Enseñar Matemáticas en el siglo XXI INDICADORES DE LAS COMPETENCIAS (PISA 2003)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Enseñar Matemáticas en el siglo XXI INDICADORES DE LAS COMPETENCIAS (PISA 2003)"

Transcripción

1

2 INDICADORES DE LAS COMPETENCIAS (PISA 2003) Pensar y razonar Plantear cuestiones propias de las matemáticas ( cuántos hay? Cómo encontrarlo? Si es así, entonces etc.) Conocer los tipos de respuestas que ofrecen las matemáticas a estas cuestiones Distinguir entre diferentes tipos de enunciados (definiciones, teoremas, conjeturas, hipótesis, ejemplos, afirmaciones cotidianas) Entender y utilizar los conceptos matemáticos en su extensión y sus límites. Argumentar Conocer lo que son las pruebas matemáticas y cómo se diferencian de otro tipo de razonamiento matemático Seguir y valorar cadenas de argumentos matemáticos de diferentes tipos. Disponer de sentido para la heurística ( qué puede (o no) ocurrir y porqué?). Crear y expresar argumentos matemáticos Comunicar Expresarse en una variedad de vías, sobre contenidos de tipo matemático, de forma oral y también escrita. Entender enunciados de otras personas sobre estas materias en forma oral y escrita Modelar Estructurar el campo o situación que va modelarse Traducir la realidad a una estructura matemática Interpretar los modelos matemáticos en términos reales. Trabajar con un modelo matemático. Reflexionar, analizar y ofrecer la crítica de un modelo y sus resultados Comunicar acerca de un modelo y de sus resultados (incluyendo sus limitaciones). Dirigir y controlar el proceso de modelización. Plantear y resolver problemas Plantear, formular y definir tipos de problemas matemáticos (puros, aplicados, de respuesta abierta, cerrados). Resolver diferentes tipos de problemas matemáticos mediante una diversidad de vías Representar Decodificar, interpretar y distinguir entre diferentes tipos de representación de objetos matemáticos y situaciones, así como las interrelaciones entre las distintas representaciones. Escoger y relacionar diferentes formas de representación de acuerdo con la situación y el propósito. Utilizar el lenguaje simbólico, formal y técnico y las operaciones Decodificar e interpretar el lenguaje simbólico y formal y entender sus relaciones con el lenguaje natural. Traducir desde el lenguaje natural al simbólico y formal. Manejar enunciados y expresiones que contengan símbolos y fórmulas. Utilizar variables, resolver ecuaciones y comprender los cálculos. Estadística y Probabilidad 2 Antonio J. Moreno Verdejo

3 Actividad 1: Reflexiones Reflexionamos sobre los conceptos posible y probable : Qué dice el diccionario de estos términos? Planteamos las siguientes cuestiones: Cuestión 1: En una bolsa hay tres fichas verdes, tres rojas y tres amarillas. Cuántas bolas hay que sacar para estar seguros de obtener tres colores? equipo B? Cuestión 2: Qué es más probable que meta un gol el equipo A o el Cuestión 3: Elegimos a una persona de la clase es más probable que le guste el baloncesto o el fútbol? Cuestión 4: Sacamos tres cartas de una baraja qué es más probable sacar tres oros o tres ases? Cuestión 5: En diferentes ruletas de dos colores: azul y rojo, qué es más probable que caiga la flecha en azul o en rojo? Cuestión 6: Intuitivamente Cómo distinguiríamos matemáticamente los sucesos imposible, posible, seguro? Actividad 2: Juegos con ruletas 1. Dos jugadores juegan cada uno con su ruleta. Gana el que obtiene el número mayor Cuál te gustaría que fuera tu ruleta? 2. Dos amigos juegan con ruletas a obtener el mayor número. El primero dispone de dos ruletas y juega con el número resultante de sumar los números resultantes en cada ruleta; el segundo juega únicamente con una ruleta. Qué jugador preferirías ser? Estadística y Probabilidad 3 Antonio J. Moreno Verdejo

4 3. Dibuja una ruleta que funcione como si fuese una moneda. Dibuja una ruleta que equivalga a un dado. Cuatro personas juegan a sacar una carta de la baraja y cada una apuesta a un palo. Dibuja una ruleta que simule este juego. De una baraja solo quedan 2 Oros, 2 Copas, 4 Espadas y 4 Bastos. Se juega a extraer una carta al azar y adivinar el palo extraído. Dibuja una ruleta que simule el juego. Actividad 3: Carrera de caballos Realizamos los siguientes juegos y, a continuación, intentamos deducir una estrategia ganadora en el sentido de apostar por el caballo que tenga mayor probabilidad de ganar. Variante A: sobre un tablero cuadriculado, doce caballos numerados del 1 al 12 se disponen a hacer una carrera. Cada jugador elige un caballo. De forma alternada, se tiran dos dados de diferente color y se mueve el caballo que coincida con el de la suma de los números que aparecen en la parte superior del dado. Gana el primero que cruce la meta. Estadística y Probabilidad 4 Antonio J. Moreno Verdejo

5 Variante B: sobre un tablero cuadriculado, siete caballos numerados del 0 al 6 se disponen a hacer una carrera. Cada jugador elige un caballo. De forma alternada, se tiran dos dados de diferente color y se mueve el caballo que coincida su número con la diferencia entre los dos dados (tomándose ella en valor absoluto). Gana el primero que cruce la meta. Actividad 4: El problema de Monty Hall o de las tres puertas El Problema de Monty Hall es un problema matemático de probabilidad que está inspirado por el concurso televisivo estadounidense Let's Make a Deal (Hagamos un trato). El nombre del problema tiene su origen en el nombre del presentador del concurso: Monty Hall. Se ofrece un concurso cuya mecánica es la siguiente: Al concursante se le ofrece la posibilidad de escoger entre tres puertas. Tras una de ellas se encuentra un coche, y tras las otras dos hay una cabra. El concursante gana el premio que se oculta detrás de la puerta que escoja. Después de que el concursante escoja una puerta, el presentador abre una de las otras dos puertas, mostrando una cabra. Siempre puede hacerlo ya que incluso si Estadística y Probabilidad 5 Antonio J. Moreno Verdejo

6 el concursante ha escogido una cabra, queda otra entre las puertas que ha descartado. Entonces, ofrece al concursante la posibilidad de cambiar su elección inicial y escoger la otra puerta que descartó originalmente, que continúa cerrada. La pregunta es: debe hacerlo o no? Actividad 5: La carta mayor En una mesa nos encontramos con dos tarjetas boca abajo. En cada una de ellas hay escrito un número cualquiera (grande, pequeño, negativo, decimal ). Tenemos que decidir cuál de ellas esconde el número mayor. Para ello, escogemos una, leemos el número y decidimos si quedarnos con ella o elegir la otra. Actividad 6: Juego de la bolsa Una persona recibe en su casa durante 10 días consecutivos una predicción sobre la subida o bajada de una determinada acción en la bolsa. A continuación, y tras comprobar dicha persona que todas las predicciones han sido ciertas, recibe una propuesta por parte de la empresa que ha hecho las predicciones para seguir recibiéndolas previo pago de una cantidad de dinero. Aceptarías dicha propuesta? Actividad 7: Juego de cartas de los tres montones Un mago te pide que elijas una de un montón de 21 cartas y, sin que él la vea, la devuelves al montón. Tras repartirlas en tres montones iguales, te dice que le indiques en qué montón está tu carta. Recoge los montones, vuelve a repartirlos en tres y te vuelve a preguntar dónde está tu carta. Tras tu respuesta, vuelve a repetir el proceso. Puede adivinar tu carta? Actividad 8: Respaldo al presidente En Zedlandia, se realizaron varios sondeos de opinión para conocer el nivel de respaldo al Presidente en las próximas elecciones. Cuatro periódicos hicieron sondeos por separado en toda la nación. Los resultados de los sondeos de los cuatro periódicos se muestran a continuación: Periódico 1: 36,5% (sondeo realizado el 6 de enero, con una muestra de 500 ciudadanos elegidos al azar y con derecho a voto). Estadística y Probabilidad 6 Antonio J. Moreno Verdejo

7 Periódico 2: 41,0% (sondeo realizado el 20 de enero, con una muestra de 500 ciudadanos elegidos al azar y con derecho a voto). Periódico 3: 39,0% (sondeo realizado el 20 de enero, con una muestra de ciudadanos elegidos al azar y con derecho a voto). Periódico 4: 44,5% (sondeo realizado el 20 de enero, con lectores que llamaron por teléfono para votar). Si las elecciones se celebraran el 25 de enero, cuál de los resultados de los periódicos sería la mejor predicción del nivel de apoyo al presidente? Da dos razones que justifiquen tu respuesta. Actividad 9: Experimentos con animales Se ha inyectado el bacilo de la tuberculosis a 72 cobayas para un experimento médico. Los investigadores anotaban el tiempo de supervivencia. El primer animal murió después de 43 días. El más fuerte vivió 598 días. La lista completa es: Un diagrama de tallo y hojas no es una buena herramienta para representar estos datos. 1. Por qué? 2. Crees que la media te proporcionará una buena información de los datos? 3. Calcula la mediana de los números de la tabla anterior 4. Cuál es la mediana de la primera mitad de los datos? Cuál es la mediana de la segunda mitad? Qué representan estos datos? La mediana de la primera mitad de los datos se llama primer cuartil La mediana de la segunda mitad de los datos se llama tercer cuartil. 5. Cuál es el segundo cuartil? 6. Dibuja un diagrama de caja para representar estos datos Estadística y Probabilidad 7 Antonio J. Moreno Verdejo

8 Actividad 10. Salarios semanales El siguiente diagrama de cajas representa los salarios semanales de hombres y mujeres en Inglaterra. Casi el 50% de todos los hombres ganan más que el máximo salario semanal de las mujeres Todos los hombres ganan más que el 50% de las mujeres peor pagadas a) Son estas afirmaciones consistentes con el diagrama de cajas? b) Busca en el centro (50%) de ambos grupos. Qué representan los límites en cada caso? Estadística y Probabilidad 8 Antonio J. Moreno Verdejo

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.

PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO. GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO

Más detalles

Tema 11 Probabilidad Matemáticas B 4º ESO 1

Tema 11 Probabilidad Matemáticas B 4º ESO 1 Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio

Más detalles

10. Probabilidad y. Estadística

10. Probabilidad y. Estadística 10. Probabilidad y Estadística Ámbito científico 1. Saltos de canguro 2. Pares y nones 3. La travesía del río 4. Las tres fichas 5. Las tres ruletas 6. El dado ganador 7. El reparto 8. Lotería 9. Lotería

Más detalles

I.E.S. CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad

I.E.S. CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos incompatibles 2. Probabilidad de un suceso La regla de Laplace Frecuencia y probabilidad Propiedades

Más detalles

Un juego de cartas: Las siete y media

Un juego de cartas: Las siete y media Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla

Más detalles

Competencia Matemática tica y PISA (OCDE,2003) 6. Matemátizar se identifica con la resolución de problemas

Competencia Matemática tica y PISA (OCDE,2003) 6. Matemátizar se identifica con la resolución de problemas Competencia matemática y PISA (OCDE,2003) Programme for International Student Assessment Ministerio de Educación y Ciencia (MEC)- Instituto Nacional de Evaluación y Calidad del Sistema Educativo (INECSE)

Más detalles

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30 EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200

Más detalles

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. (1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,

Más detalles

16 SUCESOS ALEATORIOS. PROBABILIDAD

16 SUCESOS ALEATORIOS. PROBABILIDAD EJERCICIOS PROPUESTOS 16.1 Indica si estos experimentos son aleatorios y, en caso afirmativo, forma el espacio muestral. a) Se extrae, sin mirar, una carta de una baraja española. b) Se lanza un dado tetraédrico

Más detalles

Actividad A ganar, a ganar!

Actividad A ganar, a ganar! Nivel: 2.º Medio Subsector: Matemática Unidad temática: Estadística y probabilidad Ficha 13: Actividad A ganar, a ganar! Cada vez que en un juego de azar se acumula el pozo de dinero para repartir, miles

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias?

PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias? PROBABILIDAD Ejercicio nº 1.- a Al lanzar un dado sacar puntuación par. b Lanzar un dado y sacar una puntuación mayor que 6. c Bajar a la planta baja en ascensor. Ejercicio nº 2 a En una caja hay cinco

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS 15 Y 16 1. De una urna con 7 bolas blancas y 14 negras extraemos una. Cuál es la probabilidad de

Más detalles

Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios

Probabilidad Colección B.1. MasMates.com Colecciones de ejercicios 1. Tenemos un dado (con sus seis caras numeradas del 1 al 6), trucado en el que es dos veces mas probable que salga un número par que un número impar. a) Calcula la probabilidad de salir par y la de salir

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES 8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 280

13Soluciones a los ejercicios y problemas PÁGINA 280 Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

14Soluciones a los ejercicios y problemas

14Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los

Más detalles

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo.

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo. COMBINATORIA Introducción a la Combinatoria Recuento A menudo se presenta la necesidad de calcular el número de maneras distintas en que un suceso se presenta o puede ser realizado. Otras veces es importante

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

Probabilidad Hoja de trabajo #1. Actividad: Buscando todos los resultados de un experimento

Probabilidad Hoja de trabajo #1. Actividad: Buscando todos los resultados de un experimento Probabilidad Hoja de trabajo #1 Actividad: Buscando todos los resultados de un experimento Instrucciones: En cada uno de los siguientes experimentos determina todos los posibles resultados al llevarlo

Más detalles

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES. ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos

Más detalles

AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR

AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR Hay situaciones en la vida diaria en las que no podemos saber qué resultado va a salir, pero sí sabemos los posibles resultados; son situaciones que

Más detalles

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales 1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden

Más detalles

LAS PROBABILIDADES Y EL SENTIDO COMÚN

LAS PROBABILIDADES Y EL SENTIDO COMÚN LAS PROBABILIDADES Y EL SENTIDO COMÚN Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes

Más detalles

Práctico 4. Probabilidad

Práctico 4. Probabilidad Práctico 4. Probabilidad Problema Calcular la probabilidad que si se lanzan dos dados la suma de los resultados obtenidos sea inferior a 9. Problema 2 Las posibilidades de apostar a pleno en la ruleta

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

Materia: Matemática de Octavo Tema: Probabilidad de sucesos independientes

Materia: Matemática de Octavo Tema: Probabilidad de sucesos independientes Materia: Matemática de Octavo Tema: Probabilidad de sucesos independientes Te has preguntado si pueden pasar dos cosas a la vez? Jana tiene dos mazos de cartas. Cada mazo tiene diez cartas. Hay tres figuras

Más detalles

13. II) Que salga una pinta del trébol es más probable que salga una pinta de diamante. III) La probabilidad de que salga un AS de trébol es 1/13.

13. II) Que salga una pinta del trébol es más probable que salga una pinta de diamante. III) La probabilidad de que salga un AS de trébol es 1/13. GUIA UNO P.S.U. PROBABILIDADES ) Al lanzar un dado común (seis caras), cuál es la probabilidad de obtener un número que no sea primo? A) 2 5) Al lanzar dos dados no cargados, cuál es la probabilidad de

Más detalles

Pág. 1. Formar agrupaciones

Pág. 1. Formar agrupaciones Pág. 1 Formar agrupaciones 1 a) En una urna hay una bola blanca, una roja y una negra. Las extraemos de una en una y anotamos ordenadamente los resultados. Escribe todos los posibles resultados que podemos

Más detalles

MATEMAGIA ENREDADORA.

MATEMAGIA ENREDADORA. Buscar relaciones algebraicas en enunciados lúdicos. Modelizar situaciones mágicas de forma matemática. Reconocer pautas de comportamiento entre números. 3º Ciclo - Papel y lápiz El primer ayudante de

Más detalles

PÁGINA 261 PARA EMPEZAR

PÁGINA 261 PARA EMPEZAR 13 Soluciones a las actividades de cada epígrafe PÁGINA 261 Pág. 1 PARA EMPEZAR Un desafío interrumpido Uno de los problemas que el caballero de Meré le propuso a Pascal es el siguiente: Dos contendientes,

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: FUNCIONES Y GRÁFICAS: 1. Ricardo ha quedado con sus amigos para dar una vuelta

Más detalles

Tiro liro Objetivos: Resumen de las Reglas de la Cultura Alfa:

Tiro liro Objetivos: Resumen de las Reglas de la Cultura Alfa: Tiro liro Los participantes se dividen en dos grupos. A cada grupo se le instruye en una nueva y diferente forma de cultura. Un grupo se llama Cultura Alfa y el otro Cultura Beta. A la gente de la Cultura

Más detalles

LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS DE PROBABILIDAD, ESTADÍSTICA Y ESTRATEGIA. MAURICIO CONTRERAS

LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS DE PROBABILIDAD, ESTADÍSTICA Y ESTRATEGIA. MAURICIO CONTRERAS LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS DE PROBABILIDAD, ESTADÍSTICA Y ESTRATEGIA. MAURICIO CONTRERAS Introducción La combinación del azar con diferentes reglas da lugar

Más detalles

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.2. MasMates.com Colecciones de ejercicios 1. En un examen teórico para la obtención del permiso de conducir hay 14 preguntas sobre normas, 12 sobre señales y 8 sobre educación vial. Si se eligen dos preguntas al azar. a) Cuál es la probabilidad

Más detalles

COLEGIO MANZANARES calidad humana nuestra filosofía educación integral nuestra razón de ser TALLER DE APOYO A NECESIDADES EDUCATIVAS ALUMNO

COLEGIO MANZANARES calidad humana nuestra filosofía educación integral nuestra razón de ser TALLER DE APOYO A NECESIDADES EDUCATIVAS ALUMNO AREA Estadística PERIODO 3 GRADO 11 TEMA DOCENTE Juan Felipe Agudelo ALUMNO Nota 1: Los talleres deben ser realizados en hojas y organizados en carpetas marcadas con el nombre completo y el tema que le

Más detalles

Descubrimos el carácter aleatorio de algunas experiencias

Descubrimos el carácter aleatorio de algunas experiencias SEXTO Grado - Unidad3 - Sesión 0 Descubrimos el carácter aleatorio de algunas experiencias En esta sesión, se espera que los niños y las niñas comprendan el carácter aleatorio de algunas experiencias,

Más detalles

Ejercicios y problemas resueltos de probabilidad condicionada

Ejercicios y problemas resueltos de probabilidad condicionada Ejercicios y problemas resueltos de probabilidad condicionada 1.- Sean A y B dos sucesos aleatorios con p(a) = 1/2, p(b) = 1/3, p(a B)= 1/4. Determinar: 1 2 3 4 5 2.- Sean A y B dos sucesos aleatorios

Más detalles

Centro de Actualización del Magisterio. Profesor Felipe de Jesús Michaus Rocha

Centro de Actualización del Magisterio. Profesor Felipe de Jesús Michaus Rocha Centro de Actualización del Magisterio Profesor Felipe de Jesús Michaus Rocha Factores a considerar para la elaboración de secuencias didácticas que utilizan calculadoras gráficas como auxiliares en la

Más detalles

BLACK JACK. BACCARAT (Light)

BLACK JACK. BACCARAT (Light) BLACK JACK La finalidad de este juego es tener una mano de mayor valor en puntos en total que el dealer, sin sobrepasar 21 puntos. Cada carta tiene su valor, las figuras valen 10 y el As toma el valor

Más detalles

Notas sobre combinatoria y probabilidad [segunda parte]

Notas sobre combinatoria y probabilidad [segunda parte] Notas sobre combinatoria y probabilidad [segunda parte] Tercer artículo de una serie dedicada a la estadística y su aplicación en las aulas, el texto es la segunda parte de un análisis acerca del uso de

Más detalles

DAR SENTIDO A LA PROBABILIDAD EN EDUCACIÓN PRIMARIA

DAR SENTIDO A LA PROBABILIDAD EN EDUCACIÓN PRIMARIA DAR SENTIDO A LA PROBABILIDAD EN EDUCACIÓN PRIMARIA Cristina Cruz Ortiz, Centro de Profesorado "Sagrada Familia" de Úbeda, adscrito a la Universidad de Jaén, cristinacruzortizcco@gmail.com Lina María Cecilia

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

LOS JUEGOS EN MATEMÁTICAS. Jose Ramón Gregorio Guirles (*) 1. JUEGOS PARA AUTOMATIZAR OPERACIONES SENCILLAS DE SUMAS Y RESTAS

LOS JUEGOS EN MATEMÁTICAS. Jose Ramón Gregorio Guirles (*) 1. JUEGOS PARA AUTOMATIZAR OPERACIONES SENCILLAS DE SUMAS Y RESTAS LOS JUEGOS EN MATEMÁTICAS SIGMA 26 Jose Ramón Gregorio Guirles (*) 1. JUEGOS PARA AUTOMATIZAR OPERACIONES SENCILLAS DE SUMAS Y RESTAS Como ya comentaba en un artículo anterior sobre juegos de numeración,

Más detalles

2 3 independientes? y mutuamente excluyentes? Halla )

2 3 independientes? y mutuamente excluyentes? Halla ) EJERCICIOS DE PROBABILIDAD para hacer en casa IES Jovellanos 1º BI-NS Probabilidad 1. a) Demuestre mediante un diagrama de Venn que ( A B) \ ( A C) = A ( B \ C) b) Demuestre con propiedades Booleanas que

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 7 SOLUIOES A L ATIVIDADES DE ADA EPÍGRAFE Pág. Página 3 Los coches de este juego se mueven de la siguiente forma: se lanzan dos dados y avanza un casillero el coche cuyo número coincida con la suma de

Más detalles

JUEGOS DE AZAR. Comprende y pone en práctica la probabilidad en juegos de azar

JUEGOS DE AZAR. Comprende y pone en práctica la probabilidad en juegos de azar JUEGOS DE AZAR 06 Comprende y pone en práctica la probabilidad en juegos de azar En Presentación de contenidos repasa qué son los juegos de azar. En los ejercicios pone en práctica el azar lanzando una

Más detalles

Introducción al Cálculo de Probabilidades a través de casos reales

Introducción al Cálculo de Probabilidades a través de casos reales MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Introducción al Cálculo de Probabilidades a través de casos reales Paula Lagares Barreiro * Federico Perea

Más detalles

MATEMÁTICAS 3 PERIODOS. FECHA: 8 de junio

MATEMÁTICAS 3 PERIODOS. FECHA: 8 de junio BACHILLERATO EUROPEO 2009 MATEMÁTICAS 3 PERIODOS FECHA: 8 de junio DURACIÓN DEL EXAMEN : 3 horas (180 minutos) MATERIAL AUTORIZADO: Formulario europeo Calculadora no gráfica y no programable OBSERVACIONES:

Más detalles

PROBABILIDAD ESTADÍSTICA

PROBABILIDAD ESTADÍSTICA MATERIALES PARA 1 er CURSO DE E.S.O. PROBABILIDAD Y ESTADÍSTICA ACTIVIDADES PARA LOS ALUMNOS Autores: Salvador Caballero Rubio (Coordinador) Alfredo Llópez Lara Pascual Pérez Cuenca José Sogorb Carratalá

Más detalles

6. Calcula la probabilidad de obtener un número mayor que 2 al lanzar un dado cúbico correcto con sus caras numeradas de 1 a 6.

6. Calcula la probabilidad de obtener un número mayor que 2 al lanzar un dado cúbico correcto con sus caras numeradas de 1 a 6. 1. Tenemos una urna con 3 bolas rojas y 2 bolas verdes. Si sacamos 3 bolas de la urna, sin devolución, entonces: a) Hallar el espacio muestral de este experimento b) Formar los sucesos (sacar los resultados)

Más detalles

16 Sucesos aleatorios. Probabilidad

16 Sucesos aleatorios. Probabilidad 6 Sucesos aleatorios. Probabilidad ACTIVIDADES INICIALES 6.I. Las macromoléculas de ADN forman como una doble cadena. Qué forma tienen? Doble hélice. 6.II. Cada gen funciona como si fuera una palabra larguísima

Más detalles

Mamut Matemáticas Sumar 1. Índice. Introducción...

Mamut Matemáticas Sumar 1. Índice. Introducción... Mamut Matemáticas Sumar 1 Índice Introducción... 4 Juegos... 5 Recursos en Internet... 6 Dos grupos y un total... 8 Aprender los símbolos + y =... 11 Práctica de sumar 1... 14 Qué número es mayor?... 16

Más detalles

Problemas de Probabilidad Soluciones

Problemas de Probabilidad Soluciones Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.

Más detalles

PROYECTO: JUEGA Y CONSTRUYE LA MATEMATICA. JUEGO MATEMÁTICAS Nivel I. Grado transición

PROYECTO: JUEGA Y CONSTRUYE LA MATEMATICA. JUEGO MATEMÁTICAS Nivel I. Grado transición PARA EDUCAR A UN NIÑO HAY QUE AMARLO Y PARA AMARLO HAY QUE CONOCERLO JUEGO MATEMÁTICAS Nivel I. Grado transición (SAN MARCELINO CHAMPAGNAT) AQUÍ VA UNA GRAFICA DE NIÑOS JUGANDO COLEGIO CHAMPAGNAT BOGOTÁ

Más detalles

EJERCICIOS DE PROBABILIDAD (1ºA)

EJERCICIOS DE PROBABILIDAD (1ºA) EJERCICIOS DE PROBABILIDAD (1ºA) 5) 6) Una bolsa contiene bolas negras y rojas. Se extraen sucesivamente tres bolas. Obtener: a) El espacio muestral. b) El suceso A = extraer tres bolas del mismo color.

Más detalles

Curso de Especialización en Educación Montessori para Niños de 6 a 9 años

Curso de Especialización en Educación Montessori para Niños de 6 a 9 años Santo Domingo, enero-diciembre 2011 Susanna Belussi - Las Terrenas Índice Notas personales Capítulo I Memorización de las cuatro operaciones Introducción inicial Adición a) Introducción b) Descripción

Más detalles

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS

Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 TEMA 11 CÁLCULO DE PROBABILIDADES 11.0 INTRODUCCIÓN 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Un suceso aleatorio

Más detalles

PROBABILIDAD PROBLEMAS

PROBABILIDAD PROBLEMAS PROBABILIDAD PROBLEMAS 1 El conejo confuso 2 El ladrón indeciso 3 TRÁFICO ORGANIZADO Esto es un plano de una nueva urbanización. Por las calles dibujadas sólo se circula en el sentido que indican las flechas.

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS NUMÉRICOS. MAURICIO CONTRERAS

LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS NUMÉRICOS. MAURICIO CONTRERAS LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS NUMÉRICOS. MAURICIO CONTRERAS JUEGOS NUMÉRICOS Introducción Los juegos matemáticos constituyen una herramienta de ayuda para el tratamiento

Más detalles

Problemas de Probabilidad(Selectividad) Ciencias Sociales

Problemas de Probabilidad(Selectividad) Ciencias Sociales Problemas de Probabilidad(Selectividad) Ciencias Sociales Problema 1 En un instituto se ofertan tres modalidades excluyetes, A, B y C, y dos idiomas excluyentes, inglés y francés. La modalidad A es elegida

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

Experimentos aleatorios. Espacio muestral

Experimentos aleatorios. Espacio muestral Experimentos aleatorios. Espacio muestral Def.- Un fenómeno o experimento decimos que es determinista si podemos conocer su resultado antes de ser realizado. Si dejamos caer un objeto desde cierta altura

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD Grado 11 Taller # 13 Nivel II RESEÑA HISTORICA El concepto de Probabilidad ha evolucionado en

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

EJERCICIOS DE VARIACIONES

EJERCICIOS DE VARIACIONES EJERIIOS DE ARIAIONES. uántos resultados distintos pueden producirse al lanzar una moneda cuatro veces al aire. Influye orden y elementos, y estos se pueden repetir. m, n. R,. uántos números de cuatro

Más detalles

El juego mejor pagado: La ruleta

El juego mejor pagado: La ruleta El juego mejor pagado: La ruleta Con esta guía podrás entender todo el juego de la ruleta, desde lo más básico los tipos de apuesta, los pagos de cada apuesta y estrategias que te ayudarán a sacarle provecho

Más detalles

Juegos pąrą el ĄulĄ. La guerra de cartas

Juegos pąrą el ĄulĄ. La guerra de cartas Juegos pąrą el ĄulĄ Los chicos comienzan a jugar cuando son bebés, a través del vínculo que establecen entre la realidad y sus fantasías. Ese jugar inicial no sabe de pautas preestablecidas, no entiende

Más detalles

Juego del TRESILLO en Villar de Cañas (CUENCA)

Juego del TRESILLO en Villar de Cañas (CUENCA) Juego del TRESILLO en Villar de Cañas (CUENCA) VOCABULARIO JUGADOR: El que juega. El jugador : el que nombra palo. CONTRA: Los otros dos jugadores, que van de compañeros y contra el jugador MUESTRA: Palo

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Página PARA EMPEZAR, REFLEXIONA Y RESUELVE Calcula matemáticamente cuál es la probabilidad de que no toque raya en la cuadrícula de cm cm una moneda de cm de diámetro. De qué

Más detalles

Puede dar pérdida un Casino?

Puede dar pérdida un Casino? Puede dar pérdida un Casino? por Ernesto Mordecki En esta nota calculamos la probabilidad de que pierda la banca en la ruleta, en un período dado de tiempo. uestro enfoque consiste en determinar cuantas

Más detalles

PROBLEMAS DE PROBABILIDAD. BOLETIN IV

PROBLEMAS DE PROBABILIDAD. BOLETIN IV PROBLEMAS DE PROBABILIDAD. BOLETIN IV 1. Se considera el experimento aleatorio de lanzar un dado al aire y anotar el número de la cara superior. Hallar: a) El espacio muestral. b) El suceso A= obtener

Más detalles

Elementos de Combinatoria

Elementos de Combinatoria Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte

Más detalles

COLOMO R e g l a m e n t o

COLOMO R e g l a m e n t o COLOMO Reglamento C O L O M O Rojo, Naranja, amarillo, azul, púrpura Todo el mundo conoce los colores del arco iris. Estos colores son las estrellas de todos los juegos incluidos en Colomo. En estas reglas

Más detalles

RELOJ PRIMIGENIO. Un juego de apuestas, faroleo y press your luck de 3 a 5 jugadores.

RELOJ PRIMIGENIO. Un juego de apuestas, faroleo y press your luck de 3 a 5 jugadores. RELOJ PRIMIGENIO Un juego de apuestas, faroleo y press your luck de 3 a 5 jugadores. - Materiales 1 Baraja Primigenia Estas reglas o una imagen para tener las cartas de referencia con las que se forma

Más detalles

TEMA 10 CÁLCULO DE PROBABILIDADES

TEMA 10 CÁLCULO DE PROBABILIDADES Ejercicios Selectividad Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES COMBINATORIA EJERCICIO 1 : Septiembre 03-04. Obligatoria (1 pto) Un fabricante

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

Juegos para desarrollar el sentido numérico

Juegos para desarrollar el sentido numérico 8 Juegos para desarrollar el sentido numérico Sentido numérico 174 Materiales para Apoyar la Práctica Educativa 8. Juegos para desarrollar el sentido numérico Los juegos representan una fuente inagotable

Más detalles

Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos

Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos 1. Tenemos 2 bolas blancas y 2 negras. Las repartimos en dos urnas cada una con 2. El sistema está en estado j si la urna 1 contiene

Más detalles

LABORATORIO DE MATEMÁTICAS (2ª PARTE) (*) Grupo Mayrit (**) ACTIVIDADES - NÚMEROS SUMA SOBRE LA MESA TEMA MATERIAL NIVEL NÚMEROS ENTEROS

LABORATORIO DE MATEMÁTICAS (2ª PARTE) (*) Grupo Mayrit (**) ACTIVIDADES - NÚMEROS SUMA SOBRE LA MESA TEMA MATERIAL NIVEL NÚMEROS ENTEROS LABORATORIO DE MATEMÁTICAS (2ª PARTE) (*) SIGMA 31 Grupo Mayrit (**) ACTIVIDADES - NÚMEROS SUMA SOBRE LA MESA Código BAR-2 (Ficha del profesor). TEMA MATERIAL NIVEL NÚMEROS ENTEROS BARAJA DE NÚMEROS ENTEROS

Más detalles

CÓMO APROVECHAR EL JUEGO DE DOMINÓ EN LAS CLASES DE MATEMÁTICA

CÓMO APROVECHAR EL JUEGO DE DOMINÓ EN LAS CLASES DE MATEMÁTICA CÓMO APROVECHAR EL JUEGO DE DOMINÓ EN LAS CLASES DE MATEMÁTICA Traducción Adriana Rabino Original Fran Tapson 2004, ver http://www.cleavebooks.co.uk/trol/trolxe.pdf La idea es utilizar un material en general

Más detalles

10. [2012] [EXT-B] Una empresa tiene dos líneas de producción. La línea 1 produce el 60% de los artículos y el resto los produce la

10. [2012] [EXT-B] Una empresa tiene dos líneas de producción. La línea 1 produce el 60% de los artículos y el resto los produce la 1. [2014] [EXT-A] Se piensa que un estudiante de bachillerato que estudie normal, sobre 10 horas semanales aparte de las clases, tiene una probabilidad de 0.9 de aprobar una asignatura. Suponiendo que

Más detalles

Matemática Discreta I Tema 4 - Ejercicios resueltos

Matemática Discreta I Tema 4 - Ejercicios resueltos Matemática Discreta I Tema - Ejercicios resueltos Principios básicos Ejercicio 1 Cuántos números naturales existen menores que 10 6, cuyas cifras sean todas distintas? Solución Si n < 10 6, n tiene 6 o

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PACTICA Se hace girar la flecha y se observa sobre qué número se detiene. Calcula las probabilidades de los siguientes sucesos: a) Obtener un número par. b) Obtener un número primo. c) Obtener

Más detalles

PROBABILIDAD. De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar.

PROBABILIDAD. De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. PROBABILIDAD Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? A "Mayor que 6" B "No obtener 6" C "Menor que 6" c Halla los

Más detalles

TEMA 14 CÁLCULO DE PROBABILIDADES

TEMA 14 CÁLCULO DE PROBABILIDADES Tema 14 Cálculo de probabilidades Matemáticas I 1º Bachillerato 1 TEMA 14 CÁLCULO DE PROBABILIDADES ESPACIO MUESTRAL. SUCESOS EJERCICIO 1 : En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una

Más detalles

Probabilidad. y estadística. Esquema de la unidad. Programación. Recursos digitales UNIDAD 15. PROBABILIDAD Y ESTADÍSTICA 208 B 208 A.

Probabilidad. y estadística. Esquema de la unidad. Programación. Recursos digitales UNIDAD 15. PROBABILIDAD Y ESTADÍSTICA 208 B 208 A. Probabilidad y estadística Esquema de la unidad UNIDAD. PROBABILIDAD Y ESTADÍSTICA Programación Más probable y menos probable Probabilidad Objetivos Comparar la probabilidad (más/menos/igual de probable

Más detalles

Probabilidad. Objetivos. Antes de empezar.

Probabilidad. Objetivos. Antes de empezar. 12 Probabilidad Objetivos En esta quincena aprenderás a: Hallar los sucesos de un experimento aleatorio y realizar operaciones con ellos. Calcular la probabilidad de un suceso mediante la regla de Laplace.

Más detalles

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9 5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA UNIDAD 11 DISTRIBUCIONES DE VARIABLE CONTINUA Página 260 1. Los trenes de una cierta línea de cercanías pasan cada 20 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó el último. La medida

Más detalles