Energía. Tiene distintas formas:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Energía. Tiene distintas formas:"

Transcripción

1 Trabajo y energia

2 Contenido Energía: definición, unidades Trabajo: Potencia Teorema del trabajo y la energía cinética Tipos de energía: cinética y potencial Formas de energía: térmica, nuclear, magnética, química, etc. Fuerzas conservativas y no conservativas Ley de conservación de la energía

3 Energía Definición. Energía (del griego en, dentro y ergon, trabajo): es la capacidad de efectuar un trabajo. Es una propiedad de la materia asociada a un cambio en un sistema. La energía es una magnitud escalar. La energía no es una entidad en y por sí misma, no existe tal cosa como energía pura (Hecht, p.75 y ss)

4 Energía Tiene distintas formas: Eléctrica, potencial gravitatoria, nuclear, química, térmica, La energía se transfiere de una forma a otra forma, de un sistema a otro sistema Se mide el cambio de energía de un sistema La energía es una variable de proceso: se determina entre dos puntos del sistema.

5 Trabajo Definición. Es el cambio en la energía de un sistema que resulta de la aplicación de una fuerza que actúa a lo largo de un desplazamiento Sean F una fuerza que actúa sobre un objeto y forma un ángulo θ con la Horizontal en la dirección del movimiento, y se desplaza una distancia d El trabajo realizado se define por: F F θ θ Δr W F rcos

6 Trabajo por una fuerza constante Trabajo fuerza desplazamiento En la ecuación: W F rcos La componente de la fuerza en la dirección del movimiento es la única componente que efectúa trabajo F cos

7 Recuerde Cos 0º = Cos 90º =0 Si la fuerza aplicada está en la misma dirección y sentido que el desplazamiento el trabajo es máximo. Si la fuerza aplicada es perpendicular al desplazamiento el trabajo es nulo.

8 Trabajo por una fuerza variable En un gráfico Fuerza = f(desplazamiento) el trabajo es el área debajo de la curva Fuerza desplazamiento

9 El trabajo se mide en Joules Otras unidades y conversión: Caloría kcal = 4.86 J Ergio Kilowatthora kilowatthora = MJ BTU (unidad térmica británica) BTU = 055 J J= pie libra Electronvolt (ev) ev=.60x0-9 J en el SI Unidad de medida del trabajo en SI: Joule (J) = Newton x metro J= Nm

10 Ángulo ϴ Cos ϴ Trabajo Conclusión Entre 0 y 90 Mayor que 0 Positivo La fuerza tiene una componente en la dirección del desplazamiento Entre 90 y 80 Menor que 0 Negativo La fuerza tiene una componente opuesta al desplazamiento 90 0 Nulo La fuerza tiene una componente perpendicular al desplazamiento En el movimiento circular, el trabajo realizado por la fuerza centrípeta es cero, por qué?

11 Se realiza trabajo al levantar la caja ( por qué?) No se realiza trabajo en la para moverla horizontalmente ( por qué?)

12 Trabajo negativo y trabajo total Trabajo total (o neto) realizado por varias fuerzas: a. Método. El trabajo total realizado por las fuerzas sobre el cuerpo es la suma algebraica de los trabajos realizados por las fuerzas individuales: Wtotal Wi W W W3 b. Método. Buscar la fuerza neta y aplicar la definición W F s W ( F cos ) s

13 Trabajo neto y movimientos Movimiento rectilineo uniforme: trabajo neto es cero, ya que no hay aceleración y la fuerza neta es cero. Movimiento rectilíneo uniformemente variado: la aceleración es constante, la fuerza neta es constante, el trabajo neto es no nulo. Movimiento circular uniforme: la fuerza neta es perpendicular al desplazamiento lineal, entonces, cos90º=0 y el trabajo neto es nulo.

14 v Teorema trabajo-energía cinética Consideremos una fuerza constante F: F f W ma v i sustituyendo Fx max v m f ax v i Llamemos K W Ec Ec f Ec ad mv Ec f i v mv f v mv i i Δx d El trabajo realizado sobre un objeto de masa m es igual a la variación de la energía cinética (Nota: sólo se aplica a cuerpos rígidos), podemos escribir la ec.anterior como F F

15 Energía cinética La energía cinética siempre es no negativa. La energía cinética es una magnitud escalar. En el SI, se mide en Joule. La energía cinética es directamente proporcional al cuadrado de la magnitud de la velocidad. Si la velocidad de duplica, la energía cinética se cuadruplica. Ec = mv Ejercicio: exprese la energía cinética en términos de la cantidad de movimiento lineal

16 Energía potencial Ep Definición: es la energía que se almacena en un sistema de objetos que interactúan, debido a la configuración o posición en relación con una fuerza. Ejemplo: Fuerza Energía potencial Nota: El nivel cero de referencia es arbitrario para la energía potencial Gravitatoria Elástica en un resorte Electromagnética (enlaces químicos) Ep gravitatoria Ep elástica Ep química

17 Energía potencial De manera análoga, el cambio en la energía potencial de un cuerpo debido al movimiento de un punto a otro es igual al trabajo efectuado para contrarrestar la interacción que almacena la energía

18 Energía potencial gravitacional Para elevar un objeto (por ejemplo, un ladrillo) de masa m, desde una posición y a posición y se aplica una fuerza externa ascendente F ext que se opone a la fuerza gravitatoria F g. El trabajo realizado por la fuerza externa es: W ext = F ext Δycos θ = mgh = mg y y El trabajo realizado por la fuerza Nivel de referencia gravitaría es: W g = F g Δy cos θ = mgh cos80º = mgh = mg y y Elevar el objeto a una altura y del nivel de referencia (como el suelo): Ep grav = mgy

19 Energía potencial gravitacional A mayor altura mayor energía potencial El nivel de referencia es arbitrario, respecto al cual se mide la altura. Lo que interesa es el cambio en la energía potencial. El cambio de energía potencial se puede expresar por: En términos de la fuerza externa: W ext = mg y y = Ep Ep = ΔEp En términos de la fuerza gravitacional: W g = mg y y = Ep Ep = ΔEp El trabajo realizado por la gravedad conforme al objeto de masa m se mueve desde el punto al punto es igual al negativo de la diferencia en la energía potencial entre las posiciones y.

20 Energía potencial La energía potencial pertenece a un sistema (objeto más la Tierra) y no a un solo objeto en particular La energía potencial está asociada a una fuerza (conservativa). Una fuerza sobre un objeto siempre la ejerce algún otro objeto

21 Energía potencial elástica Energía potencial elástica Para un resorte lineal, se cumple la Ley de Hooke: F kx K es constante elástica, x deformación Ep área debajo de la curva Ep e Ep Ep Ep e e ( kx elas elas ( F k( x Ep elas kx F kx )( x )( x x ) Ep x elas ) x ) k( x x )( x F x ) x x x

22 Energía potencial elástica F Ep elas x x Parábola

23 Fuerzas conservativas El trabajo es independiente de la trayectoria. El trabajo en una trayectoria cerrada se nulo El trabajo sólo depende del punto inicial y punto final Siempre que hay una fuerza conservativa existe una energía potencial asociada Ejemplos: fuerza gravitatoria, fuerza elástica W= Ep Ep W= ΔEp a b W a = W b = Wc c

24 Fuerza no conservativa Fuerza no conservativa o fuerza disipativa: Es aquella que realizan un trabajo que depende de la trayectoria recorrida por la partícula. Ejemplo: fuerza de fricción, resistencia del aire, tensión sobre una cuerda. a b W a W b Wc c

25 Energía mecánica y su conservación La energía mecánica de un sistema es la suma de la energía cinética y la suma de la energía potencial gravitacional. Em=Ec+Ep En todo momento del movimiento, la energía mecánica total es constante (se conserva), si sólo actúan fuerzas conservativas. E m = E m = constante

26 Trabajo realizado por fuerzas no conservativas El trabajo total (neto) es la suma de los trabajos realizados por las fuerzas conservativas (C) y por las fuerzas no conservativas (NC). W neto = W C + W NC Por el principio trabajo-energía: W neto = ΔEc Por tanto, W NC = ΔEc W C Como el trabajo realizado por una fuerza conservativa se puede expresar en términos de la energía potencial, W C = ΔEp Resulta: W NC = ΔEc + ΔEp

27 Ley de conservación de la energía La energía total de cualquier sistema aislado del resto del Universo permanece constante, aunque la energía puede ser transformada de una forma a otra dentro del sistema. ΔEc + ΔEp = W C

28 Potencia Definición. La potencia, P, es la rapidez con la que se efectúa un trabajo. rapidez, ritmo o tasa a la cual se está realizando un trabajo o se está transfiriendo energía. Potencia W P media [ potencia media] t W P [ potencia media] t Fr P Fv cos t P Fv cos P Fv trabajo efectuado intervalo de tiempo [si el ángulo es igual a cero]

29 Unidades de potencia La unidad SI de potencia es el watt (W). Joule Watt segundo Otras unidades de potencia: hp = 746 W Unidad de energía expresada en unidades de potencia: kwh 3.6MJ El kwh= kilowatt-hora, es una unidad de energia

Física para Ciencias: Trabajo y Energía

Física para Ciencias: Trabajo y Energía Física para Ciencias: Trabajo y Energía Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Trabajo (W) En la Física la palabra trabajo se le da un significado muy específico: El trabajo (W) efectuado

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Conceptos de Energía, Trabajo, Potencia

Conceptos de Energía, Trabajo, Potencia APUNTES Materia: Tema: Curso: Física y Química Trabajo y Energía 4º ESO Conceptos de Energía, Trabajo, Potencia La energía es uno de los conceptos más importantes en todas las áreas de la física y en otras

Más detalles

Energía: Planificación de la unidad Física de PSI

Energía: Planificación de la unidad Física de PSI Energía: Planificación de la unidad Física de PSI Objetivos El trabajo y el teorema del trabajo- 1) Los estudiantes deberían comprender la definición de trabajo, incluyendo cuando el trabajo es positivo,

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

PRE-INFORME L6. Daniela Andrea Duarte Mejía May 13, 2016

PRE-INFORME L6. Daniela Andrea Duarte Mejía May 13, 2016 PRE-INFORME L6 Daniela Andrea Duarte Mejía May 13, 2016 1 Introducción Se llama energía mecánica o energía mecánica total, la energía del movimiento mecánico y de la interacción. La energía mecánica W

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA Fuerzas conservativas El trabajo realizado por las fuerzas conservativas solo depende de la posición inicial y final del cuerpo

Más detalles

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así: Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t.

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t. El trabajo mecánico realizado por una fuerza constante, F, que actúa sobre un cuerpo que realiza un desplazamiento r es igual al producto escalar de la fuerza por el desplazamiento. Es decir: W = F r=

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

FÍSICA 10 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA.

FÍSICA 10 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA. FÍSICA 0 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA. Se puede definir informalmente la energía que posee un cuerpo como una medida de su capacidad para realizar trabajo Julio (J): es la unidad de energía

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento

Más detalles

(producto escalar, considerando una sola dirección)

(producto escalar, considerando una sola dirección) Definimos trabajo de una fuerza al desplazar un cuerpo, al producto escalar de la fuerza por el desplazamiento realizado: W = F. Δx (producto escalar, considerando una sola dirección) W = F Δx cosθ Calculando

Más detalles

Síntesis Examen Final

Síntesis Examen Final Síntesis Examen Final Presentación El siguiente material permitirá repasar los contenidos que se evaluarán en el Examen Final de la Asignatura que estudiamos durante el primer semestre y/o revisamos en

Más detalles

PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA

PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA Unidades Programáticas 1. Magnitudes Físicas 2. Vectores 3. Cinemática Escalar 4. Dinámica 5. Mecánica de Fluidos 6. Termometría y Calorimetría. Desarrollo

Más detalles

F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos

F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos Preguntas y problemas propuestos de aplicación de las leyes de Newton 2015-II 1 Leyes de Newton, impulso, la fuerza de gravedad (peso), fuerza elástica, fuerzas disipativas. Leyes de newton o principios

Más detalles

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración.

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración. Las magnitudes físicas Las magnitudes fundamentales Magnitudes Derivadas son: longitud, la masa y el tiempo, velocidad, área, volumen, temperatura, etc. son aquellas que para anunciarse no dependen de

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

LA ENERGÍA. Transferencia de energía: calor y trabajo

LA ENERGÍA. Transferencia de energía: calor y trabajo LA ENERGÍA Transferencia de energía: calor y trabajo La energía es una propiedad de un sistema por la cual éste puede modificar su situación o estado, así como actuar sobre otro sistema, transformándolo

Más detalles

FS-11 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía III

FS-11 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía III FS-11 Ciencias Plan Común Física 2009 Trabajo y energía III Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.

Más detalles

RIZO EN EL PLANO VERTICAL

RIZO EN EL PLANO VERTICAL IZO EN EL PLANO VETICAL Una pequeña masa está colgada de un hilo fino de longitud L. Apartamos dicha masa 90º de su posición de equilibrio de manera que el hilo queda tenso y horizontal, y la soltamos.

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 g y realiza un trabajo equivalente a 6.00 J, Cuál es la profundidad del pozo?

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012

TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012 TERCERA EVALUACIÓN DE Física del Nivel Cero A Abril 20 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 25 preguntas de opción múltiple

Más detalles

Leyes del movimiento de Newton

Leyes del movimiento de Newton Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos

Más detalles

Guía Del estudiante Modalidad a distancia

Guía Del estudiante Modalidad a distancia Guía Del estudiante Modalidad a distancia Modulo FÍSICA 1 PARA INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67 E-mail

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta

Más detalles

Trabajo de una fuerza.

Trabajo de una fuerza. 4 Trabajo de una fuerza. Una manera de entender qué es una fuerza es pensar en una cañita voladora. Lo que quiero decir es: La mejor manera de entender este dibujo...... es pensarlo así. O sea, como si

Más detalles

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Desplazamiento, rapidez, velocidad y aceleración Pero un movimiento (un cambio

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO

ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO 1ª) Qué es el movimiento? Es el cambio de posición que experimenta un cuerpo, al transcurrir el tiempo, respecto de un sistema de referencia que consideramos

Más detalles

Relación de energía cinética y potencial con el trabajo

Relación de energía cinética y potencial con el trabajo Relación de energía cinética y potencial con el trabajo La energía se encuentra presente en toda la materia, en seres vivos y objetos inertes. Se puede afirmar el viento, la electricidad, el agua de un

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

MANUAL DE PROCESOS MISIONALES CODIGO GESTIÓN ACADÉMICA GUIAS DE PRÁCTICAS ACADEMICAS DE LABORATORIO

MANUAL DE PROCESOS MISIONALES CODIGO GESTIÓN ACADÉMICA GUIAS DE PRÁCTICAS ACADEMICAS DE LABORATORIO PRÁCTICA 10 TRANSFORMACION Y CONSERVACION DE LA ENERGIA Nombre de la asignatura: Código de la asignatura: FISICA 1. NORMAS DE SEGURIDAD El encargado de laboratorio y el docente de la asignatura antes de

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar

Más detalles

4 Dinámica: fuerzas F = 0. v P. v B F = 0. v A. 4.1 Fuerza y leyes de Newton. 4.2 Primera ley de Newton

4 Dinámica: fuerzas F = 0. v P. v B F = 0. v A. 4.1 Fuerza y leyes de Newton. 4.2 Primera ley de Newton 4 Dinámica: fuerzas 4.1 Fuerza y leyes de Newton Hasta el momento, hemos hecho únicamente una descripción del movimiento, sin considerar sus causas. En mecánica clásica, para describir las interacciones

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Sistemas de Partículas:Leyes de Conservación

Sistemas de Partículas:Leyes de Conservación Sistemas de Partículas:Leyes de Conservación Conservación de momentum Consideremos N partículas con posiciones xr velocidades vri y masas m i, i=1...,n El momentum lineal de la partícula i es:pr i = m

Más detalles

TEMA 5 TRABAJO Y ENERÍA MECÁNICA W > 0 CUERPO CON ENERGÍA

TEMA 5 TRABAJO Y ENERÍA MECÁNICA W > 0 CUERPO CON ENERGÍA TEMA 5 TRABAJO Y ENERÍA MECÁNICA Actividades 1/105 Explica qué ocurre con la energía de un cuerpo si: a) No realiza trabajo; b) realiza trabajo; c) sobre él se realiza trabajo. Partiendo de la hipótesis

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

ADAPTACIÓN CURRICULAR TEMA 10 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 10 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 10 CIENCIAS NATURALES 2º E.S.O La energía y sus formas 1ª) Qué es la energía? Es la capacidad que tiene un sistema material para producir cambios en otro sistema material o sobre

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO

SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO 1º. Un cuerpo de 3 kg se desliza por un plano inclinado 45º con respecto a la horizontal desde una altura de 5m. El coeficiente de rozamiento entre el cuerpo

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

CURSO CERO DE FÍSICA TRABAJO Y ENERGÍA

CURSO CERO DE FÍSICA TRABAJO Y ENERGÍA CURSO CERO DE FÍSICA Departamento de Física CONTENIDO Concepto de trabajo Teorema trabajo-energía cinética Fuerzas conservativas Energía potencial Conservación de la energía mecánica Ejemplo CONCEPTO DE

Más detalles

DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico).

DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico). DINÁMICA La Dinámica es la parte de la Física que estudia las fuerzas. 1. FUERZAS Qué son? Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile.

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. 1. De acuerdo con la leyenda, un caballo aprendió las leyes de Newton. Cuando se le pidió

Más detalles

FUNDACIÓN UNIVERSITARIA TECNOLÓGICO COMFENALCO

FUNDACIÓN UNIVERSITARIA TECNOLÓGICO COMFENALCO RELEVANCIA DEL CONCEPTO DE POTENCIA Y ENERGIA Los tres descubrimientos más importantes de la ciencia son: la materia es atómica, todos los sistemas (físicos, químicos y biológicos) son productos de procesos

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-100 (II 2014)

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-100 (II 2014) Universidad Nacion Autónoma de Honduras Facultad de Ciencias Escuela de Física Planificación FS-100 (II 2014) Hoja de información, Física Gener I (FS-100) 1. Nombre Coordinador: Carlos Eduardo Gabarrete

Más detalles

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs 1) EL PÉNDULO BALÍSTICO Se muestra un péndulo balístico,

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

TEMARIO DEL EXAMEN DE EVALUACIÓN INTEGRAL PARA EL PROCESO DE ADMISIÓN Para facultades de Ingeniería y Arquitectura

TEMARIO DEL EXAMEN DE EVALUACIÓN INTEGRAL PARA EL PROCESO DE ADMISIÓN Para facultades de Ingeniería y Arquitectura TEMARIO DEL EXAMEN DE EVALUACIÓN INTEGRAL PARA EL PROCESO DE ADMISIÓN 2017-01 Para facultades de Ingeniería y Arquitectura MATEMÁTICA Aptitudes Número y operaciones Conversión de unidades, razones y proporciones,

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

Unidad. Formas en que se presenta la energía. Física y Química 4. ESO. La energía. Energía interna. Energía mecánica. Energía electromagnética

Unidad. Formas en que se presenta la energía. Física y Química 4. ESO. La energía. Energía interna. Energía mecánica. Energía electromagnética La energía Puede ser de tres tipos mecánica interna electromagnética Se presenta como Se presenta como Se presenta como química térmica nuclear cinética potencial elástica luminosa o radiante potencial

Más detalles

XII. LAS LEYES DE LA DINÁMICA

XII. LAS LEYES DE LA DINÁMICA Índice 1. La masa y el momento lineal. 2. Las leyes de Newton 3. Conservación de momento lineal 4. Impulso y cantidad de movimiento 5. Relatividad y tercera ley 2 1 La masa y el momento lineal Es lo mismo

Más detalles

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero.

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero. 1. Sean los vectores que se encuentran en el paralelepípedo tal como se muestran en la figura, escoja la alternativa correcta: a) b) c) d) e) 2. Sean tres vectores A, B y C diferentes del vector nulo,

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 01 Problemas (Dos puntos por problema) Problem (Primer parcial): Un pescador desea cruzar un río de 1 km de ancho el cual tiene una corriente

Más detalles

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio:

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio: GUIA DE FÍSICA LEY DE OHM Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor Corriente eléctrica Una corriente eléctrica es un movimiento ordenado de cargas eléctricas (electrones libres) en un conductor.

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

W = Fx. Trabajo Mecánico y Energía

W = Fx. Trabajo Mecánico y Energía El Trabajo W inver4do sobre un sistema por un agente que ejerce una fuerza constante sobre el sistema es el producto de la magnitud F de la fuerza, la magnitud X del desplazamiento del punto de aplicación

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Fuerzas no conservativas y balance energético

Fuerzas no conservativas y balance energético Fuerzas no conservativas y balance energético Módulo 2 Física Mecánica I-2016 Antonella Cid M. Departamento de Física Universidad del Bío-Bío Conservación de la energía mecánica La energía mecánica se

Más detalles

Ministerio de Educación de la Provincia de San Luis Programa de Educación Superior Instituto de Formación Docente Continua - Villa Mercedes

Ministerio de Educación de la Provincia de San Luis Programa de Educación Superior Instituto de Formación Docente Continua - Villa Mercedes OFERTA ACADÉMICA MATERIA CARRERA AÑO PERÍODO Tecnicatura Superior en Tecnologías FÍSICA Industriales Profesorado en Educación Tecnológica 2012 1º Cuatrimestre DOCENTE DOCENTE FUNCIÓN DEDICACIÓN Ing. Miguel

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-105 (II 2014)

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-105 (II 2014) Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Planificación FS-105 (II 2014) Hoja de información, Física General para Arquitectura (FS-105) 1. Nombre Coordinador: Carlos

Más detalles

EJERCICIOS A DESARROLLAR

EJERCICIOS A DESARROLLAR EJERCICIOS A DESARROLLAR 1. Obtenga la resultante de los siguientes vectores: a) b) A B A B c) A B d) Utilice los vectores del ítem "a": Coloque al vector A sobre el ejc de las abscisas con punto de aplicación

Más detalles