Módulo IV POLARIZACIÓN DE LA LUZ Y POLARIMETRÍA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Módulo IV POLARIZACIÓN DE LA LUZ Y POLARIMETRÍA"

Transcripción

1 Módulo IV POLARIZACIÓN DE LA LUZ Y POLARIMETRÍA

2 Recordando el modelo electromagnético de la luz, veamos las siguientes formas de representarlo: El campo eléctrico y el magnético vibran en fase. Son perpendiculares entre sí y con la dirección de propagación.

3 Por ser las direcciones de las perturbaciones eléctrica y magnética perpendiculares a la dirección de propagación, la radiación electromagnética es una onda transversal.

4 Y ahora en movimiento.. Si se fija la atención en el punto amarillo dibujado en la trayectoria de la radiación, se puede apreciar que las perturbaciones eléctrica y magnética vibran de una manera armónica simple.

5 Los dipolos oscilantes son fuentes de radiación electromagnética. En estos esquemas ya no se representó a la perturbación magnética. La perturbación eléctrica vibra en el plano que contiene al dibujo y en todos los planos que contienen al dipolo oscilante.

6 En todos los esquemas anteriores el vector campo eléctrico vibraba en un único plano, en tales situaciones la radiación electromagnética es descripta como LINEALMENTE POLARIZADA. Un haz de rayos de luz cuyas radiaciones electromagnéticas vibren en planos paralelos entre sí constituirá un haz de luz LINEALMENTE POLARIZADA..

7 En general, la luz que nos ilumina no es linealmente polarizada en un plano preferencial sino que puede considerarse como un sinnúmero de luces linealmente polarizadas, con planos de vibración orientados en todas las direcciones posibles. La llamamos LUZ NATURAL. Ey Ex Y para describir muchos fenómenos resulta conveniente descomponer cada una de las luces polarizadas en sus componentes (x ;y) para representar entonces a la luz natural como dos perturbaciones eléctricas perpendiculares entre sí pero vibrando sin relación de fase alguna.

8 Obtención de luz linealmente polarizada A partir de luz natural Pulsar éste botón de acción para saltear métodos de obtención Por Por Por Por reflexión birrefringencia dicroísmo dispersión Pulsar los botones de acción para acceder a cada tema

9 Cuando un haz de luz natural incide sobre una superficie lisa de un material dieléctrico (no conductor), las componentes vibracionales paralelas y perpendiculares al plano de incidencia se reflejan en distinta proporción. Vemos que el reflejo en el agua de la luz solar que llega a los ojos del bañista se encuentra enriquecido el las componentes que vibran en una dirección perpendicular al plano de incidencia. Existirá una situación en donde la luz reflejada sea en un 100 % luz linealmente polarizada? Sí!

10 Ley de Brewster Dado un dioptro entre dos medios transparentes no conductores de la electricidad, al ángulo de incidencia para el cual los rayos reflejado y refractado forman entre si un ángulo recto, se lo denomina ángulo de polarización, ya que en ese caso en particular la luz del rayo reflejado está en un 100 % linealmente polarizada, vibrando en un plano perpendicular al plano de incidencia. La intensidad luminosa del rayo reflejado es sólo una pequeña proporción de la intensidad del rayo de luz natural incidente.

11 He aquí algunos esquemas para echar luz sobre la polarización por reflexión.

12 Un par de diagramas más... Ya hace tiempo que no se emplea el método de múltiples reflexiones para obtener haces de luz linealmente polarizada de adecuada intensidad luminosa. Pulsar el botón para acceder a otros métodos de obtención de luz polarizada

13 Por qué al observar a través de estos cristales se ven imágenes dobles? Los esquemas siguientes describirán al fenómeno

14 Birrefringencia En estos medios anisótropos el índice de refracción varía según la dirección que consideremos dentro del material. Estas sustancias presentan direcciones o planos de distinta rigidez o elasticidad para interactuar con el campo eléctrico de la luz que los atraviesa. Cómo se origina entonces esta doble refracción? Para cada rayo formado dentro del material, se define: un índice de refracción diferente, una velocidad de propagación diferente, una longitud de onda diferente, un ángulo de refracción diferente y un plano de vibración diferente. CADA RAYO ES LUZ LINEALMENTE POLARIZADA!

15 Los dos rayos formados por la birrefringencia son llamados ordinario y extraordinario, y están polarizados en planos perpendiculares entre sí. Separar uno de ellos servirá para obtener luz linealmente polarizada. Distintos prismas como los esquematizados permiten lograrlo. En los materiales birrefringentes, se puede definir una dirección particular llamada eje óptico, y en dicha dirección el medio se comporta como isótropo. Pulsar el botón para acceder a otros métodos de obtención de luz polarizada

16 Dicroísmo Un rejilla de alambres conductores de dimensiones adecuadas puede producir radiación electromagnética linealmente polarizada a partir de radiación electromagnética natural. Las componentes de campo eléctrico que vibren paralelas a los alambres serán absorbidas. Las componentes de campo eléctrico perpendiculares a los alambres se transmiten sin gran absorción. Existen materiales naturales y artificiales en donde estos fenómenos se llevan a cabo en el rango de frecuencias de a luz visible, y reciben el nombre de filtros polarizadores ó Polaroids.

17 Eje de transmisión Las sustancias dicroicas son en principio birrefringentes y además presentan una absorción diferente para los planos de vibración de los rayos ordinario y extraordinario. ATENCIÓN: No confundir eje óptico con eje de transmisión Pulsar el botón para acceder a otros métodos de obtención de luz polarizada Aquí tenemos una representación de cómo un sistema dicroico produce luz linealmente polarizada a partir de luz natural. Las componentes horizontales (perpendiculares al eje de transmisión ) son gradual y totalmente extinguidas si el espesor del material es adecuado. Las componentes verticales (paralelas al eje de transmisión ) apenas son absorbidas y emergen en la forma de luz linealmente polarizada.

18 Polarización por dispersión La dispersión o esparcimiento de la luz puede generar luz linealmente polarizada. Si bien este fenómeno no se emplea para la obtención de luz linealmente polarizada, resulta importante su tratamiento porque es aprovechado en metodologías de análisis.

19 Notar que los dipolos no radian en la dirección de su eje. El esquema nos permite analizar que el grado o proporción de polarización lineal que nos llegue dependerá de la posición desde la cual veamos el dipolo que nos ilumina con la luz que dispersó. Pulsar el botón para acceder a otros métodos de obtención de luz polarizada

20 Polarizando y analizando Si los ejes de transmisión del polarizador y el analizador forman entre sí un ángulo recto, no se transmitirá luz a través del analizador. Analizador Polarizador Pero esta situación no es la única posible...

21 De la luz que llega a los analizadores, sólo las componentes paralelas a su eje de transmisión son transmitidas. En los casos esquematizados la cantidad de luz transmitida es puede calcularse a partir de la LEY DE MALUS

22 I t = I 0 Cos 2 θ LEY DE MALUS I t = I 0 Cos 2 θ En donde: I t es la intensidad de luz transmitida por el analizador. I 0 es la intensidad de luz que emerge del polarizador. θ es el ángulo que subtienden entre sí los ejes de transmisión del polarizador y del analizador.

23 Contando ya con polarizadores y analizadores, podemos presentar a los POLARÍMETROS con los cuales se estudiará a las sustancias que posean ACTIVIDAD ÓPTICA Pero para una mejor comprensión de los fenómenos involucrados, deberemos abordar los tópicos que se presentan a continuación:

24 LÁMINAS RETARDADORAS Una lámina retardadora puede ser representada como un bloque de material birrefringente, tallado de modo tal de dos de sus caras son paralelas a la dirección del eje óptico del material. Si sobre una de dichas caras se incide perpendicularmente con luz monocromática linealmente polarizada, dentro del cristal birrefringente se formarán los rayos ordinario y extraordinario, estando formado cada uno de ellos por las componentes de la luz incidente que vibren en los planos paralelo y perpendicular respecto del eje óptico En estos dispositivos, los rayos ordinario y extraordinario, vibrando en planos perpendiculares entre sí, atraviesan al material con distinta velocidad (con distintas λ fruto de los distintos índices de refracción), y por lo tanto llegan a la otra cara a distintos tiempos. (se dice que están desfasados entre sí o retrasado uno respecto del otro)

25 Retraso de media longitud de onda Iluminando distintas láminas retardadoras con luz monocromática linealmente polarizada, podremos alterar o lograr otros tipos de polarización de la luz. El caso representado corresponde a un retraso de media longitud de onda. Qué modificación de la luz incidente se produjo? Qué ángulo forma el plano de polarización de la luz incidente respecto de la dirección del eje óptico? Esto se emplea en el polarímetro!

26 A ver si esta animación aclara las cosas

27 Retraso de un cuarto de longitud de onda Les presentamos a la luz circularmente polarizada, que puede ser: dextrógira (diestra) o levógira (siniestra) - no confundir con la luz mala -

28 Otra animación, para presentar a las luces circularmente polarizadas

29 ΔN = d / λ ( η e η o ) La expresión permite calcular el retraso que una lámina retardadora será capaz de efectuar. ΔN es el desfasaje o retraso expresado en número de longitudes de onda. d es el espesor de la lámina retardadora. ( ηe ηo ) es la diferencia de índices de refracción que el material presenta para los rayos ordinario y extraordinario. Partiendo de luz linealmente polarizada, cualquier retraso distinto de ½ ó ¼ ó 1 λ dará origen a luz elípticamente polarizada.

30 ACTIVIDAD ÓPTICA Decimos que una sustancia es ópticamente activa cuando puede rotar el plano de vibración de la luz linealmente polarizada que la atraviesa La rotación se va incrementando conforme se va atravesando el material, y dicha rotación puede ser dextrógira ó levógira. Pero Qué modelo puede emplearse para describir por qué una sustancia presenta actividad óptica? Veamos

31 La luz linealmente polarizada con que atravesamos la muestra puede considerarse compuesta por dos luces circularmente polarizadas, de igual módulo, una dextrógira y otra levógira, que giran o avanzan a igual velocidad en los medios ópticamente inactivos Las sustancias ópticamente activas presentan birrefringencia circular y retrasan una de las luces circularmente polarizadas que componen a la luz linealmente polarizada, respecto de la otra (las desfasan ) y la luz linealmente polarizada que recompondrán vibrará en un plano distinto al plano de la luz linealmente polarizada incidente

32 Atravesando un material ópticamente activo levógiro. Luz incidente Luz emergente

33 Y ahora veamos qué es el dispositivo de penumbra que tienen los polarímetros de visión directa como los que emplearemos en el T.P. La ventaja de incorporar la media lámina retardadora de ½ λ reside en que nos permite encontrar con nuestra vista las posiciones de lectura de los ángulos por comparación de brillo entre dos semicampos en vez de tener que precisarlas buscando máximos o mínimos de iluminación. mal bien La posición de lectura se alcanza logrando que los dos semicampos se encuentren igualmente iluminados y lo más oscuro posible

34 LEYES DE BIOT α = [α ] l α = [α ] l δ α = [α ] l c Estas relaciones se cumplen en un rango de valores y es necesario precisar tanto la temperatura de trabajo como la longitud de onda de la luz empleada. α total = αi α se mide en grados sexagesimales. l mide en milímetros para sólidos o en decímetros para líquidos. δ se expresa en gramos por mililitro. C se expresa en gramos por mililitro o en concentración molar.

35 ALGUNAS APLICACIONES DE LA LUZ POLARIZADA Monitores LCD MODERNOS POLARÍMETROS EL CINE 3 D

36 Monitores TFT Grabación y lectura de CD y DVD

37 Fin (por ahora) Aquí les damos parte de la bibliografía que pueden consultar on-line para contar con excelentes animaciones y explicaciones Propagación de una onda 1 a 1 b onda que cruza dos medios 2 a 2 b refracción deluz monocromática 3 a refracción de luz blanca 3 b Polarización lineal 4 a 4 b Filtros polarizadores 5 a Polarización por reflexión 6 Anteojos antirreflex 7 Birrefringencia 8 a 8 b 8 c Doble refracción en espato de islandia (calcita) 8 d Prisma de Nicol 8 e

Luz polarizada y el microscopio de polarización. Prof. Martin Reich

Luz polarizada y el microscopio de polarización. Prof. Martin Reich Luz polarizada y el microscopio de polarización Prof. Martin Reich Componentes de la radiación electromagnética Ondas transversales direcciones de vibración Vector de Poynting (flujo de energía) Longitudes

Más detalles

Docente: Carla De Angelis Curso: T.I.A. 5º

Docente: Carla De Angelis Curso: T.I.A. 5º POLARIMETRIA La polarimetría es una técnica que se basa en la medición de la rotación óptica producida sobre un haz de luz linealmente polarizada al pasar por una sustancia ópticamente activa. La actividad

Más detalles

FUNDAMENTOS. POLARIMETRÍA/ Versión 4.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/

FUNDAMENTOS. POLARIMETRÍA/ Versión 4.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ FUNDAMENTOS. POLARIMETRÍA/ Versión 4.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ POLARIMETRIA Los contenidos teóricos necesarios para abordar los Fundamentos de Polarimetría se discutirán en el Teórico

Más detalles

ANÁLISIS DEL ESTADO DE POLARIACIÓN

ANÁLISIS DEL ESTADO DE POLARIACIÓN SESIÓN 5: ANÁLISIS DEL ESTADO DE POLARIACIÓN TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Luz natural Luz con el vector eléctrico vibrando en todas las direcciones del plano perpendicular a la dirección de propagación.

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA I TERMINO ACADEMICO 2013-2014 PRIMERA EVALUACIÓN DE FISICA D 01 DE JULIO DEL 2013 COMPROMISO

Más detalles

Laboratorio 4: Polarización

Laboratorio 4: Polarización Laboratorio 4: Polarización Este laboratorio tiene por finalidad que los estudiantes logren visualizar, y caracterizar la luz polarizada, además de conocer algunas propiedades de éstas. NOTA: Antes de

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

CAPITULO I: La Luz CAPITULO I: LA LUZ 1

CAPITULO I: La Luz CAPITULO I: LA LUZ 1 CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción

Más detalles

La luz. Según los datos del problema se puede esbozar el siguiente dibujo:

La luz. Según los datos del problema se puede esbozar el siguiente dibujo: La luz 1. Se hace incidir sobre un prisma de 60º e índice de refracció un rayo luminoso que forma un ángulo de 45º con la normal. Determinar: a) El ángulo de refracción en el interior del prisma. b) El

Más detalles

SESIÓN Nº 12: ANALIZADOR DE PENUMBRA.

SESIÓN Nº 12: ANALIZADOR DE PENUMBRA. Sesión nº 12: Analizador de penumbra. SESIÓN Nº 12: ANALIZADOR DE PENUMBRA. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales Luz natural: vector eléctrico vibrando en

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

Problemas de Ondas Electromagnéticas

Problemas de Ondas Electromagnéticas Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios

Más detalles

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión Comprobación experimental de la Ley de la Reflexión de la luz en espejos planos y cilíndricos Objetivos Estudiar las leyes de la óptica

Más detalles

Ondas - Las ondas sonoras - El eco

Ondas - Las ondas sonoras - El eco Ciencias de la Naturaleza 2.º ESO Unidad 11 Ficha 1 Ondas - Las ondas sonoras - El eco La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas

Más detalles

En qué consisten los fenómenos ondulatorios de :

En qué consisten los fenómenos ondulatorios de : Cuáles son las características de una onda? Cuáles son los tipos de ondas que existen? Cuáles son las diferencias más importantes entre las ondas mecánicas y las electromagnéticas? En qué consisten los

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MÉTODOS OPTICOS EN ELASTICIDAD

UNIVERSIDAD CARLOS III DE MADRID MÉTODOS OPTICOS EN ELASTICIDAD UNIVERSIDAD CARLOS III DE MADRID MÉTODOS OPTICOS EN ELASTICIDAD Carlos Navarro Departamento de Mecánica de Medios Continuos y Teoría de Estructuras ONDAS ELECTROMAGNÉTICAS E r Dirección de propagación

Más detalles

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura. VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la

Más detalles

Índice. 1. Qué es la luz? Pág.2

Índice. 1. Qué es la luz? Pág.2 Página1 TP1 Teoría de la luz Desarrollar una investigación teniendo como base el origen de la luz como fenómeno físico y su comportamiento. Dicho trabajo práctico requiere rigor en los datos técnicos recabados

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

POLARIMETRO. Esquema de un polarímetro

POLARIMETRO. Esquema de un polarímetro XI POLARIMETRO XI.1 Esquema de un polarímetro Un prisma de Nicol, al cual se hace incidir un haz de luz natural (no polarizada) produce un haz polarizado linealmente en un plano, o sea actuará como prisma

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor

DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor CONSIGNAS TP1 Teoría de la luz Desarrollar una investigación teniendo como base el origen de la luz como fenómeno físico y su comportamiento. Dicho trabajo práctico requiere rigor en los datos técnicos

Más detalles

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda.

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda. La luz es una forma de energía la cual llega a nuestros ojos y nos permite ver, es un pequeño conjunto de radiaciones electromagnéticas de longitudes de onda comprendidas entre los 380 nm y los 770 nm.(nm

Más detalles

Enlace: onda transversal. Enlace: onda longitudinal

Enlace: onda transversal. Enlace: onda longitudinal La luz Qué es la luz? La luz es fuente de vida en la Tierra: posibilita la fotosíntesis de las plantas verdes; permite que podamos recibir y transmitir información de los objetos que nos rodean. Pero la

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

CRISTALOFÍSICA TEMA 14 PROPIEDADES ÓPTICAS. Interacción de las ondas electromagnéticas con los cristales

CRISTALOFÍSICA TEMA 14 PROPIEDADES ÓPTICAS. Interacción de las ondas electromagnéticas con los cristales CRISTALOFÍSICA TEMA 14 PROPIEDADES ÓPTICAS Interacción de las ondas electromagnéticas con los cristales ÍNDICE 14.1 Introducción: Ondas electromagnéticas: Propagación, velocidad e índice de refracción

Más detalles

LA LUZ. 1.- Qué es la luz?

LA LUZ. 1.- Qué es la luz? 1.- Qué es la luz? LA LUZ La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.

Más detalles

TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra?

TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra? Cómo puede un buceador estimar la profundidad a la que se encuentra? http://www.buceando.es/ Física A qué distancia podemos distinguir los ojos de un gato montés? Soy daltónico? La luz: naturaleza dual

Más detalles

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO EXAMEN COMPLEO El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco Cuestiones propuestas. No deben resolverse problemas

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos OPTICA REFLEXIÓN DE LA LUZ

Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos OPTICA REFLEXIÓN DE LA LUZ Área/Asignatura: Física Grado: 11 Docente: Luis Alfredo Pulido Morales Fecha: Eje Temático: óptica Periodo: 01 02 03 REFLEXIÓN DE LA LUZ Rayos de luz Para explicar los fenómenos de interferencia, difracción

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 EL MOVIMIENTO ONDULATORIO 1 Cuando a un muelle se le aplica una fuerza de 20 N, sufre una deformación de 5 cm. Cuál es el valor de la constante de recuperación? Cuáles serán sus unidades?

Más detalles

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp 01. Ya que estamos en el Año Internacional de la Cristalografía, vamos a considerar un cristal muy preciado: el diamante. a) Calcula la velocidad de la luz en el diamante. b) Si un rayo de luz incide sobre

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

Naturaleza ondulatoria de la luz. Difracción.

Naturaleza ondulatoria de la luz. Difracción. Objetivos Comprobar la naturaleza ondulatoria de la luz. Estudio de la difracción de la luz en diferentes rendijas y obstáculos. Estudiar la difracción de Fraunhofer por una rendija. Material Láser de

Más detalles

La propagación de la luz

La propagación de la luz La propagación de la luz 1. Introducción La luz es una onda electromagnética. Sin embargo, muchos aspectos de las ondas luminosas se pueden comprender sin considerar su carácter electromagnético. En efecto,

Más detalles

Introducción a la teoría del COLOR

Introducción a la teoría del COLOR Introducción a la teoría del COLOR Qué es la LUZ? La luz es una corriente de partículas infinitamente pequeñas llamadas fotones que se irradia desde cualquier fuente luminosa a la fantástica velocidad

Más detalles

OBSERVACIONES CONOSCÓPICAS Dispositivo experimental

OBSERVACIONES CONOSCÓPICAS Dispositivo experimental 11.2 OBSERVACIONES CONOSCÓPICAS 11.2.1. Dispositivo experimental Las observaciones conoscópicas precisan la disposición de los componentes del microscopio de un modo específico, de tal forma que se provoque

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

USAC CUNOR CARRERA DE GEOLOGÍA Curso de Mineralogía Óptica Por: Juanangel G. Díaz M.

USAC CUNOR CARRERA DE GEOLOGÍA Curso de Mineralogía Óptica Por: Juanangel G. Díaz M. USAC CUNOR CARRERA DE GEOLOGÍA Curso de Mineralogía Óptica 0741 http://geocunor.jimdo.com Por: Juanangel G. Díaz M. INTRODUCCIÓN Qué es la luz? Aurora Boreal en las Montañas Rocosas, Alberta, Canadá Es

Más detalles

Problemario de Ondas Electromagnéticas, Luz y Óptica

Problemario de Ondas Electromagnéticas, Luz y Óptica Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Ondas Electromagnéticas, Luz y Óptica Física General III Prof. Anamaría Font Marzo 2009 Índice 1. Ondas Electromagnéticas

Más detalles

Parte 4: La Luz. Telescopio óptico espacial Hubble. Telescopio de Galileo. J.M. Maxwell

Parte 4: La Luz. Telescopio óptico espacial Hubble. Telescopio de Galileo. J.M. Maxwell Parte 4: La Luz 1 Parte 4: La Luz J.M. Maxwell 1831-1879 Telescopio de Galileo Es imposible pensar en vida sin luz. Los vegetales, base de la cadena alimenticia, a través de la fotosíntesis extraen de

Más detalles

COLOR. Pag.1/7. Área: FÍSICO-QUÍMICA Asignatura: FÍSICA. Título. Curso: 4 TO Año: 2012 AÑO

COLOR. Pag.1/7. Área: FÍSICO-QUÍMICA Asignatura: FÍSICA. Título. Curso: 4 TO Año: 2012 AÑO Área: FÍSICO-QUÍMICA Asignatura: FÍSICA Título COLOR Prof: BOHORQUEZ MARTINEZ LARGHI STRUM - TAITZ WALITZKY -IGNACIO D AMORE EZEQUIEL Curso: 4 TO Año: 2012 AÑO Pag.1/7 Dispersión de la luz Ya sabemos que

Más detalles

FORMACIÓN DE IMÁGENES EN ESPEJOS

FORMACIÓN DE IMÁGENES EN ESPEJOS FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.

Más detalles

ANALOGIAS. (Págs. 70, 71, 72 y 73).

ANALOGIAS. (Págs. 70, 71, 72 y 73). 1 LICEO SALVADOREÑO CIENCIA, SALUD Y MEDIO, AMBIENTE HERMANOS MARISTAS PROFESORES: CLAUDIA POSADA / CARLOS ALEMAN GRADO Y SECCIONES: 9º: A, B, C, D Y E. UNIDAD N 5: ONDAS, LUZ Y SONIDO. GUIA N 1 ANALOGIAS.

Más detalles

CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA

CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA Las superficies S1 y S2 están limitadas por la misma trayectoria S. La corriente de conducción en el cable pasa únicamente a través de

Más detalles

LOS OBJETOS. Textos y fotos Fernando Moltini

LOS OBJETOS. Textos y fotos Fernando Moltini LOS OBJETOS Textos y fotos Fernando Moltini Como son percibidos los colores de los objetos. Un cuerpo opaco, es decir no transparente absorbe gran parte de la luz que lo ilumina y refleja una parte más

Más detalles

Polarización por reflexión (ángulo de Brewster) Fundamento

Polarización por reflexión (ángulo de Brewster) Fundamento Polarización por reflexión (ángulo de rewster) Fundamento El modelo ondulatorio para la luz considera a ésta como una onda electromagnética, constituida por un campo eléctrico E y uno magnético, propagándose

Más detalles

Polarización de la luz. Birefringencia. Efectos ópticos inducidos.

Polarización de la luz. Birefringencia. Efectos ópticos inducidos. Capítulo 4 Polarización de la luz. Birefringencia. Efectos ópticos inducidos. 4.1 Polarización de la luz Como todas las ondas transversales, la luz puede estar polarizada o no. El estado de polarización

Más detalles

2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young.

2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young. ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 14 INTERFERENCIA, DIFRACCION Y POLARIZACION Bibliografía Obligatoria (mínima) Capítulos 37 y 38 Física de Serway Tomo II PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA UNIVERSIDAD DE LA LAGUNA FACULTAD DE MATEMÁTICAS INGENIERÍA TÉCNICA DE OBRAS HIDRÁULICAS FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROPAGACIÓN DE ONDAS DE AGUA OBJETIVO GENERAL: ESTUDIO DE LAS ONDAS - Emplear

Más detalles

Seminario 1: Reflexión, Refracción y ángulo crítico

Seminario 1: Reflexión, Refracción y ángulo crítico Seminario 1: Reflexión, Refracción y ángulo crítico Fabián Andrés Torres Ruiz Departamento de Física,, Chile 21 de Marzo de 2007. Problemas 1. Problema 16, capitulo 33,física para la ciencia y la tecnología,

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones:

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones: ONDAS ONDAS Las ondas son perturbaciones que se propagan a través del medio. Medio Isótropo: cuando sus propiedades físicas son las mismas en todas las direcciones. Medio físico homogéneo: cuando se considera

Más detalles

Naturaleza de la luz. La Luz

Naturaleza de la luz. La Luz Naturaleza de la luz La Luz Introduciendo la luz ayos de luz - Se reciben y no se emiten por los ojos - Viajan en línea recta - No necesitan un medio para propagarse - Se disipan al atravesar un medio

Más detalles

Ondas : Características de las ondas

Ondas : Características de las ondas Ondas : Características de las ondas CONTENIDOS Características de las Ondas Qué tienen en común las imágenes que vemos en televisión, el sonido emitido por una orquesta y una llamada realizada desde un

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

Tema 6. Óptica y Ondas. Imágenes reales y virtuales (conceptos). 2. Establecer las características de las imágenes reales y las virtuales.

Tema 6. Óptica y Ondas. Imágenes reales y virtuales (conceptos). 2. Establecer las características de las imágenes reales y las virtuales. Tema 6. Óptica y Ondas CONTENIDOS Reflexión de la luz en la superficies planas y curvas. Análisis cualitativo y cuantitativo. OBJETIVOS 1. Analizar el fenómeno de reflexión de la luz y las leyes que la

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

SESIÓN Nº 8: REDES DE DIFRACCIÓN. ANALIZADOR DE PENUMBRA.

SESIÓN Nº 8: REDES DE DIFRACCIÓN. ANALIZADOR DE PENUMBRA. SESIÓN Nº 8: REDES DE DIFRACCIÓN. ANALIZADOR DE PENUMBRA. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales. A) Difracción. La difracción es un fenómeno óptico que se produce

Más detalles

I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA

I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA Selectividad Andalucía 2001: 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama

Más detalles

Capítulo 25. Rayos X

Capítulo 25. Rayos X Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

La Luz y las ondas electromagnéticas. La luz y las ondas electromagnéticas Cuestiones

La Luz y las ondas electromagnéticas. La luz y las ondas electromagnéticas Cuestiones La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes.

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes. Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Física General Práctica # 4 Espejos y lentes I. Introducción. Los fenómenos de reflexión y refracción están presentes en nuestra vida diaria:

Más detalles

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN

Más detalles

L m u i m n i o n t o ec e n c i n a

L m u i m n i o n t o ec e n c i n a LUMINOTECNIA LA LUZ Y LA VISIÓN LUMINOTECNIA La Luminotecnia es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación. LUMINOTECNIA La luz natural y artificial

Más detalles

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS 1.* Cuál es el periodo de la onda si la frecuencia es de 65,4 Hz? 2.** Relacionen los conceptos con sus definiciones correspondientes. a) Amplitud b) Longitud

Más detalles

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA Onda Electromagnética ESTA FORMADA POR UN PAR DE CAMPOS (UNO ELECTRICO Y OTRO MAGNETICO) QUE VARIAN CON LA POSICION Y EL TIEMPO ESA ONDA

Más detalles

10. Óptica geométrica (I)

10. Óptica geométrica (I) 10. Óptica geométrica (I) Elementos de óptica geométrica Centro de curvatura: centro de la superficie esférica a la que pertenece el dioptrio esférico Radio de curvatura: radio de la superficie esférica

Más detalles

Recurso Didáctico para la enseñanza. de la Ciencia. Autores: Orlando B. Escalona T. Juan Carlos Sánchez Mauro Briceño

Recurso Didáctico para la enseñanza. de la Ciencia. Autores: Orlando B. Escalona T. Juan Carlos Sánchez Mauro Briceño Universidad de Los Andes Facultad de Ciencias CELCIEC Recurso Didáctico para la enseñanza de la Ciencia Autores: Orlando B. Escalona T. Juan Carlos Sánchez Mauro Briceño Mérida-2006 Índice 1. Introducción

Más detalles

1.- Qué es una onda?

1.- Qué es una onda? Ondas y Sonido. 1.- Qué es una onda? Perturbación de un medio, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Física 2 Químicos - Cuatrimestre Verano Segunda parte 1/11. Guía 7: Ondas

Física 2 Químicos - Cuatrimestre Verano Segunda parte 1/11. Guía 7: Ondas Física 2 Químicos - Cuatrimestre Verano - 2011 - Segunda parte 1/11 Guía 7: Ondas Problema 1: Determinar cuáles de las siguientes expresiones matemáticas pueden representar ondas viajeras unidimensionales,

Más detalles

Microscopio de interferencia

Microscopio de interferencia Biología Celular Microscopia de contraste de fases e interferencia de Nomarski. Las células vivas se pueden observar con nitidez en un microscopio de contraste de fases o de contraste de fases interferencial.

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Descripción física y clasificación de los fenómenos ondulatorios. 2. Ondas monodimensionales armónicas. 3. Ecuación del movimiento ondulatorio. 4. Intensidad de una onda. 5. Fenómenos

Más detalles

GUIA DE REFUERZO PAES 2016 CCNN. Óptica geométrica

GUIA DE REFUERZO PAES 2016 CCNN. Óptica geométrica GUIA DE REFUERZO PAES 2016 CCNN Óptica geométrica Sabes qué es la luz? Qué recuerdas del espectro electromagnético? Sabes cuál fue el aporte de Isaac Newton a la parte de la física que estudia la luz?

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

Práctica 4. Interferómetro de Michelson

Práctica 4. Interferómetro de Michelson . Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas III; La luz

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas III; La luz Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 11 Ondas III; La luz Nombre: Fecha: Naturaleza de la luz 1. Teoría corpuscular: Newton formula que la luz estaba formada por pequenos

Más detalles

CUESTIONARIO DE ÓPTICA.

CUESTIONARIO DE ÓPTICA. CUESTIONARIO DE ÓPTICA. 1.- Qué es la luz, onda o partícula? 2.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Huygens: Young: Newton:

Más detalles

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E incidente

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

LUZ Y ÓPTICA. Propagación de la luz

LUZ Y ÓPTICA. Propagación de la luz LUZ Y ÓPTICA Propagación de la luz La luz se propaga en línea recta en un medio homogéneo. La hipótesis de la propagación de la luz explica varios fenómenos entre los que se puede resaltar: Cuando un rayo

Más detalles

POLARIZACIÓN POR REFLEXIÓN. INTERFERÓMETRO DE MICHELSON

POLARIZACIÓN POR REFLEXIÓN. INTERFERÓMETRO DE MICHELSON SESIÓN 9: POLARIZACIÓN POR REFLEXIÓN. INTERFERÓMETRO DE MICHELSON TRABAJO PREVIO: POLARIZACIÓN POR REFLEXIÓN CONCEPTOS FUNDAMENTALES Luz natural Luz con el vector eléctrico vibrando en todas las direcciones

Más detalles

REFRACTOMETRÍA. Introducción

REFRACTOMETRÍA. Introducción REFRACTOMETRÍA Introducción QUÉ ES LA REFRACCIÓN? Cuando se pone un lápiz en el agua, la punta del lápiz aparece inclinada. Luego, si se hace lo mismo pero colocando el lápiz en una solución de agua azucarada,

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles