Medios Dieléctricos. Área Física

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Medios Dieléctricos. Área Física"

Transcripción

1 Medios Dieléctricos Área Física Resultados de aprendizaje Aplicar las ecuaciones que describen las asociaciones en paralelo y en serie de condensadores en problemas con diferentes geometrías. ontenidos 1. Introducción teórica. 2. Ejercicios. Debo saber Electrostática en dieléctricos Un dieléctrico es un material de muy baja conductividad eléctrica, capaz de formar dipolos eléctricos en su interior. Por ser aislantes, no pueden conducir la corriente, pero al estar constituidos de dipolos, tanto permanentes como inducidos, el campo eléctrico en ellos depende del medio en que están inmersos. El campo eléctrico generado en el dieléctrico es opuesto, pero de menor intensidad al campo externo, lo que disminuye el campo eléctrico neto (campo eléctrico total a analizar). apacitancia La capacitancia determina la cantidad de carga eléctrica que puede retener un cuerpo. Se mide en faradios [F]. La relación entre la diferencia de potencial, la carga eléctrica y la capacitancia es: Al componente eléctrico cuya principal característica es la capacitancia se le denomina condensador o capacitor. La cantidad de carga que puede almacenar un capacitor depende de su geometría y de la permitividad eléctrica del material que se encuentra entre las dos placas que los componen. Al igual que los resistores, la capacidad equivalente de un conjunto de capacitores depende de la configuración del circuito. En un circuito de capacitores en serie, el voltaje de la fuente se reparte entre los capacitores. La fuente extrae cargas negativas desde la placa izquierda del capacitor, y las deja en la placa derecha del capacitor. Al terminar el proceso, en la placa izquierda de hay una carga de, Segunda Edición

2 mientras que en la derecha de hay una carga de ; esto hace que en la placa derecha de haya una carga de, en la placa izquierda de una carga de, etc, hasta llegar a la placa izquierda de, con una carga de. Todas las placas derechas tienen la misma carga,, y toda placa izquierda tiene una carga de. Se tiene que cumplir entonces que: ΔV n Figura 1. ircuito de condensadores en serie. La capacitancia equivalente de un circuito en serie es siempre menor que la menor de las capacitancias totales del circuito. En la configuración en paralelo, el voltaje en cada capacitor es igual al de la fuente. La cantidad de carga en cada capacitor es diferente: ΔV n Figura 2. ircuito de condensadores en paralelo. La capacitancia equivalente de un circuito en paralelo es siempre mayor que la mayor que la mayor de las capacitancias del circuito. Segunda Edición

3 Dieléctrico en un capacitor Si entre las placas de un capacitor se coloca un dieléctrico, la capacitancia aumenta. Este aumento no quiere decir que el capacitor puede almacenar más carga, sino que para conseguir la misma carga se requiere un voltaje inferior. Sea la constante dieléctrica (igual o mayor que 1), y el voltaje entre las placas sin dieléctrico: Ejercicio 1 uando se aplica una diferencia de potencial de a las placas de un capacitor de placas paralelas, las placas tienen una densidad de carga superficial de [ ]. uál es el espaciamiento entre las placas? R: on la ecuación: La densidad de carga superficial se puede expresar como: Finalmente, la distancia entre las placas, o espacialmente, es: ( [ ]) ( [ ]) ( [ ]) Segunda Edición

4 Ejercicio 2 Encontrar la capacitancia equivalente del circuito de la Fig. 3, con,,, y. Figura 3. ircuito de capacitores. R: Se ordena el capacitor, que está en paralelo con el resto. Luego se suman los capacitores en serie: Figura 4. visto de una forma más conveniente. Y finalmente, se suman los capacitores en paralelo: Segunda Edición

5 eq Figura 5. Se pasa de un circuito con capacitores en serie, luego en paralelo y finalmente a un único capacitor. Ejercicio 3 Un capacitor esférico lleno de aire se construye con un cascarón interior y uno exterior de y de radio, respectivamente. a) alcule la capacitancia del dispositivo. b) Qué diferencia de potencial entre las esferas resulta de una carga de sobre el capacitor? R: Por Gauss, se sabe que la intensidad del campo eléctrico en los cascarones esféricos es: La diferencia de potencial entre los cascarones será: ( ) a) El radio del cascarón exterior es dos veces más grande que el interior, entonces la capacitancia será: b) Para obtener la diferencia de potencial simplemente se reemplaza los datos: Segunda Edición

6 Ejercicio 4 En el circuito de la Fig.6,,, y. Si la diferencia de potencial entre los puntos y es, cuál es la carga del segundo capacitor? a b c Figura 6. apacitores conectados en serie y en paralelo. R: Primero se calcula la capacitancia equivalente del circuito: Entonces la carga equivalente es. Así, el voltaje entre y es: Los capacitores y están conectados en serie, entonces tienen la misma carga, y se reparten los : ( ) Notar que la carga equivalente,, no es la carga total almacenada por el circuito. Segunda Edición

7 Ejercicio 5 Un circuito que tiene aire entre sus placas se conecta a una diferencia de potencial de almacena de carga. Entonces se desconecta de la fuente mientras aún está cargado. a) Encuentre la capacitancia del capacitor. b) Encuentre el voltaje y la carga que existen ahora en el capacitor. y R: a) Solo con aire entre las palcas, se tiene: b) Al insertar el teflón entre las placas, la carga se mantiene igual, pero como la capacitancia cambia, también debe cambiar el voltaje: c) on teflón, el voltaje en el capacitor es: Ejercicio 6 Dos condensadores, y, están conectados en paralelo y cargados con un suministro de. a) Dibuje el circuito y calcule la energía total almacenada en los dos condensadores. b) Qué diferencia de potencial se requeriría a través de los mismos dos condensadores conectados en serie de modo que la combinación almacene la misma energía que en la parte a)? Dibuje el circuito de esta configuración. R: a) La capacitancia equivalente en paralelo es, y la energía almacenada en el circuito en paralelo de la Fig.7 es: b) Para el circuito en serie de la Fig.7, la capacitancia en serie equivalente es: ( ) ( ) Segunda Edición

8 V μf μf V μf μf Figura 7. onfiguración en serie y en paralelo de condensadores. Entonces el voltaje necesario para almacenar la misma energía que en a), pero en serie, es: Ejercicio 7 Tres capacitores, de capacitancias, y, son cargados por separado, por unos instantes, con una batería de. Las baterías son retiradas y los capacitores son conectados en un circuito cerrado en serie, como en la Fig. 8. a) uál será la carga final de cada capacitor? b) uál será el voltaje entre los puntos y? P P Figura 8. ircuito armado luego de la carga de cada capacitor. R: a) La carga inicial en cada capacitor es: Segunda Edición

9 La carga se conserva, entonces debe haber una relación entre, y y las cargas en cada capacitor al redistribuirse en el circuito, y : El voltaje entre y se puede expresar en términos de y, o en términos de,, y : on y, se obtiene: Pero el voltaje entre y se puede expresar en términos del capacitor, entonces: ( ) Sustituyendo los valores conocidos. Se tiene que: b) El voltaje entre y será simplemente: Segunda Edición

10 Ejercicio 8 La capacitancia de un capacitor de placas paralelas es. Se construye un capacitor de placas paralelas utilizando tres materiales dieléctricos, como se muestra en la Fig. 9. Suponer que. a) Encuentre una expresión para la capacitancia del dispositivo en términos del área de placa y,, y. b) alcule la capacitancia utilizando los valores,,, y. l d κ κ κ d l Figura 9. apacitor compuesto. R: a) La capacitancia de cada material es: A cada segmento le corresponde la mitad del área total, y además y solo tienen la mitad de la separación, está en paralelo con y, y estos últimos están conectados en serie, entonces se obtiene: ( ) ( ) ( ) ( ) Segunda Edición

11 b) Reemplazando los valores, transformando el área y distancia a unidades SI, y, y con [ ], se obtiene: Ejercicio 9 Un capacitor de aire variable que se usa en circuitos de sintonización está hecho de placas semicirculares, cada una de radio y separadas por una distancia una de otra. omo se muestra en Fig. 10, un segundo conjunto de placas idéntico, que tiene libertad para girar, se intercala con sus placas a la mitad entre aquellas del primer juego. El segundo conjunto puede rotar como una unidad. Determinar la capacitancia como una función del ángulo de rotación, donde corresponde a la máxima capacitancia. R: on, el área de solapamiento es nula, y con, el solapamiento es total e igual al área de un semicírculo: Para cumplir las dos condiciones descritas, la función de solapamiento debe ser: θ R Figura 10. apacitor variable. d Segunda Edición

12 Por cada placa fija hay una placa móvil, y se necesitan dos placas paralelas para formar un capacitor, entonces la cantidad de capacitores en paralelo (ver Fig. 11) en el sistema es. La capacitancia total es: d Figura 11. Diagrama de las placas del capacitor. Responsables académicos orregida Editorial PAIEP. Si encuentra algún error favor comunicarse a Fuentes Serway, R. (1993). Electricidad y Magnetismo. (3 a Interamericana. ed.). México DF, México: McGraw Hill Serway, R., Jewettt, J. (2005). Física para ciencias e ingenierías. Tomo II (6 a ed.). alifornia, Estados Unidos: Thomson-Brooks/ole. Segunda Edición

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

Capacitores y capacitancia

Capacitores y capacitancia Capacitores y capacitancia Un capacitor es básicamente dos superficies conductoras separadas por un dieléctrico, o aisaldor. La capacitancia de un elemento es su habilidad para almacenar carga eléctrica

Más detalles

GUÍA 2: CAPACITORES Y DIELECTRICOS Electricidad y Magnetismo

GUÍA 2: CAPACITORES Y DIELECTRICOS Electricidad y Magnetismo GUÍA 2: CAPACITORES Y DIELECTRICOS Primer Cuatrimestre 2013 Docentes: Dr Alejandro Gronoskis Lic María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad

Más detalles

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES Área de EET Página 1 de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ELECTRICIDAD Y MAGNETISMO NIVEL: LICENCIATURA CRÉDITOS: 6 CLAVE: ICAB23000610 HORAS TEORÍA: 3 SEMESTRE: SEGUNDO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

M A Y O A C T U A L I Z A D A

M A Y O A C T U A L I Z A D A U N I V E R S I D A D N A C I O N A L E X P E R I M E N T A L F R A N C I S C O D E M I R A N D A C O M P L E J O A C A D É M I C O E L S A B I N O Á R E A D E T E C N O L O G Í A D E P A R T A M E N T

Más detalles

Capacitores y dieléctricos

Capacitores y dieléctricos Capacitores y dieléctricos Ejercicio 1: los capacitores del circuito de la figura valen C1=4 F; C2=6 F; C3=12,6 F; C4=2 F; C5=8 F. En régimen estacionario, calcule: a) la capacidad equivalente de la configuración;

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

Resumen. Preguntas. 744 Capítulo 26 Capacitancia y materiales dieléctricos DEFINICIONES

Resumen. Preguntas. 744 Capítulo 26 Capacitancia y materiales dieléctricos DEFINICIONES 744 apítulo 26 apacitancia y materiales dieléctricos Resumen DEFINIIONES Un capacitor consiste en dos conductores que portan cargas de igual magnitud y signo opuesto. La capacitancia de cualquier capacitor

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

2 Energía electrostática y Capacidad

2 Energía electrostática y Capacidad 2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III

Más detalles

E 2.3. CAPACITORES. E Dos capacitores descargados, de capacitancias

E 2.3. CAPACITORES. E Dos capacitores descargados, de capacitancias E 2.3. CAPACITORES E 2.3.01. Un capacitor de capacitancia C 1 [F] se carga hasta que la diferencia de potencial entre sus placas es V 0 [V]. Luego se conecta a un capacitor descargado, de capacitancia

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Problemas 3: Condensadores

Problemas 3: Condensadores Problemas tema 3: ondensadores /9 Problemas 3: ondensadores Fátima Masot onde Ing. Industrial 00/ Fátima Masot onde Dpto. Física Aplicada III Universidad de Sevilla Problemas tema 3: ondensadores /9 Problema

Más detalles

FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores

FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores Capacitores El capacitor es el segundo componente eléctrico pasivo que estudiaremos en el laboratorio. El capacitor básico es un componente electrónico construido con dos placas paralelas conductoras separadas

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

CONDENSADORES. 2 condensador. Rpta. pierde

CONDENSADORES. 2 condensador. Rpta. pierde CONDENSADORES 1. En una asociación de tres condensadores en serie con cargas Q 1, Q 2 y Q 3 la carga Q del condensador equivalente es igual a: a) Q=Q 1 +Q 2 +Q 3 b) Q=Q 1 =Q 2 =Q 3 c) (Q 1 +Q 2 +Q 3 )/2

Más detalles

Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: ELECTROMAGNETISMO CON LABORATORIO Clave: 003880 Academia a la que pertenece: Electromagnetismo Requisitos: Ninguno Horas Clase:

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

C E = C 1 + C 2 ; F = F + C 2

C E = C 1 + C 2 ; F = F + C 2 Ejercicio resuelto Nº 1 La capacidad total de dos condensadores conectados en paralelo es de 40 μf, sabiendo que uno de ellos tiene 10 μf. Que valor tendrá el otro condensador? Resolución C E = 40 μf =

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La

Más detalles

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

0,7m.

0,7m. 1. Dos pequeñas esferas de plata, cada una con una masa de 10 g. están separadas 1 m. Calcule la fracción de electrones de una esfera que deberá ser transferida a la otra a fin de producir una fuerza de

Más detalles

PROGRAMA INSTRUCCIONAL FÍSICA II

PROGRAMA INSTRUCCIONAL FÍSICA II UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE MANTENIMIENTO MECÁNICO PROGRAMA INSTRUCCIONAL FÍSICA II CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3034 GRADO: ING. EN COMPUTACIÓN, TERCER SEMESTRE TIPO DE TEÓRICA / PRÁCTICA ANTECEDENTE CURRICULAR: 304.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Electricidad y Magnetismo. Dr. Arturo Redondo Galván 1

Electricidad y Magnetismo. Dr. Arturo Redondo Galván 1 lectricidad y Magnetismo 1 UNIDAD I Conocer y comprender la teoría básica de la electrostática, la carga eléctrica, la materia, sus manifestaciones microscópicas y macroscópicas, la fuerza, el campo, el

Más detalles

CONSTANTE DIELÉCTRICA

CONSTANTE DIELÉCTRICA ONSTANTE DIELÉTRIA. OBJETIVO En esta práctica se calculará experimentalmente el valor de la constante eo (permitividad del espacio libre), y se estudiará un material dieléctrico determinándose su constante

Más detalles

Corriente Directa. La batería se define como fuente de fem

Corriente Directa. La batería se define como fuente de fem Capítulo 28 Circuitos de Corriente Directa Corriente Directa Cuando la corriente en un circuito tiene una magnitud y una dirección ambas constantes, la corriente se llama corriente directa Como la diferencia

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación

Más detalles

PROGRAMA DE ASIGNATURA ELECTRICIDAD Y MAGNETISMO CAMPO Y POTENCIAL ELECTRICOS CAPACITANCIA Y DIELECTRICOS. CIRCUITOS ELECTRICOS MAGNETOSTATICA

PROGRAMA DE ASIGNATURA ELECTRICIDAD Y MAGNETISMO CAMPO Y POTENCIAL ELECTRICOS CAPACITANCIA Y DIELECTRICOS. CIRCUITOS ELECTRICOS MAGNETOSTATICA PROGRAMA DE ASIGNATURA ELECTRICIDAD Y MAGNETISMO I II III IV V VI CAMPO Y POTENCIAL ELECTRICOS CAPACITANCIA Y DIELECTRICOS CIRCUITOS ELECTRICOS MAGNETOSTATICA INDUCCION ELECTROMAGNETICA PROPIEDADES MAGNETICAS

Más detalles

DISEÑO CURRICULAR FÍSICA II

DISEÑO CURRICULAR FÍSICA II DISEÑO CURRICULAR FÍSICA II FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE PRE-REQUISITO 123343 02 02 03 III FÍSICA I ELABORADO

Más detalles

No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos

No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos No 10 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Determinar la constante de tiempo RC, utilizando valores calculados

Más detalles

6.3 Condensadores y dieléctricos.

6.3 Condensadores y dieléctricos. 6.3 Condensadores y dieléctricos. 6.3.1 CONCEPTO DE DIPOLO. MATERIALES DIELÉCTRICOS. Un material mal conductor o dieléctrico, no posee cargas libres, al contrario de un material conductor, como por ejemplo

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad

Más detalles

Corriente continua : Condensadores y circuitos RC

Corriente continua : Condensadores y circuitos RC Corriente continua : Condensadores y circuitos RC Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos introducción Condensadores Energia electroestática Capacidad Asociación

Más detalles

Práctica 3 de Física General (Curso propedéutico 2_2007)

Práctica 3 de Física General (Curso propedéutico 2_2007) Práctica 3 de Física General (Curso propedéutico 2_2007) 1.- Si los valores de las cargas Q1, Q2, Q3 son de 30 C; 100 C y 160 C respectivamente, determinar la fuerza eléctrica resultante que actúa sobre

Más detalles

Capacitores e Inductores

Capacitores e Inductores Capacitores e Inductores Introducción Resistor: es un elemento lineal pasio que disipa energía únicamente. Existen otros dos elementos lineales pasios: Capacitor Inductor Tanto el capacitor como el inductor

Más detalles

LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO

LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO Introducción La capacitancia es el resultado de la diferencia de potencial entre los conductores y origina que ellos se carguen de la misma

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la

Más detalles

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala

Más detalles

EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Electricidad y Magnetismo Ingeniería Electromecánica EMM - 0514 3 2 8 2.- HISTORIA

Más detalles

Electricidad y Magnetismo

Electricidad y Magnetismo UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: Electricidad y Magnetismo IDENTIFICACIÓN

Más detalles

E 4.0. EJERCICIOS DE EXAMEN

E 4.0. EJERCICIOS DE EXAMEN E 4.0. EJERCICIOS DE EXAMEN E 4.0.01. El campo eléctrico producido por un anillo circular uniformemente cargado, en un punto cualquiera sobre su eje es (ver figura 1 Qz izquierda) E = k [N/C]. A 2 2 3

Más detalles

3. Explicar el funcionamiento y aplicación de los circuitos eléctricos básicos.

3. Explicar el funcionamiento y aplicación de los circuitos eléctricos básicos. Código-Materia: 11239 - ELECTRICIDAD-MAGNETISMO Y LABORATORIO Requisito: PRE: 11238 Física y Laboratorio COR: 11316 Espacio de Laboratorio de Electricidad y Magnetismo Programa Semestre: Ingenierías: Telemática,

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA ELECTRICIDAD TEORÍA Establezca las siguientes definiciones o conceptos: 1.- Carga. 2.- Ley de Coulomb. 3.- Ley de Conservación

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

MICRODISEÑO CURRICULAR Nombre del Programa Académico

MICRODISEÑO CURRICULAR Nombre del Programa Académico 1. IDENTIFICACIÓN Asignatura Física de Campos Área Ciencias Básicas Nivel IV Código FCX 44 Pensum Correquisito(s) Prerrequisito(s) FMX23, CIX23 Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 2. JUSTIFICACIÓN. El

Más detalles

Aplicar la ley de ohm, en el desarrollo de ejercicios..

Aplicar la ley de ohm, en el desarrollo de ejercicios.. Corriente eléctrica Aplicar la ley de ohm, en el desarrollo de ejercicios.. En términos simples, la electricidad corresponde al movimiento de cargas eléctricas. Las cargas que pueden moverse son los electrones

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

FACULTAD DE INGENIERÍAS Y ARQUITECTURA FISICA III SÍLABO CARRERA PROFESIONAL : INGENIERIA ELECTRÓNICA Y TELECOMUNICACIONES CODIGO CARRERA PRO.

FACULTAD DE INGENIERÍAS Y ARQUITECTURA FISICA III SÍLABO CARRERA PROFESIONAL : INGENIERIA ELECTRÓNICA Y TELECOMUNICACIONES CODIGO CARRERA PRO. FISICA III SÍLABO I.- DATOS GENERALES CARRERA PROFESIONAL : INGENIERIA ELECTRÓNICA Y CODIGO CARRERA PRO. : 29 ASIGNATURA : FÍSICA III CODIGO DE ASIGNATURA : 2902-29210 CÓDIGO DE SÍLABO : 2921030072014

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica.

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física III Ingeniería Mecánica MCT - 0514 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Física 3 ECyT UNSAM Capacitores y dieléctricos. Capacitores. Docentes: Gerardo García Bemudez Salvador Gil

Física 3 ECyT UNSAM Capacitores y dieléctricos. Capacitores.  Docentes: Gerardo García Bemudez Salvador Gil Física 3 ECyT UNSAM 1 Clases 5 Capacitores y dieléctricos Introducción al electromagnetismo Docentes: Gerardo García Bemudez Salvador Gil www.fisicarecreativa.com/unsam_f3 1 Capacitores y dieléctricos

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INGENIERÍA EN COMPUTACIÓN

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INGENIERÍA EN COMPUTACIÓN ASIGNATURA: Electricidad y Magnetismo (L) CARÁCTER: Obligatoria TIPO MODALIDAD: UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO ASIGNATURA(S) INDICATIVA(S) PRECEDENTE(S): ASIGNATURA(S) INDICATIVA(S) SUBSECUENTE(S):

Más detalles

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones Universidad Nacional Autónoma de Honduras Escuela de Física Electricidad y magnetismo II Fs-415 Filtros Eléctricos y sus aplicaciones Introducción: Todo circuito eléctrico que tenga incluidas capacitancias

Más detalles

Universidad de Guanajuato Tronco Común de Ingenierías

Universidad de Guanajuato Tronco Común de Ingenierías Universidad de Guanajuato Ingenierías Objetivo del Área: Al finalizar los cursos de Física del Ingenierías, el alumno será capaz de aplicar las leyes fundamentales de la Física en la resolución de problemas

Más detalles

Estudio de capacitores Fabián Shalóm Tomás Corti Ramiro Olivera

Estudio de capacitores Fabián Shalóm Tomás Corti Ramiro Olivera Trabajo Práctico N o 4 Estudio de capacitores Fabián Shalóm (fabianshalom@hotmail.com) Tomás Corti (tomascorti@fibertel.com.ar) Ramiro Olivera (ramaolivera@hotmail.com) Mayo de 2004 Cátedra de Física II

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4 Universidad de Alcalá Departamento de Física Solución del Ejercicio propuesto del Tema 4 1) La figura muestra un condensador esférico, cuyas armaduras interna y externa tienen radios R i 1 cm y R e 2 cm.

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Circuitos RC y RL. Circuitos de Segundo Orden. Capacitores y Circuitos RC. El Capacitor. El capacitor es un elemento pasivo capaz de almacenar y suministrar cantidades finitas

Más detalles

CONDENSADORES DIELECTRICOS Y POLARIZACIÓN

CONDENSADORES DIELECTRICOS Y POLARIZACIÓN UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA III CONDENSADORES DIELECTRICOS Y POLARIZACIÓN AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PERÚ 2010 I. INTRODUCCIÓN

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION DOCENTE: TEMA: TURNO: ALUMNOS: UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRICA LABORATORIO Nº 5 FISICA III CICLO: 2009-A JUAN

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA 1. Un conductor esférico de radio a y carga Q es concéntrico con un cascaron esférico más grande de radio b y carga Q, como se muestra en la figura. Encuentre

Más detalles

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ FACULTAD DE CIENCIAS

UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ FACULTAD DE CIENCIAS UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ FACULTAD DE CIENCIAS Av. Dr. Salvador Nava Mtz. S/N Zona Universitaria Teléfono 8-26-23-17, Fax 8-26-23-21 web www.fciencias.uaslp.mx, email escolar@fc.uaslp.mx

Más detalles

PROBLEMAS ELECTROESTÁTICA

PROBLEMAS ELECTROESTÁTICA POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad

Más detalles

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto 2. Conductores y dieléctricos. Capacidad, condensadores. Energía electrostática. 24. Cargamos un condensador de 100 pf hasta que adquiere una ddp de 50 V. En ese momento desconectamos la batería. Conectamos

Más detalles

Física III. Carrera: Ingeniería Naval NAT Participantes. Comité de Consolidación de la carrera de Ingeniería Mecánica.

Física III. Carrera: Ingeniería Naval NAT Participantes. Comité de Consolidación de la carrera de Ingeniería Mecánica. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física III Ingeniería Naval NAT - 0618 2-3-7 2.- HISTORIA DEL PROGRAMA Lugar y

Más detalles

FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA

FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA Página 1 de 5 FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA CURSO: ELECTROMAGNETISMO CODIGO: 157009 AREA: CIENCIAS

Más detalles

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Educación. Programa de Asignatura

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Educación. Programa de Asignatura UNIVERSIDAD DEL CARIBE UNICARIBE Escuela de Educación Programa de Asignatura Nombre de la asignatura : Física y Laboratorio de Física IV Carga académica : 4 créditos Modalidad : Semipresencial Clave :

Más detalles

INDICE SECCION PAGINA. Indice Introducción Que es un condensador y. como funciona? Tipos de Condensadores... 6

INDICE SECCION PAGINA. Indice Introducción Que es un condensador y. como funciona? Tipos de Condensadores... 6 INDICE SECCION PAGINA Indice........ 1 Introducción....... 2 Que es un condensador y como funciona?...... 3 Tipos de Condensadores.... 6 Condensadores en serie.... 7 Ejemplares de Condensadores... 8 Conclusión.......

Más detalles

CURVA DE CARGA DE LOS CAPACITORES

CURVA DE CARGA DE LOS CAPACITORES Almaraz Martínez Juan Carlos, Alcántara Gavilán Brandon, Mondragón Rodríguez Alejandra, López Pascual L. Antonio, García Casas A. Valentin. CURVA DE CARGA DE LOS CAPACITORES Resumen: Por medio de diferentes

Más detalles

TRAZADO DE LÍNEAS EQUIPOTENCIALES

TRAZADO DE LÍNEAS EQUIPOTENCIALES TRAZADO DE LÍNEAS EQUIPOTENCIALES Nota: Traer, por comisión, dos hojas de papel carbónico de x 30 cm c/u, una hoja A3 o similar de 5 x 30 cm un pendrive o cualquier otro tipo de dispositivo estándar de

Más detalles

q q CAPACIDAD El condensador. U U U U = C = constante C= V ==> = cb V = (F) FARADIO tambien = C. U = (cb) y U = C = (V)

q q CAPACIDAD El condensador. U U U U = C = constante C= V ==> = cb V = (F) FARADIO tambien = C. U = (cb) y U = C = (V) 1 CAPACIDAD El condensador. Dos placas de metal, separadas por un dialéctico o aislador, forman un condensador, o capacitor, o sea un dispositivo ue tiene la capacidad de almacenar electricidad, como un

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

CAPACITANCIA Y ARREGLOS DE CAPACITORES. Ejercicios de Capacitancia

CAPACITANCIA Y ARREGLOS DE CAPACITORES. Ejercicios de Capacitancia APAITANIA Y ARREGLOS DE APAITORES Ejercicios de apacitancia.- Las placas de un capacitor tienen un área de 0.04 m y una separación de aire de mm. La diferencia de potencial entre las placas es de 00 V.

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

SILABO I. DATOS GENERALES

SILABO I. DATOS GENERALES SILABO I. DATOS GENERALES 1. Nombre de la Asignatura : FÍSICA III 2. Carácter : Obligatorio. 3. Carrera Profesional : Ingeniería Mecánica y Eléctrica. 4. Código : IM0506 5. Semestre Académico : 2013-II

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

Cuando dos condensadores se conectan en serie, almacenan la misma carga Q:

Cuando dos condensadores se conectan en serie, almacenan la misma carga Q: CONSTANTE DIELÉCTRICA. OBJETIVO En esta práctica se calculará experimentalmente el valor de la constante eo (permitividad del espacio libre), y se estudiará un material dieléctrico determinándose su constante

Más detalles

Carga y descarga de un capacitor en un circuito RC

Carga y descarga de un capacitor en un circuito RC Carga y descarga de un capacitor en un circuito RC Informe Laboratorio Curso Física II Catherine Andreu, María José Morales, Gonzalo Núñez, and Clío Peirano Ing. en Biotecnología Molecular. * Facultad

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR

DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR DETERMINAR LA CAPACITANCIA DE UN CONDENSADOR OBJETIVOS: Comprobar el valor del condensador dado sus valores nominales. Tener cuidado con los instrumentos y equipos de laboratorio, por el valor de su magnitud.

Más detalles