.) Troba l àrea d un heptàgon regular de 8,6 dm de costat i 5,4 dm d apotema. 25.) Determina l àrea d un polígon regular de 18 costats, amb 6 m de costat i 40 dm d apotema. 26.) El perímetre d un octàgon és igual al d un triangle equilàter de 94,8 cm de costat. Quant fa el costat de l octàgon? 27.) El perímetre d un rombe és igual al d un hexàgon regular de 8,8 cm de costat. Quant fa el costat del rombe? 15

16 28.) Troba l àrea i el perímetre d un trapezi isòsceles les bases del qual fan 26,8 cm i 5,4, respectivament, i els costats no paral lels, 14,6 cm cada un i l alçada 23 dm. 29.) Troba l àrea d un pentàgon regular de 4,8 m de costat i 320 cm d apotema. 30.) Calcula l àrea d un hexàgon regular de 8 m de costat si l apotema val 6,9 m. 31.) Troba l àrea d un triangle que fa 148 cm de base i l altura els ¾ de la base. 32.) Cerca l àrea d un triangle equilàter de 8,6 cm de costat i l alçada és de 0,43 dm. 33.) La base d un triangle isòsceles fa 18,4 cm i l altura 6,6 cm. Troba n l àrea. 16

17 34.) El perímetre d un quadrat és igual al d un pentàgon regular de 16, 8 cm de costat. Troba la seva àrea. 35.) Troba la longitud d una circumferència que té un radi de 6,4 cm. 36.) Calcula la longitud d una circumferència el diàmetre de la qual fa 14,8 cm. 37.) Troba l àrea d un cercle de 4,5 cm de radi. 38.) Cerca l àrea d un cercle que fa 14,6 cm de diàmetre. 39.) Calcula el radi d una circumferència la longitud de la qual és 28,42 cm. 17

18 40.) Troba el radi d un cercle la superfície del qual amida 64,36 cm ) Troba la longitud d una circumferència de 8,6 cm de radi. 42.) Calcula el diàmetre d una circumferència de 284,12 cm de longitud. 43.) Troba l àrea d un cercle de 8,4 cm de radi. 44.) Esbrina el diàmetre d un cercle de 86,40 cm 2 de superfície. 45.) Troba l àrea d un cercle la longitud del qual té 22,84 cm. 18

19 46.) Troba la longitud d una circumferència sabent que el cercle corresponent fa 36,46 cm 2 de superfície. 47.) Calcula la longitud de la circumferència i l àrea d un cercle de 8,4 cm de diàmetre. 48.) Cerca quant fa la superfície d un cercle la circumferència del qual és de 25,12 cm de longitud. 49.) Troba l àrea del cercle i la longitud d un circumferència de radi 6,8 cm. 50.) Quant costa un tros de terreny quadrat de 8 m de costat que val a l hectàrea? 19

20 51.) Cerca el perímetre i l àrea de cadascun dels triangles següents: a) b) c) 20

MATEMÀTIQUES ÀREES I VOLUMS

MATEMÀTIQUES ÀREES I VOLUMS materials del curs de: MATEMÀTIQUES ÀREES I VOLUMS EXERCICIS RECULL D APUNTS I EXERCICIS D INTERNET FET PER: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 08 de febrer de 2010 Aquests materials

Más detalles

Polígon. Taula de continguts. Noms i tipus. De Viquipèdia. Per a altres significats, vegeu «Polígon (desambiguació)».

Polígon. Taula de continguts. Noms i tipus. De Viquipèdia. Per a altres significats, vegeu «Polígon (desambiguació)». Polígon De Viquipèdia Per a altres significats, vegeu «Polígon (desambiguació)». Un polígon (del grec, "molts angles") és una figura geomètrica plana formada per un nombre finit de segments lineals seqüencials.

Más detalles

Unitat 9. Els cossos en l espai

Unitat 9. Els cossos en l espai Unitat 9. Els cossos en l espai Pàgina 176. Reflexiona Si et fixes en la forma dels objectes del nostre entorn, descobriràs els cossos geomètrics. Els cossos geomètrics sols existeixen en la nostra ment.

Más detalles

Abans de començar. 4.Polígons regulars pàg. 133 Definició Construcció. Exercicis per practicar. Per saber-ne més. Resum.

Abans de començar. 4.Polígons regulars pàg. 133 Definició Construcció. Exercicis per practicar. Per saber-ne més. Resum. 9 Polígons, perímetres i àrees Objectius Abans de començar En aquesta quinzena aprendràs a: Reconèixer, representar i identificar els elements geomètrics que caracteritzen a diferents polígons. Construir

Más detalles

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6 Geometria dossier estiu 2012 2C 1. Dibuixa dues rectes, m i n, que siguin: a) Paral leles horitzontalment. c) Paral leles verticalment. b) Secants. d) Perpendiculars. 6 2. Dibuixa una recta qualsevol m

Más detalles

Semblança. Teorema de Tales

Semblança. Teorema de Tales Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'

Más detalles

Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS

Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS DOSSIER DE REPÀS 1. Ordena els nombres de més petit a més gran: 01 0 01 101 0 001 0 001 0 1. Converteix els nombres fraccionaris en nombres decimals i representa ls en la recta: /4 1/ 8/ 11/10. Efectua

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Els triangles. El costat AB és oposat al vèrtex C i a l angle C. Propietats bàsiques

Els triangles. El costat AB és oposat al vèrtex C i a l angle C. Propietats bàsiques Els triangles Els triangles Es denomina amb la seqüència de vèrtexs:. és un angle interior, denominat senzillament angle del triangle. ' és un angle exterior.. ' Propietats bàsiques El costat és oposat

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL Francesc Sala, primera edició, abril de 1996 última revisió, desembre de 2007 ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

1.- LÍNEAS POLIGONALES Y POLÍGONOS.

1.- LÍNEAS POLIGONALES Y POLÍGONOS. 1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

CENAFE MATEMÁTICAS POLÍGONOS

CENAFE MATEMÁTICAS POLÍGONOS POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

3r B d'eso Capítol 9: Geometria a l espai. Globus terraqüi

3r B d'eso Capítol 9: Geometria a l espai. Globus terraqüi Matemàtiques orientades a les ensenyances acadèmiques : 41 3r B d'eso Capítol 9: Geometria a l espai. Globus terraqüi Autores: Milagros Latasa Asso i Fernanda Ramos Rodríguez Il lustracions: Milagros Latasa

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

UNITAT 3 OPERACIONS AMB FRACCIONS

UNITAT 3 OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de

Más detalles

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

TEMA 4: Equacions de primer grau

TEMA 4: Equacions de primer grau TEMA 4: Equacions de primer grau Full de preparació Aquest full s ha de lliurar el dia de la prova Nom:... Curs:... 1. Expressa algèbricament les operacions següents: a) Nombre de rodes necessàries per

Más detalles

Unitat 8. Mesuraments: longituds i àrees

Unitat 8. Mesuraments: longituds i àrees Unitat 8. Mesuraments: longituds i àrees Pàgina 154. Reflexiona En un tauler d anuncis de la Casa de Cultura hi ha ofertes, fotografies, horaris, etc. Ara descobrirem la superfície que hi ocupa cadascuna.

Más detalles

8 Geometria analítica

8 Geometria analítica Geometria analítica INTRODUCCIÓ Els vectors s utilitzen en diverses branques de la física que fan servir magnituds vectorials, per això és important que els alumnes en coneguin els elements i les operacions.

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ GEOMETRIA POLÍGONOS

INSTITUTO RAÚL SCALABRINI ORTIZ GEOMETRIA POLÍGONOS GEOMETRIA POLÍGONOS (1) Si un polígono tiene un ángulo central de 45º Cuántos lados tiene? (2) Inscribir en distintas circunferencias los siguientes polígonos: a) Triángulo equilátero b) Pentágono regular

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

SÈRIE 4 PAU. Curs DIBUIX TÈCNIC

SÈRIE 4 PAU. Curs DIBUIX TÈCNIC SÈRIE 4 PAU. Curs 2004-2005 DIBUIX TÈCNIC L examen consta de la realització de tres dibuixos: el dibuix 1, una de les dues opcions del dibuix 2 i una de les dues opcions del dibuix 3. Escolliu entre l

Más detalles

Dibuix tècnic Sèrie 1

Dibuix tècnic Sèrie 1 Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Dibuix tècnic Sèrie 1 Dades de la persona aspirant Qualificació

Más detalles

Áreas de figuras planas

Áreas de figuras planas Áreas de figuras planas ÁREA DEL TRIÁNGULO El área del triángulo es igual al semiproducto de la base por su altura. b A = b x Ejemplo: 4 cm 15 cm A = 15 x 4 = 30 cm 1 Calcula el área de los siguientes

Más detalles

1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución:

1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución: 1.- Resuelve las siguientes ecuaciones: 2.-Resuelve las siguientes ecuaciones: 3.- En el último examen de Matemáticas mi amigo Juan sacó tres puntos menos que yo, y la nota de mi amiga Sara fue el doble

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC DIBUIX TÈCNIC I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES 1. Dist. d un punt a una recta - Abatiment del pla format per la recta i el punt 2. Dist. d un punt a un pla - Canvi de pla posant el pla de perfil

Más detalles

Semblança. Teorema de Pitàgores.

Semblança. Teorema de Pitàgores. 7 Semblança. Teorema de Pitàgores. Objectius En aquesta quinzena aprendràs a: Aplicar correctament el Teorema de Tales. Reconèixer y dibuixar figures semblants. Aplicar els criteris de semblança de triangles

Más detalles

FÓRMULAS - FIGURAS PLANAS

FÓRMULAS - FIGURAS PLANAS SUPERFICIES (Círculo F. circulares) 1 FÓRMULAS - FIGURAS PLANAS L. circunferencia = 2 r = d 2 r x n o L. del arco = 360 o r d n o distancia = L x n o vueltas r = L : 2 d = L : n o vueltas = distancia :

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas.

Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Identifica las clasificacione s de los polígonos regulares Power Point: clasificación y elementos de los

Más detalles

competència matemàtica

competència matemàtica avaluació educació secundària obligatòria 4t d ESO curs 203-204 ENGANXEU L ETIQUETA IDENTIFICATIVA EN AQUEST ESPAI competència matemàtica versió amb respostes INSTRUCCIONS Per fer la prova, utilitza un

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos POLÍGONO La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos Un polígono es una porción del plano limitada por una línea poligonal cerrada. Los segmentos

Más detalles

CAMPS DE FORÇA CONSERVATIUS

CAMPS DE FORÇA CONSERVATIUS El treball fet per les forces del camp per a traslladar una partícula entre dos punts, no depèn del camí seguit, només depèn de la posició inicial i final. PROPIETATS: 1. El treball fet pel camp quan la

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C. 1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la

Más detalles

10 Calcula la distancia que separa entre dos puntos inaccesibles A y B.

10 Calcula la distancia que separa entre dos puntos inaccesibles A y B. 1 De un triángulo sabemos que: a = 6 m, B = 45 y C = 105. Calcula los restantes elementos. 2 De un triángulo sabemos que: a = 10 m, b = 7 m y C = 30. Calcula los restantes elementos. 3 Resuelve el triángulo

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

Alumna(o): Grupo: N.L

Alumna(o): Grupo: N.L MISCELANEA DE MATEMATICAS FEBRERO CICLO ESCOLAR 2012-2013 Alumna(o): Grupo: N.L Resuelve los siguientes problemas 1.-Mide las dimensiones del siguiente rectángulo. Cuál es el área de la siguiente figura?

Más detalles

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos

Más detalles

f(x) = sen x f(x) = cos x

f(x) = sen x f(x) = cos x www.matemáticagauss.com Trigonometría f(x) = sen x f(x) = cos x Función tangente f(x) = tan x Dominio: Ámbito: Periodo: Siempre crece 1 Prof. Orlando Bucknor Masís tel.: 9 9990 1) Un intervalo en el que

Más detalles

LLOCS GEOMÈTRICS. CÒNIQUES

LLOCS GEOMÈTRICS. CÒNIQUES LLOCS GEOMÈTRICS. CÒNIQUES Pàgina REFLEXIONA I RESOL Còniques obertes: paràboles i hipèrboles Completa la taula següent, en què a és l angle que formen les generatrius amb l eix, e, de la cònica i b l

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

República Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación. Unidad Educativa Colegio Roraima. Cátedra Matemática

República Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación. Unidad Educativa Colegio Roraima. Cátedra Matemática República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 1er año Guía 2 1. Escribir los siguientes

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

Geometría Básica 43 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL

Geometría Básica 43 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL Geometría Básica 43 POLIGONOS UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL SEGMENTOS CONCATENADOS Y CONSECUTIVOS Consideremos los segmentos ab y bc, donde

Más detalles

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació.

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

Volum dels cossos geomètrics.

Volum dels cossos geomètrics. 10 Volum dels cossos geomètrics. Objectius En esta quinzena aprendràs a: Comprendre el concepte de mesura de volum i utilitzar les unitats de mesura del sistema mètric decimal. Obtenir i aplicar expressions

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

13 LONGITUDES Y ÁREAS

13 LONGITUDES Y ÁREAS 1 LONGITUDES Y ÁREAS EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras. a),5 cm b) cm cm cm cm a) p,5 8 5 1 cm b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de

Más detalles

Carrera: Diseño Industrial

Carrera: Diseño Industrial POLÍGONOS 1) Dados los siguientes polígonos se pide determinar cuales de ellos son cóncavos y cuales convexos. Justifique sus respuestas. a) b) c) 2) En los polígonos graficados a continuación indique

Más detalles

MEDIDAS DE LONGITUDES Y SUPERFICIES_ADAPT (6ºEP)

MEDIDAS DE LONGITUDES Y SUPERFICIES_ADAPT (6ºEP) Adaptación Unidad 11 _La longitud y la superficie. Página 1 LA LONGITUD. Copia en tu cuaderno y aprende. Adaptación Unidad 11 _La longitud y la superficie. Página 2 1. Copia y completa: metros (m) centímetros

Más detalles

1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro.

1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA: *Centro: Punto central.

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

EDUCACIÓN SECUNDARIA 1 MATEMÁTICAS UNIDAD 6. GEOMETRIA EN EL PLANO. FUNCIONES y GRÁFICAS. POLÍGONOS Y CIRCUMFERENCIAS. PERÍMETROS Y ÁREAS.

EDUCACIÓN SECUNDARIA 1 MATEMÁTICAS UNIDAD 6. GEOMETRIA EN EL PLANO. FUNCIONES y GRÁFICAS. POLÍGONOS Y CIRCUMFERENCIAS. PERÍMETROS Y ÁREAS. EDUCACIÓN SECUNDARIA 1 MATEMÁTICAS UNIDAD 6 GEOMETRIA EN EL PLANO. FUNCIONES y GRÁFICAS. POLÍGONOS Y CIRCUMFERENCIAS. PERÍMETROS Y ÁREAS. a) Presentación b) Evaluación Inicial c) Contenidos d) Actividades

Más detalles

Programa Grumet Èxit Fitxes complementàries

Programa Grumet Èxit Fitxes complementàries MESURA DE DENSITATS DE SÒLIDS I LÍQUIDS Activitat 1. a) Digueu el volum aproximat dels següents recipients: telèfon mòbil, un cotxe i una iogurt. Teniu en compte que un brik de llet té un volum de 1000cm3.

Más detalles

Tema 15. Perímetros y áreas

Tema 15. Perímetros y áreas Matemáticas Ejercicios 1º ESO BLOQUE V: GEOMETRÍA Tema 15. Perímetros y áreas 1. Expresa en metros: a) 2000 mm b) 2 hm c) 1 dm e) 0,1 km c) 50 dam 2 d) 0,02 km 2 2. Transforma las siguientes unidades:

Más detalles

Polígono. Superficie plana limitada por una línea poligonal cerrada.

Polígono. Superficie plana limitada por una línea poligonal cerrada. POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la

Más detalles

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo.

PRISMAS Y PIRÁMIDES. Qué es un poliedro? Un poliedro es un cuerpo geométrico que tiene alto, ancho y largo. PRISMAS Y PIRÁMIDES. 06 1 Comprende la relación que existe entre el volumen de un prisma con respecto al volumen de una pirámide que tienen la misma base y altura. En Presentación de Contenidos para explicar

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo MODULO III - GEOMETRIA ENCUENTRO NÚMERO CINCO La circunferencia y el círculo 24 DEAGOSTO DE 2014 MANAGUA FINANCIADO POR: FUNDACIÓN UNO 1 Circunferencia: Una circunferencia es una línea curva cerrada cuyos

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE

EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:

Más detalles

TEORIA I QÜESTIONARIS

TEORIA I QÜESTIONARIS ENGRANATGES Introducció Funcionament Velocitat TEORIA I QÜESTIONARIS Júlia Ahmad Tarrés 4t d ESO Tecnologia Professor Miquel Estruch Curs 2012-13 3r Trimestre 13 de maig de 2013 Escola Paidos 1. INTRODUCCIÓ

Más detalles

Dossier d estiu de Matemàtiques. 5è d Educació Primària.

Dossier d estiu de Matemàtiques. 5è d Educació Primària. MATEMÀTIQUES 5è 1. Encercla el nombre que s indica: a) quaranta mil vuit: 48.000 40.080 40.008 408.000 b) un milió dotze mil: 1.000.012 1.120.000 1.012.000 1.000.120 c) tres milions tres-cents mil 300.300

Más detalles

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD PROVES D ACCÉS A LA UNIVERSITAT PRUEBAS DE ACCESO A LA UNIVERSIDAD CONVOCATÒRIA: SETEMBRE

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

4.7. Lleis de Newton (relacionen la força i el moviment)

4.7. Lleis de Newton (relacionen la força i el moviment) D21 4.7. Lleis de ewton (relacionen la força i el moviment) - Primera Llei de ewton o Llei d inèrcia QUÈ ÉS LA IÈRCIA? La inèrcia és la tendència que tenen el cossos a mantenirse en repòs o en MRU. Dit

Más detalles