CÁLCULO CON wxmaxima

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO CON wxmaxima"

Transcripción

1 CÁLCULO CON wxmaxima AUTORÍA JUAN JOSÉ MUÑOZ LEÓN TEMÁTICA MATEMÁTICAS, NUEVAS TECNOLOGÍAS ETAPA ESO Resumen En este artículo, se proporciona una herramienta de trabajo para los alumnos del primer ciclo de la ESO que cursan la materia de Matemáticas. Haciendo uso de wxmaxima, un programa de cálculo simbólico, se les facilita una herramienta de cálculo para trabajar el bloque de Números. Palabras clave Matemáticas, números, cálculo, software libre, wxmaxima, ESO. 1. INTRODUCCIÓN wxmaxima es una potente herramienta de cálculo simbólico. Mediante el uso de las distintas funciones que nos proporciona el programa y otras que se definirán expresamente, se van a tratar los distintos contenidos que aparecen en el currículum de matemáticas, en el primer ciclo de la ESO relacionados con el bloque de Números. 2. WXMAXIMA Maxima es un programa de cálculo de código abierto, se distribuye bajo licencia GNU GPL. Es un lenguaje y un entorno de programación. wxmaxima en un entorno de trabajo sobre Maxima que presenta innumerables ventajas. Destacamos la interface de usuario que implementa su propio motor de visualización de matemáticas para los resultados de Maxima, y la mayoría de los comandos están disponibles a través de los menús. Este programa está instalado en los ordenadores de los centros TIC que usan Guadalinex. Las versiones para otros sistemas operativos se pueden descargar gratuitamente desde 3. OPERACIONES ELEMENTALES CON WXMAXIMA Para realizar las operaciones elementales tenemos que utilizar los siguientes operadores: Operación Operador Suma + Diferencia - Producto * C/ Recogidas Nº 45-6ºA Granada 1

2 Cociente / Potencia 1 ^ Raíz cuadrada sqrt() wxmaxima utiliza la prioridad en las operaciones habitual. Si queremos realizar una suma o diferencia antes que un producto o un cociente utilizaremos paréntesis. La Ilustración 1 muestra una captura de pantalla a modo de ejemplo del uso de las operaciones elementales y de las operaciones combinadas con wxmaxima. Ilustración 1 1 Para hacer uso del acento circunflejo en wxmaxima con el sistema operativo Guadalinex, una vez tecleado pulsamos la tecla espacio. C/ Recogidas Nº 45-6ºA Granada 2

3 4. NÚMEROS NATURALES 4.1. Paridad A la hora de trabajar con números podemos determinar si estos son pares o impares mediante las funciones evenp() o oddp(). evenp(n) nos devolverá como mensaje de salida True o False dependiendo si el número n es par o no. La función oddp() evaluada en n, oddp(n), nos devolverá como mensaje de salida True o False dependiendo si el número n es impar o no Números primos Para determinar si un número es primo utilizaremos la función primep(), esta devolverá True o False dependiendo si el número n es primo o no Descomposición factorial Para realizar la descomposición factorial de un número utilizaremos la función factor(). La función evaluada en un número, factor (n), nos devuelve su descomposición en factores primos. La Ilustración 2 muestra como trabajar con números naturales en wxmaxima. Ilustración 2 C/ Recogidas Nº 45-6ºA Granada 3

4 4.4. Máximo común divisor y mínimo común múltiplo La función gcd() devuelve el máximo común divisor de dos números. Como argumento de la función, se introducen los dos números separados con una coma, gcd(n1,n2). Para el cálculo del mínimo común múltiplo utilizaremos la función lcm(). Antes de utilizar esta función por primera vez, tenemos que cargar el paquete de funciones, para ello teclearemos en la línea de comando load(functs). Para calcular el máximo común divisor de varios números vamos a definir la siguiente función: minimocomunmultiplo([x]):=(load(functs),l:x*makelist(1,k,1,length(x)),while length(l)>1 do (m:lcm(first(l),second(l)),l:rest(l),l:rest(l),l:cons(m,l)),first(l))$ La función maximocomundivisor() evaluada para varios números naturales, maximocomundivisor(n1,n2,n3, ), nos devuelve el máximo común divisor de todos ellos. De forma análoga para el cálculo del mínimo común múltiplo de varios números, vamos a definir la función: minimocomunmultiplo([x]):=(load(functs),l:x*makelist(1,k,1,length(x)),while length(l)>1 do (m:lcm(first(l),second(l)),l:rest(l),l:rest(l),l:cons(m,l)),first(l))$ La función minimocomunmultiplo(), funciona de igual forma que maximocomundivisor(). La forma más efectiva de trabajar con este tipo de funciones es una vez que se han tecleado en la línea de comandos dichas funciones, se guarda como Maxima batch file(*.mac) y las tendremos disponibles en próximas sesiones sin tener que volver a teclearlas, cargando el archivo como paquete (Ctrl + L) División wxmaxima nos ofrece una serie de funciones para trabajar con la división. Si queremos saber el cociente y el resto de una división utilizaremos en la función divide(). Como argumento introduciremos el dividendo y el divisor separados por una coma y en este mismo orden: divide(dividendo, divisor). La función nos devuelve una lista con dos números siendo el primero el cociente y el segundo el resto. Si sólo queremos conocer el cociente de una división utilizaremos la función quotient(). Como argumento introduciremos el dividendo y el divisor separados por una coma y en este mismo orden: quotient(dividendo, divisor). Esta función devuelve como resultado un único número, que es el cociente entero de la división. La función remainder() es parecida a la anterior y en lugar de devolver el cociente nos devuelve el resto de la división. Si queremos obtener una lista con todos los divisores de un número utilizaremos la función divisors(). Para determinar el número de divisores, vamos a definir una función. Si en la línea de comandos introducimos numero_divisores(x):=length(divisors(x)), hemos definido una función de nombre numero_divisores(). Cuando evaluemos esa función para un determinado número natural, nos devolverá el número de divisores que tiene dicho natural. La Ilustración 3 muestra como se define esta función y su utilización. C/ Recogidas Nº 45-6ºA Granada 4

5 Ilustración 3 5. NÚMEROS ENTEROS Para trabajar con números enteros disponemos, entre otras, de la función signum(), que nos devuelve - 1 o 1 según el entero sea negativo o positivo y de la función abs(), que nos devuelve el valor absoluto del entero. Ilustración 4 6. FRACCIONES 6.1. Fracciones equivalentes Para determinar si dos fracciones son equivalentes podemos hacer uso del comando is(). Si tecleamos en la línea de comando la función is(20/4=10/2) nos devolverá como salida True indicando que ambas fracciones son equivalentes. Igualmente podremos comprobar si la primera fracción es mayor o menor que la segunda utilizando > o < en vez del signo igual Fracciones irreducibles Para obtener fracción irreducible a una dada, basta con teclear en la línea de comando la fracción que queremos reducir y pulsar enter. El programa ofrece como salida la fracción simplificada Expresión decimal Para tener el valor numérico de una fracción vamos a definir una nueva función que nos devolverá la expresión decimal del número racional. La función llamada valornumérico() se define de la siguiente forma: valornumerico(x):=float(x)$. C/ Recogidas Nº 45-6ºA Granada 5

6 Ilustración 5 7. NÚMEROS DECIMALES Si queremos determinar la parte entera de un número decimal tenemos que utilizar la función entier(). Para que el programa reconozca un número decimal tenemos que utilizar como separador un punto entre la parte entera y la parte decimal. A continuación, vamos a pasar a definir una función que nos devuelva la fracción generatriz de un número decimal: fracciongeneratriz(x):=(ratprint:false,rat(x,ratepsilon:10^-50))$. En la Ilustración 6 aparecen ejemplos de cómo realizar operaciones elementales con números decimales, como definir la función fraccióngeneratriz() y como evaluarla con números decimales exactos, números decimales periódicos puros y números decimales periódicos mixtos. Para que no se produzcan errores en la salida de la función es aconsejable exagerar el grupo periódico. C/ Recogidas Nº 45-6ºA Granada 6

7 Ilustración 6 8. RAÍCES CUADRADAS En primer lugar, vamos a definir una función para que genere los n primeros cuadrados perfectos. La función la llamaremos cuadradosperfectos(). Su argumento será siempre un número natural que se corresponderá con el número de cuadrados perfectos que queremos obtener. cuadradosperfectos(x):=makelist(k^2,k,1,x) La función cuadradosperfectos(5) produce como salida una lista de cinco números que se corresponden con los cinco primeros cuadrados perfectos: [1,4,9,16,25]. Para calcular la raíz cuadrada de un número utilizamos la función sqrt(). Su argumento será siempre un número racional positivo. Para calcular la raíz entera de un número vamos a definir una función que llamaremos raizentera(). Esta nueva función nos devolverá una lista compuesta por dos números, el primero de ellos será la raíz entera y el segundo el resto. La función raizentera() la definiremos introduciendo en la línea de comando el siguiente código: raizentera(x):=(e:entier(sqrt(x)),r:x-e^2,[e,r])$ C/ Recogidas Nº 45-6ºA Granada 7

8 En la Ilustración 7 podemos ver cómo hemos definido las anteriores funciones, como las evaluamos y cuáles son los resultados que obtenemos. Ilustración 7 9. METODOLOGÍA Para trabajar de forma eficaz con el programa wxmaxima con los alumnos del primer ciclo de la ESO podríamos preparar un cuadro en el cual se resumieran todas las funciones con las que se van a trabajar. Todas las nuevas funciones definidas por el usuario se pueden cargar en el programa, a través de un archivo de procesamiento por lotes que previamente se ha generado y se ha guardado. De esta forma el alumnado únicamente se tiene que preocupar de teclear en la línea de comando la función. wxmaxima se puede utilizar como herramienta de cálculo para obtener resultados de ejercicios o para resolver problemas contextualizados. En ningún caso se pretende que el alumno conozca todas las funciones y mucho menos que entiendan la programación. Utilizaremos el programa como una herramienta auxiliar en el proceso de aprendizaje. Sería interesante hacer hincapié en el hecho de que se está utilizando software libre y que a través de Internet se pueden descargar el programa de forma legal y sin coste alguno. 10. BIBLIOGRAFÍA Arsuaga Franco M y Ramos Palanco R. Introducción a Maxima. Tutorial. Extraído el 5 de marzo de 2010 desde Arántegui J. Introducción a Maxima. Videos. Extraído el 2 de marzo de 2010 desde Rodríguez Galván J.R. Maxima con wxmaxima: software libre en el aula de matemáticas. Tutorial. Extraído el 2 de marzo de 2010 desde y desde C/ Recogidas Nº 45-6ºA Granada 8

9 Rodríguez Riotorto M. Primeros pasos en Maxima. Tutorial. Extraído el 2 de marzo de 2010 desde Autoría Nombre y Apellidos: Juan José Muñoz León Centro, localidad, provincia: I.E.S. Ingeniero Juan de la Cierva, Puente Genil, Córdoba C/ Recogidas Nº 45-6ºA Granada 9

De aquí sale el proyecto MACsyma (MAC s SYmbolic MAnipulator)

De aquí sale el proyecto MACsyma (MAC s SYmbolic MAnipulator) El proyecto Matemáticas y Computación (MAC) se inicia en la década de los años 60 en el MIT (con el apoyo financiero de los Departamentos de Defensa y Energía de los EE.UU.) para atender sus necesidades

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS UNIDAD 1 Números racionales e irracionales 2º ESO Contenidos, objetivos y criterios de evaluación ÍNDICE DE LA UNIDAD 1. El conjunto de los números racionales. 1.1. Operaciones con fracciones. 1.1.1 Suma

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

Teoría Tema 1 Inecuaciones

Teoría Tema 1 Inecuaciones página 1/7 Teoría Tema 1 Inecuaciones Índice de contenido Qué es una inecuación?...2 Inecuaciones de primer grado...3 Sistemas de inecuaciones con una incógnita...4 Inecuaciones de segundo grado...5 Inecuaciones

Más detalles

Raíces cuadradas y radicales

Raíces cuadradas y radicales Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Título: Manual Básico de Calc. Parte I: Introducción a Calc de OpenOffice.org

Título: Manual Básico de Calc. Parte I: Introducción a Calc de OpenOffice.org Título: Manual Básico de Calc. Parte I: Introducción a Calc de OpenOffice.org Autora: Mª del Pilar Pavón Rosano DNI: 52.923.715-W INTRODUCCIÓN Este manual está dirigido a los alumnos y alumnas del módulo

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015)

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. En negrita se indican

Más detalles

INTRODUCCIÓN DÓNDE ENCONTRAR LA CALCULADORA WIRIS

INTRODUCCIÓN DÓNDE ENCONTRAR LA CALCULADORA WIRIS INTRODUCCIÓN La calculadora WIRIS es una plataforma de cálculo matemático online, cuyo acceso es libre. Su manejo es muy sencillo y permite hacer cálculos elementales (mínimo común múltiplo, factorización

Más detalles

Álgebra y Matemática Discreta Sesión de Prácticas 1

Álgebra y Matemática Discreta Sesión de Prácticas 1 Álgebra y Matemática Discreta Sesión de Prácticas 1 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 16 Sep 2013-22 Sep 2013 Estructuras Algebraicas La Estructura como Variable Tenemos una gran

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN Ejercicio 1. Diseñar una planilla EXCEL que tome como dato de entrada un número entero y devuelva la representación en base 2. Testearla con los números 23, 245, 673,

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

2 Potencias y radicales

2 Potencias y radicales 89 _ 09-008.qxd //08 09: Página Potencias y radicales INTRODUCCIÓN Los alumnos ya han trabajado con potencias de exponente positivo y han efectuado multiplicaciones y divisiones de potencias y potencias

Más detalles

Multiplicar con rectas

Multiplicar con rectas Multiplicar con rectas Resumen AUTORIA INMACULADA GIL LEÓN Y JUAN PORTERO BELLIDO TEMÁTICA MATEMÁTICAS ETAPA ESO Multiplicar con rectas consiste en una novedosa e intuitiva técnica, que animamos a los

Más detalles

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control 1er curso de Ingeniería Industrial: Ingeniería de Control Práctica 1ª: Introducción a Matlab Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 28 MARZO DE 2010

ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 28 MARZO DE 2010 COMO INSERTAR IMAGENES, SONIDOS Y PELICULAS EN LA HERRAMIENTA POWER POINT AUTORÍA CLEMENCIA Mª RODRIGUEZ GARCÍA TEMÁTICA ACCIÓN TUTORIAL ETAPA ESO, BACHILLERATO, CICLOS FORMATIVOS. Resumen La herramienta

Más detalles

NÚMEROS RACIONALES Y DECIMALES

NÚMEROS RACIONALES Y DECIMALES NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.

Más detalles

La Notación científica Abel MARTÍN. Profesor de Matemáticas del IES Valliniello (Asturias).

La Notación científica Abel MARTÍN. Profesor de Matemáticas del IES Valliniello (Asturias). Página nº 26 La Notación científica Abel MARTÍN. Profesor de Matemáticas del IES Valliniello (Asturias). El presente artículo forma parte del libro Iniciación al uso didáctico de la calculadora en el aula

Más detalles

Introducción a Matlab.

Introducción a Matlab. Introducción a Matlab. Ejercicios básicos de manipulación de imágenes. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Iniciación

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Programación: QBASIC

Programación: QBASIC 1. QBASIC Programación: QBASIC Guía del alumno Qbasic es una versión moderna del lenguaje BASIC. Se trata de un lenguaje de alto nivel. En un lenguaje de alto nivel las instrucciones tienen un formato

Más detalles

Instalación del programa PSPP y obtención de una distribución de frecuencias.

Instalación del programa PSPP y obtención de una distribución de frecuencias. Práctica 2. Instalación del programa PSPP y obtención de una distribución de frecuencias. Con esta práctica instalaremos el programa PSPP. El programa es un software específico para el análisis estadístico

Más detalles

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2010 INDICE: 01. DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS. 02. VALOR

Más detalles

CONFIGURACIÓN TERMINAL SERVER EN WINDOWS 2003

CONFIGURACIÓN TERMINAL SERVER EN WINDOWS 2003 CONFIGURACIÓN TERMINAL SERVER EN WINDOWS 2003 AUTORÍA ÁNGEL LUIS COBO YERA TEMÁTICA SERVICIOS DE INTERNET ETAPA BACHILLERATO, CICLOS FORMATIVOS. Resumen En este artículo, se detalla paso a paso como instalar

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

CLASE 12.-INSERTAR COLUMNAS

CLASE 12.-INSERTAR COLUMNAS CLASE 10.-DIBUJAR TABLA Para Dibujar una Tabla primero llenamos los datos que queremos seleccionamos los datos que queremos dibujar la tabla. Luego nos vamos a la barra de herramientas en fuente y realizamos

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

Instalación del programa PSPP y obtención de una distribución de frecuencias.

Instalación del programa PSPP y obtención de una distribución de frecuencias. Práctica 2. Instalación del programa PSPP y obtención de una distribución de frecuencias. Con esta práctica instalaremos el programa PSPP. El programa es un software específico para el análisis estadístico

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola

Más detalles

Calcular con fracciones para todos

Calcular con fracciones para todos Calcular con fracciones para todos 1 Calcular con fracciones para todos M. Riat riat@pobox.com Versión 1.0 Burriana, 2014 Calcular con fracciones para todos 2 ÍNDICE DE CAPÍTULOS Índice de capítulos...

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

Unidad 1 números enteros 2º ESO

Unidad 1 números enteros 2º ESO Unidad 1 números enteros 2º ESO 1 2 Conceptos 1. Concepto de número entero: diferenciación entre número entero, natural y fraccionario. 2. Representación gráfica y ordenación. 3. Valor absoluto de un número

Más detalles

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales Definición(1) Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

Pasamos ahora a definir brevemente cual es el método de conexión más habitual usando un entorno gráfico.

Pasamos ahora a definir brevemente cual es el método de conexión más habitual usando un entorno gráfico. Clientes de FTP en modo gráfico Introducción Ya vimos en la primera parte de nuestro curso de FTP, que la conexión a servidores inicialmente se realizaba (y aún se sigue haciendo) en modo texto. Aunque

Más detalles

Fórmulas y funciones

Fórmulas y funciones 05... Fórmulas y funciones En este tema vamos a profundizar en el manejo de funciones ya definidas por Excel, con el objetivo de agilizar la creación de hojas de cálculo, estudiando la sintaxis de éstas

Más detalles

COMO TRABAJAR EN EL AULA CON EL QCAD

COMO TRABAJAR EN EL AULA CON EL QCAD COMO TRABAJAR EN EL AULA CON EL QCAD AUTORÍA MIGUEL ANGEL CABA ARCO TEMÁTICA TECNOLOGIA ETAPA ESO Resumen Este articulo trata sobre como trabajar en el aula el diseño grafico por ordenador mediante el

Más detalles

Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA. Operaciones elementales con números binarios

Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA. Operaciones elementales con números binarios 1 de 10 27/09/11 09:57 Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA Operaciones elementales con números binarios Suma de números binarios Resta de números binarios Complemento

Más detalles

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde

Más detalles

FORMATO BINARIO DE NÚMEROS NEGATIVOS

FORMATO BINARIO DE NÚMEROS NEGATIVOS FORMATO BINARIO DE NÚMEROS NEGATIVOS Introducción: Como sabemos, con un número n determinado de bits se pueden manejar 2 n números binarios distintos. Hasta ahora hemos trabajado con números binarios puros,

Más detalles

Comenzando con MATLAB

Comenzando con MATLAB ÁLGEBRA LINEAL INGENIERÍA INFORMÁTICA Curso 08/09 PRÁCTICA 1 Comenzando con MATLAB 1 Funcionamiento de Matlab MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería.

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical

Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical Enunciado Si la unidad la dividimos en varias partes iguales, podemos tomar como nueva unidad de medida una de estas partes más pequeñas. Las unidades fraccionarias son necesarias cuando lo que queremos

Más detalles

Polinomios. Antes de empezar

Polinomios. Antes de empezar Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

-3 es un número entero y racional porque se puede poner en forma de fracción así: es un número racional porque ya está expresado en forma de

-3 es un número entero y racional porque se puede poner en forma de fracción así: es un número racional porque ya está expresado en forma de Definición Número racional es todo valor que puede ser expresado mediante una fracción. Todas las fracciones equivalentes entre sí expresan el mismo número racional. Es decir, todo número que se pueda

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

Profr. Efraín Soto Apolinar. Números reales

Profr. Efraín Soto Apolinar. Números reales úmeros reales En esta sección vamos a estudiar primero los distintos conjuntos de números que se definen en matemáticas. Después, al conocerlos mejor, podremos resolver distintos problemas aritméticos.

Más detalles

Función exponencial y Logaritmos

Función exponencial y Logaritmos Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes

Más detalles

Práctica 0. Introducción al Mathematica

Práctica 0. Introducción al Mathematica Práctica 0. Introducción al Mathematica El programa Mathematica constituye una herramienta muy potente para la realización de todo tipo de cálculos matemáticos: operaciones aritméticas, cálculo simbólico,

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

Índice Introducción Estructuras Algebraicas Listas Los Números Enteros Polinomios. Álgebra y Matemática Discreta - 2012 Sesión de Prácticas 1

Índice Introducción Estructuras Algebraicas Listas Los Números Enteros Polinomios. Álgebra y Matemática Discreta - 2012 Sesión de Prácticas 1 Álgebra y Matemática Discreta - 2012 Sesión de Prácticas 1 Leandro Marín Dpto. de Matemática Aplicada Facultad de Informática 2012 1 Estructuras Algebraicas 2 Listas 3 Los Números Enteros 4 Polinomios

Más detalles

DIAGRAMAS DE FLUJO: DFD

DIAGRAMAS DE FLUJO: DFD DIAGRAMAS DE FLUJO: DFD DFD es un programa de libre disposición para ayuda al diseño e implementación de algoritmos expresados en diagramas de flujo (DF). Además incorpora opciones para el depurado de

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011

Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011 Módulo 2. Fundamentos de Programación Informática y Programación Escuela de Ingenierías Industriales y Civiles Curso 2010/2011 1 CONTENIDO Tema 1. Conceptos generales de algorítmica Tema 2. Sentencias

Más detalles

SERVICIOS PARA EL DISEÑO E IMPLEMENTACIÓN DEL PROGRAMA INTEGRAL DE TRANSFORMACIÓN DIGITAL DE LA PROVINCIA DE LUGO: TRANSFORM@TIC

SERVICIOS PARA EL DISEÑO E IMPLEMENTACIÓN DEL PROGRAMA INTEGRAL DE TRANSFORMACIÓN DIGITAL DE LA PROVINCIA DE LUGO: TRANSFORM@TIC Diputación de Lugo SERVICIOS PARA EL DISEÑO E IMPLEMENTACIÓN DEL PROGRAMA INTEGRAL DE TRANSFORMACIÓN DIGITAL DE LA PROVINCIA DE LUGO: TRANSFORM@TIC Manual usuario CRM Agroalimentario Marzo 2015 ÍNDICE

Más detalles

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes 4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El

Más detalles

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

Conferencia con MSN Messenger

Conferencia con MSN Messenger Conferencia con MSN Messenger La utilización de herramientas telemáticas que permitan la comunicación en directo, a diferencia de las usadas habitualmente en la tutoría Mentor, puede resultar un complemento

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico. 1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla

Más detalles

BROWSERSQL VERSIÓN 3.1 TUTORIAL

BROWSERSQL VERSIÓN 3.1 TUTORIAL TUTORIAL LAURA NOUSSAN LETTRY (MENDOZA, ARGENTINA 2011) ÍNDICE CONTENIDOS PÁGINA Introducción 2 Características Funcionales 2 Área de Conexión 3 Área de Ejecución de Sentencias 4 En qué se basa su funcionamiento

Más detalles

Capítulo 1. MANUAL DE USUARIO

Capítulo 1. MANUAL DE USUARIO Capítulo 1. MANUAL DE USUARIO 1.1 SUCESIONES GRÁFICAS Lo primero que se hará es mostrar la pantalla que se encontrará el usuario cuando ejecute la aplicación, indicando las zonas en las que se divide esta:

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Múltiplos y divisores

Múltiplos y divisores 2 Múltiplos y divisores Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números

Más detalles

Tema 4: Empezando a trabajar con ficheros.m

Tema 4: Empezando a trabajar con ficheros.m Tema 4: Empezando a trabajar con ficheros.m 1. Introducción Como ya se comentó en el punto 3 del tema1, en Matlab tienen especial importancia los ficheros M de extensión.m. Contienen conjuntos de comandos

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

QUIERES COMPROBAR CÓMO LAS REDES DETECTAN Y CORRIGEN ERRORES?

QUIERES COMPROBAR CÓMO LAS REDES DETECTAN Y CORRIGEN ERRORES? QUIERES COMPROBAR CÓMO LAS REDES DETECTAN Y CORRIGEN ERRORES? AUTORÍA MARÍA CATALÁ CARBONERO TEMÁTICA DETECCIÓN Y CORRECCIÓN DE ERRORES ETAPA CICLO MEDIO Y SUPERIOR DE INFORMÁTICA Resumen Hoy en día las

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Generador de hojas de cálculo de matemáticas

Generador de hojas de cálculo de matemáticas Generador de hojas de cálculo de matemáticas Generador de hoja de cálculo de matemática de Microsoft permite crear hojas de trabajo con problemas prácticos de matemática para los estudiantes. Crea múltiples

Más detalles

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 - SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: ingreso@frro.utn.edu.ar

Más detalles

OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B)

OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B) APRENDERAPROGRAMAR.COM OPERADORES LÓGICOS Y DE COMPARACIÓN EN PHP. PRIORIDADES. EJEMPLOS. EJERCICIOS RESUELTOS. (CU00818B) Sección: Cursos Categoría: Tutorial básico del programador web: PHP desde cero

Más detalles

Datalogging bajo Robolab.

Datalogging bajo Robolab. Datalogging bajo Robolab. Aún estamos aprendiendo mucho con los robots NXT de LEGO. Hace poco me introduje en el alucinante mundo del Datalogging, que consiste, básicamente, en la captura de datos a través

Más detalles

RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS

RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS AUTORÍA SERGIO BALLESTER SAMPEDRO TEMÁTICA MATEMÁTICAS ETAPA ESO, BACHILLERATO Resumen En este artículo comienzo definiendo proposición y los distintos

Más detalles

Las Matemáticas en Secundaria con Software Libre. GeoGebra - Primeros Pasos

Las Matemáticas en Secundaria con Software Libre. GeoGebra - Primeros Pasos Las Matemáticas en Secundaria con Software Libre Daniel López Avellaneda dani@lubrin.org GeoGebra - Primeros Pasos Manual para el curso organizado por: CEP Cuevas-Olula +CEP El Ejido +CEP Almería Marzo-Mayo

Más detalles

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria Oliverio J. Santana Jaria 3. Aritmética tica binaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Para Los La en conocer muchos aritmética comprender otros binaria tipos

Más detalles

Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 01/01/2010 . INDICE: 01. APARICIÓN DE LAS FRACCIONES. 02. CONCEPTO DE FRACCIÓN. 03.

Más detalles

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de

Más detalles

Temporalización: Esta unidad presenta dos sesiones.

Temporalización: Esta unidad presenta dos sesiones. Bloque II. Aplicaciones de Windows. Unidad Didáctica 3. La calculadora. Temporalización: Esta unidad presenta dos sesiones. Metodología: La metodología de esta unidad comprende explicaciones teóricas del

Más detalles

LA IMPORTANCIA DE LAS ESTRATEGIAS DE CÁLCULO MENTAL EN LAS OPERACIONES MATEMÁTICAS BÁSICAS

LA IMPORTANCIA DE LAS ESTRATEGIAS DE CÁLCULO MENTAL EN LAS OPERACIONES MATEMÁTICAS BÁSICAS LA IMPORTANCIA DE LAS ESTRATEGIAS DE CÁLCULO MENTAL EN LAS OPERACIONES MATEMÁTICAS BÁSICAS AUTORÍA FRANCISCO JAVIER GUERRERO JOSÉ TEMÁTICA ESTRATEGIAS DE CÁLCULO MENTAL ETAPA EDUCACIÓN PRIMARIA Resumen

Más detalles