La Derivada de un Número No es 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La Derivada de un Número No es 0"

Transcripción

1 Memoras II Encuentro Internaconal De Meta-Matemátcas: La Dervada de un Número No es 0 Geraldne Marcela Infante Jorge Danel Muñoz Alex Eduardo Poveda Gruo YAGLOM Escuela de Matemátcas Unversdad Sergo Arboleda Resumen En el resente artculo se ntroduce una defncón de dervada ara enteros y algunas de sus roedades elementales. Esta defncón, a dferenca de la dervada vsta como un oerador sobre el conjunto de las funcones, que sobre números es semre cero, muestra roedades muy mortantes. Esta defncón cumle en artcular que la dervada de un roducto satsface la regla de Lebnz. Sn embargo, la lnealdad no se tene, aún así, con esta defncón se ueden encontrar roedades que ermten el trabajo con ecuacones dferencales sencllas en el conjunto de los enteros. 1. Introduccón La dervada es un oerador lneal que se trabaja sobre el conjunto de las funcones, sn embargo, al alcar este oerador a los números no se obtenen resultados muy nteresantes, ues es ben sabdo que la dervada de todo número real x es cero, en artcular de todo entero. Es así como el objetvo de este trabajo es resentar una defncón de un oerador nsrado en la dervada, sobre el conjunto de los enteros, ncalmente rouesto or Ufnarovsk, V. y Ahlander, B.[1]. El cual tambén ha sdo estudado en [2], [3] y [4]. Con esta defncón se obtenen algunos resultados que ermten trabajar la dervada de forma elemental, lo cual uede restarse ara ser trabajado con los nños y nñas nteresados en las matemátcas. 2. La Dervada de un Número Para defnr la dervada de un entero n, denotado or n, se utlzarán dos rncos báscos: 1. = 1 ara cualquer rmo. 2. (ab) = a b+ab ara cualquer a,b Z + (Regla de Lebnz). Ejemlo = (2 5) = = 5+2 = 7. 8 = (2 2 2) = 2 (2 2)+2 (2 2) = 4+2( ) = 4+2(2+2) = 12. En el cuadro 1 se resenta la rmera (n ), segunda (n = (n ) ) y tercera (n = (n ) ) dervadas de los rmeros números. 1

2 n n n n Cuadro 1: Prmera, segunda y tercera dervada de los rmeros números. 3. Proedades Báscas Esta defncón de dervada ermte conservar algunas roedades naturales de la dervada, como las sguentes. Teorema 1. (n k ) = kn k 1 n ara todo n,k N. Demostracón. Estosedemuestraornduccónsobrek.Parak = 1,n = 1 n 1 1 n.suongamos que se tene ara k, es decr que (n k ) = kn k 1 n y demostremos ara k +1. Tenemos que: Que es lo que se quería robar. (n k+1 ) = (n n k ) Ejemlo 2. 8 = (2 3 ) = = 3 4 = 12. = n n k +n (n k ) = n n k +n (kn k 1 n ) = n n k +(kn k n ) = n (n k +kn k ) = ((k +1)n k ) n Como es ben sabdo, la dervada de la suma (vsta como un oerador sobre funcones) es la suma de las dervadas, ero esta roedad no se uede conservar con esta defncón, ues la dervada de cualquer número sería 0. En efecto, del resultado anteror se tendría que 1 = 0, ues 1 = 1 2, así 1 = 2 1 1, de este modo 1 = 0. De allí que la dervada de la suma (vsta como un oerador sobre los enteros) no sea la suma de las dervadas, de otro modo, n = ( ) = = 0, es decr la lnealdad como una roedad general no se conserva. Sn embargo, se tene la sguente roedad: Teorema 2. S (a+b) = a +b entonces (ka+kb) = (ka) +(kb) Demostracón. Por la regla de Lebnz se tene que: (ka+kb) = (k(a+b)) = k (a+b)+k (a+b) = k a+k b+k a +k b = (k a+k a )+(k b+k b ) = (ka) +(kb) Ejemlo 3. 3 = (1+2) = 1 = 1 +2, así ara k = 4 se tene que 12 = (4+8) = 4 +8 = 4+12 = 16.

3 Aún exste una dfcultad y es la forma de calcular la dervada de un número sn necesdad de alcar la regla del roducto, que en algunos casos uede resultar algo tedoso. Para ello exste una fórmula general que ermte obtener la dervada de un número de una forma más senclla, como se muestra en el sguente teorema. Teorema 3. Sea n N y n = k n su descomoscón en factores rmos entonces: n = n Demostracón. Hay que verfcar la consstenca de esta defncón ) con los dos rncos ncales. Veamos que la dervada de un rmo es 1. En efecto, = ( 1 = 1. Falta verfcar que cumle la regla de Lebnz. S algún n = 0, entonces la fórmula no se ve afectada 1. Sean a = k y b = k k n b, or el razonamento anteror se ueden suoner los msmos rmos en ambas factorzacones, con 0 en algunos exonentes, sn que se vea alterada la dervada. De esta forma: (a b) = ( = ( a a +b ) b ) k a +b = a b ( k ) a k b = a b + ( ) ( k k ) a b = a b+b a = a b+a b a Ejemlo = ( ) = 60 ( ) = = 92. Teorema 4. S n = m, ara algún entero m > 1 entonces n = (m+m ). Demostracón. Al alcar la regla del roducto se obtene que: n = ( ) m+m = (m +m). Ejemlo 5. S n = 54, n = y n = 27(2+1) = Por ejemlo 4 = y alcando la fórmula se uede ver que 4 = 4 ( ) = 4, lo cual es consstente con la defncón.

4 Tambén se tene que: Teorema 5. S k es la mayor otenca de que dvde a n y 0 < k <, entonces k 1 es la mayor otenca de que dvde a n. Demostracón. Como k n entonces n = k m luego n = k k 1 m+ k m = k 1 (km +m ). Como k < y es rmo, la exresón dentro del aréntess no es dvsble or, s lo fuera, km sería dvsble or, de ser así m sería dvsble or y or lo tanto la máxma otenca de que dvde a n no sera k. Con base en lo anteror se uede conclur el sguente corolaro: Corolaro 1. Un entero n es lbre de cuadrados 2 s y sólo s (n,n ) = 1. Demostracón. Prmero se robará que s (n,n ) = 1 entonces n es lbre de cuadrados. Suongamos que no lo fuera, luego exste tal que 2 n, or lo tanto n y así (n,n ) > 1, lo cual es contradctoro. Recírocamente, suongamos que (n,n) 1, entonces exste tal que n y n así 2 n, lo cual es una contradccón. Ejemlo = 2 3 5, entonces 30 es lbre de cuadrados, 30 = 31 y (30,31) = Ecuacones Dferencales Al gual que en el trabajo con funcones, es osble lantear ecuacones dferencales con la dervada de números. En el resente artículo se trabajaran los dos casos más sencllos. El rmero es n = n. Teorema 6. Sea n Z entonces n = n s y sólo s n = ara algún rmo. Demostracón. Demostremos la rmera mlcacón. En efecto, sí n entonces n, ues s fuera k con k < la máxma otenca de que dvde a n, entonces k 1 sería la máxma otenca de que dvde a n, rovocando que n n. De este modo n = m. Veamos que m = 1. Se tene que n = ( ) m+ m = (m+m ), luego m = m+m, así m = 0 y m = 1. El recroco es nmedato al dervar, ues ( ) = 1 =. Algunos números que cumlen con esta roedad son: 4 = 2 2,27 = 3 3,3125 = 5 5,... La otra ecuacón dferencal a trabajar es n = a. S a = 0 obtenemos una únca solucón, n = 1, ues la dervada de cualquer otro número es mayor o gual a 1. S a = 1 entonces la solucón de la ecuacón son números rmos, ya que s el número fuera comuesto or la regla del roducto, la dervada se odría escrbr como la suma de dos enteros ostvos mayores que 1. A contnuacón se analza el caso en el cual n no es un rmo. S n no es un rmo entonces n 2 n. Partendo de lo anteror se uede conclur que s a > 1 y la ecuacón n = a tene solucón, entonces tene un conjunto fnto de solucones. En efecto, como n no es rmo entonces n 2 n, así a 2 n y or lo tanto a2 4 n, lo que ermte reducr las osbles solucones de la ecuacón. Conjetura 1. S a es ar, es decr s n = 2b entonces la ecuacón semre tene solucón. 2 Un número se dce lbre de cuadrados s nnguno de sus dvsores es un cuadrado erfecto.

5 S la conjetura de Goldbach 3 es certa entonces 2b = +q, donde y q or lo cual n = q es solucón de la ecuacón. Ejemlo 7. Sí n = 12, como 12 = 5+7, entonces n = 5 7 = 35 es solucón de la ecuacón. Teorema 7. S a es mar, se uede garantzar la exstenca de la solucón s a = +2 donde es rmo. Demostracón. Es nmedato, ues n = 2 es solucón de la ecuacón. Ejemlo 8. Suongamos que a = 15, así a = 13+2 y or lo tanto n = 13 2 = 26 es solucón. 5. Conclusones Este es sólo un ejemlo de como un conceto básco del cálculo dferencal, como lo es la dervada de una funcón, uede ser trabajado a un nvel elemental, s se defne sobre el conjunto de los enteros, obtenéndose roedades smlares a las de la dervada de una funcón, sn la necesdad de manejar concetos matemátcos muy avanzados. Esta dea se ha vendo trabajando en el marco del Gruo YAGLOM de la Escuela de Matemátcas de la Unversdad Sergo Arboleda, ara su trabajo de matemátca. el emental (en el sentdo de [4], es decr aquellas que se ueden trabajar con los nños y nñas de las escuelas) con los nños del gruo de talentos. Referencas [1] Ufnarovsk, V., Ahlander, B. How to Dfferentate a Number. Journal of Integer Sequences. Vol [2] Cohen, G.L. Iannucc, D.E., Derved Sequences, Journal of Integer Sequences., Vol. 6, [3] Hare, K., Yazdan, S., Further Results on Derved Sequences, Journal of Integer Sequences., Vol. 6, [4] Perez, J., et al., Cuatro Prouestas Ddáctcas en Matemátcas.Ed. U.S.A., Bogotá, Todo número ar mayor que tres es suma de dos rmos

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

TEORIA DE LOS NUMEROS

TEORIA DE LOS NUMEROS TEORIA DE LOS NUMEROS Introduccón La teoría de los números es, dentro de las matemátcas, la encargada de estudar las roedades de los enteros, es decr, la ardad, adtvdad, rmaldad, multlcdad dvsbldad En

Más detalles

LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional. álgebra LENGUAJES FORMALES Y AUTÓMATAS. computacional LENGUAJES FORMALES Y AUTÓMATAS

LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional. álgebra LENGUAJES FORMALES Y AUTÓMATAS. computacional LENGUAJES FORMALES Y AUTÓMATAS . bblografía CONTENIDO Defncón de [G8.]. Estructuras algebracas: monodes, semgruos, gruos, [G8.], anllos, cueros [H.]. Subgruos, somorfsmo entre gruos [G8.]. Álgebras concretas y abstractas [H.3]. Álgebras

Más detalles

Contactar:

Contactar: Mecánca Teórca Mao 009 Tema: Transformacones Canóncas Contactar: telegama@gmal.com Una transformacón canónca es un cambo de las coordenadas generalzadas tal ue dan lugar a un nuevo amltonano ( amltonano

Más detalles

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos.

PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos. ROILIDD Álgebra de sucesos. Un fenómeno o exerenca se dce que es aleatoro cuando al reetrlo en condcones análogas es mosble de redecr el resultado. El conjunto de todos los resultados osbles de un exermento

Más detalles

Estadística aplicada a las ciencias sociales. Examen Febrero de 2008 primera semana

Estadística aplicada a las ciencias sociales. Examen Febrero de 2008 primera semana Estadístca alcada a las cencas socales. Examen Febrero de 008 rmera semana Ejercco. - En la sguente tabla, se reresentan los datos de las edades de los trabajadores de una gran emresa. Gruos de edad Nº

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas . Dferencas Fntas Dferencas Fntas. Introduccón La técnca de las dferencas fntas fue la prmera técnca ue surgó para resolver problemas práctcos en ngenería. Ho en día ésta técnca a está obsoleta con lo

Más detalles

Propiedades Asintóticas

Propiedades Asintóticas Capítulo 3 Propedades Asntótcas 3.. Dstrbucones Estaconaras Defncón 3. Sea X n, n, una cadena de Markov con espaco de estados E y matrz de transcón P. Sea π(), E, una dstrbucón de probabldad, es decr,

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

Capítulo V. Teoremas de Fermat, Euler y Wilson

Capítulo V. Teoremas de Fermat, Euler y Wilson Capítulo V Teoremas de Fermat, Euler y Wlson En este capítulo utlzamos los conceptos desarrollados en dvsbldad y conteo para deducr tres teoremas báscos de la teoría de números. En el próxmo capítulo,

Más detalles

Guía de Equilibrio General. Ejercicio extraído de Mas-Colell, Whinston y Green, con algunas modificaciones

Guía de Equilibrio General. Ejercicio extraído de Mas-Colell, Whinston y Green, con algunas modificaciones Guía de Equlbro General Ejercco extraído de Mas-Colell, Whnston y Green, con algunas odfcacones - Consdere una econoía caja de Edgeworth en que dos consudores tenen referencas con no sacedad local. Sea

Más detalles

16.36: Ingeniería de sistemas de comunicación. Clase 5: Codificación de la fuente

16.36: Ingeniería de sistemas de comunicación. Clase 5: Codificación de la fuente 6.36: Ingenería de sstemas de comuncacón Clase 5: Codfcacón de la fuente Slde Codfcacón de la fuente Alfabeto de fuente {a..a N } Codfcar Alfabeto de canal {c..c N } Símbolos de la fuente Letras del alfabeto,

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

ANEXO B: EXACTITUD Y PRECISIÓN ESTRATIFICACIÓN Y OTROS TÓPICOS

ANEXO B: EXACTITUD Y PRECISIÓN ESTRATIFICACIÓN Y OTROS TÓPICOS Unversdad écnca Federco Santa María Deartamento de Matemátca Renato Allende Olvares Humberto Vllalobos orres ANEXO B: EXACIUD Y PRECISIÓN ESRAIFICACIÓN Y OROS ÓPICOS I.- EXACIUD Y PRECISIÓN Al recolar

Más detalles

SOBRE CIERTAS REDES DE UNIDADES DINÁMICAS ACOPLADAS POR IMPULSOS

SOBRE CIERTAS REDES DE UNIDADES DINÁMICAS ACOPLADAS POR IMPULSOS SOBRE CIERTAS REDES DE UNIDADES DINÁMICAS ACOPLADAS POR IMPULSOS ELEONORA CATSIGERAS Presentacón en IV Coloquo de Matemátca, del 18 al 20 de dcembre, 2013 Se presentará un modelo matemátco abstracto de

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2 13. Consdere un mercado en el que hay dos consumdores con las sguentes funcones de utldad: U 1 (x 1,y 1 = 4x 1 (x 1 + y 1 ; U (x,y = ax (x + y con 4 > a >0 donde x, =1,, es la cantdad del ben x consumda

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

Principio del palomar

Principio del palomar Prncpo del palomar Juana Contreras S. Claudo del Pno O. Insttuto de Matemátca y Físca Unversdad de Talca Introduccón Cuando se reúnen 367 personas, es seguro que debe haber al menos dos personas que cumplen

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

Algoritmos matemáticos para:

Algoritmos matemáticos para: Algortmos matemátcos para: sstemas de ecuacones lneales, nversón de matrces y mínmos cuadrados Jose Agular Inversón de matrces Defncón(Inversadeunamatrz):SeaAunamatrz nxn.unamatrzcde nxn esunanversadeascaaci.

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

Existencia y unicidad de solución de una ecuación diferencial parcial no lineal estacionaria del tipo elíptico

Existencia y unicidad de solución de una ecuación diferencial parcial no lineal estacionaria del tipo elíptico Agrondustral Scence Agrond Sc 5 (05) Escuela de Ingenería Agrondustral Unversdad Naconal de Trujllo Exstenca uncdad de solucón de una ecuacón dferencal parcal no lneal estaconara del tpo elíptco Exstence

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

PRELIMINARES. ab bc aec ac H. a b S / b a.

PRELIMINARES. ab bc aec ac H. a b S / b a. Introduccón Cuando un novel estudante de álgebra abstracta se enfrenta a expresones como grupo cocente, espaco cocente, cree y con justfcada razón, que se enfrentará a conjunto de cocentes, fnalmente se

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Números de Bernoulli y números de Stirling

Números de Bernoulli y números de Stirling Números de Bernou y números de Strng Aexey Beshenov (cadadr@gma.com 2 de Marzo de 27 Dgresón combnatora: os números de Strng Nuestro próxmo objetvo es obtener agunas expresones para os números de Bernou

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

IV. JUEGOS ESTÁTICOS DE INFORMACION INCOMPLETA

IV. JUEGOS ESTÁTICOS DE INFORMACION INCOMPLETA Notas de clase de Teoría de Juegos - Marcela Eslava 35 IV. JUEGOS ESTÁTICOS DE INFORMACION INCOMPLETA Son juegos en los cuales al menos uno de los jugadores tene nformacón ncomleta sobre la funcón objetvo

Más detalles

LAS FÓRMULAS DEL AGREGADO ELEMENTAL DE UN ÍNDICE DE PRECIOS DE CONSUMO DESDE EL ENFOQUE ECONÓMICO. UNA NUEVA PROPUESTA

LAS FÓRMULAS DEL AGREGADO ELEMENTAL DE UN ÍNDICE DE PRECIOS DE CONSUMO DESDE EL ENFOQUE ECONÓMICO. UNA NUEVA PROPUESTA LAS FÓRMULAS DEL AGREGADO ELEMENTAL DE UN ÍNDCE DE PRECOS DE CONSUMO DESDE EL ENFOQUE ECONÓMCO. UNA NUEVA PROPUESTA Santago Rodríguez Fejoó Deartamento de Métodos Cuanttatvos en Economía y Gestón Unversdad

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

CALCULO DE INTERSECCIONES TOPOGRAFICAS UTILIZANDO EL PROMÉDIO PONDERADO

CALCULO DE INTERSECCIONES TOPOGRAFICAS UTILIZANDO EL PROMÉDIO PONDERADO CALCULO DE INERSECCIONES OOGRAFICAS UILIZANDO EL ROMÉDIO ONDERADO Irneu da Slva Dego de Olvera Martns aulo Cesar Lma Segantne Deartamento de Engenhara de ransortes EESC US - Brasl rneu@sc.us.br degoolmartns@us.br

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

TEMA 6 CUESTIONARIO DE AUTOEVALUACIÓN

TEMA 6 CUESTIONARIO DE AUTOEVALUACIÓN 6.2.- Un emleado ercbe anualmente un salaro bruto de 2.200.000 euros, del ue hacenda le retene el 15%. S se roduce un ncremento salaral del 3,5% Cuál será su sueldo neto?. 1.929.510 1.935.450 2.277.000

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

Clase 3: Teorema de Fundamental de la Aritmética

Clase 3: Teorema de Fundamental de la Aritmética Clase 3: Teorema de Fundamental de la Aritmética Dr. Daniel A. Jaume, * 12 de agosto de 2011 1. Primos Definición 1.1 Un entero ositivo se dice que es un número rimo si tiene exactamente 2 divisores ositivos

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Expresiones Regulares. Lenguaje definido por una ER. Ejemplos de expresiones regulares. Lenguajes regulares

Expresiones Regulares. Lenguaje definido por una ER. Ejemplos de expresiones regulares. Lenguajes regulares Paso básco: Expresones Regulares Ø es una expresón regular es una expresón regular s Σ, s es una expresón regular Paso de nduccón: unón, concatenacón y clausura S y β son expresones regulares β es una

Más detalles

CONTROL DE PROCESOS QUÍMICOS

CONTROL DE PROCESOS QUÍMICOS UNIVESIDAD NACIONAL EXPEIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCE VICEECTOADO BAQUISIMETO DEPATAMENTO DE INGENIEÍA QUÍMICA CONTOL DE POCESOS QUÍMICOS Prof: Ing. (MSc). Juan Enrque odríguez C. Octubre, 03

Más detalles

Inducción Matemática

Inducción Matemática Induccón Matemátca José Espnosa 30 de Octubre de 001 1 Problemas de Induccón Matemátca. 1. Sea: p 1 F (n) = k n(p 1)+1 n(n 1) p 1 (k p 1 3k ) p(p 1)(n(p 1) + 1)) Demostrar por nduccón que F (n) es dvsble

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

PROPIEDADES TOPOLÓGICAS DE LA LÍNEA KHALIMSKY

PROPIEDADES TOPOLÓGICAS DE LA LÍNEA KHALIMSKY PROPIEDADES TOPOLÓGICAS DE LA LÍNEA KHALIMSKY Erc Antono Acevedo Unversdad de Panamá, Facultad de Cencas Naturales, Exactas y Tecnología Departamento de Matemátca. E-mal: erc.acevedo@utp.ac.pa RESUMEN

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

Para un dado que no está cargado asignamos equiprobabilidad a los valores posibles de la variable aleatoria X:

Para un dado que no está cargado asignamos equiprobabilidad a los valores posibles de la variable aleatoria X: 7. Varables Aleatoras 57 Defnr una varable aleatora en un eermento aleatoro consste en asocar un valor numérco a cada suceso elemental del eermento. Interesa fundamentalmente asgnar robabldades a dchos

Más detalles

Teoría de Elección Social

Teoría de Elección Social Teoría de Eleccón Socal Hemos vsto que las asgnacones del mercado, bajo certas condcones, son efcentes. Sn embargo, exsten otras consderacones mportantes sobre las característcas de dcha asgnacón (dstrbucón,

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

Reciprocidad Cuadrática

Reciprocidad Cuadrática Caítulo 4 Recirocidad Cuadrática En este caítulo estudiamos una serie de resultados dirigidos a demostrar la Ley de Rerocidad Cuadrática, la cual fue robada or Gauss en su libro Disquisitiones Arithmeticae

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

Ecuación de Lagrange

Ecuación de Lagrange Capítulo 6 Ecuacón de Lagrange 6. Introduccón a las ecuacones de Lagrange La mecánca que nos presenta Lagrange en su Mécanque Analytque sgnfca un salto conceptual muy grande respecto de la formulacón Newtonana.

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2. Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Físca largoju at uncan.es J. Largo & J.R. Solana solanajr at uncan.es Departamento de Físca Aplcada Unversdad de Cantabra Indce I Estadstcas Dstrbucones para los sstemas cuántcos

Más detalles

Sumas de potencias de números naturales y los números de Bernoulli

Sumas de potencias de números naturales y los números de Bernoulli Sumas de potencas de números naturales y los números de Bernoull Alexey Beshenov (cadadr@gmal.com 4 de Febrero de 07 La suma de n números naturales consecutvos puede ser calculada medante la fórmula +

Más detalles

SOBRE LAS REPRESENTACIONES MODULARES DE GRUPOS FINITOS.

SOBRE LAS REPRESENTACIONES MODULARES DE GRUPOS FINITOS. SOBRE LAS REPRESENTACIONES MODULARES DE GRUPOS FINITOS. PEDRO DOMÍNGUEZ WADE Abstract. En este trabajo se exponen algunos resultados referentes a las representacones de un grupo fnto sobre anllos fntos

Más detalles

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal Solucón de los Ejerccos de ráctca # 1 Econometría 1 rof. R. Bernal 1. La tabla de frecuencas está dada por: Marca A Marca B

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa

Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa Geometría Axomátca de la Convexdad Parte II: Axomátca de Cápsula convexa Juan Carlos Bressan Resumen En la Parte I estudamos una axomátca de segmentos, en la que defnmos los convexos y estudamos sus propedades

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Milton Medeiros. Departamento de Fisicoquímica, Facultad de Química Universidad Nacional Autónoma de México

Milton Medeiros. Departamento de Fisicoquímica, Facultad de Química Universidad Nacional Autónoma de México Notas del Curso Equlbro Termodnámco Mlton Mederos Deartamento de Fscoquímca, Facultad de Químca Unversdad Naconal utónoma de Méxco Notas de Curso Equlbro Termodnámco Contendo. Condcones y Crteros de Equlbro

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

UNIDAD 2: NÚMEROS COMPLEJOS

UNIDAD 2: NÚMEROS COMPLEJOS I.E.S. Ramón Graldo UNIDAD : NÚMEROS COMPLEJOS. CONSTRUCCIÓN A los pares de números reales, consderando las sguentes operacones: x, y x', y' xx', y y' El camno más corto entre dos verdades del Análss Real

Más detalles

Eficiencia de procesos termodinámicos

Eficiencia de procesos termodinámicos Ecenca de rocesos termodnámcos El conceto anteror es váldo ara cualquer roceso o sstema. Fuente calente, q q c w uonga una máquna que toma calor de una uente calente, y arte de la msma la utlza ara roducr

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Termómetros de resistencia de platino y la escala internacional de temperatura EIT-90

Termómetros de resistencia de platino y la escala internacional de temperatura EIT-90 Termómetros de resstenca de platno y la escala nternaconal de temperatura EIT- Víctor Martínez Fuentes La EIT- La Escala Internaconal de Temperatura de 19 (EIT- ) se adoptó por el CIPM en 1989 para reemplazar

Más detalles

VII. Solución numérica de ecuaciones diferenciales

VII. Solución numérica de ecuaciones diferenciales VII. Solucón numérca de ecuacones derencales VII. Antecedentes Sea dv dt una ecuacón derencal de prmer orden : g c m son constantes v es una varable dependente t es una varable ndependente c g v I m Las

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

3.4 Modelo de valoración de activos de capital: CAPM

3.4 Modelo de valoración de activos de capital: CAPM 3.4 odelo de valoracón de actvos de catal: CAP Del conceto de reo or resgo de ercado, se generan odelos de equlbro que relaconan resgo y retorno eserado. Preras nvestgacones: Share (963, 964, Treynor (96,

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo Aplcacón de curvas resduo de permeato a sstemas batch en contnuo Alan Dder érez Ávla En el presente trabajo se presentara de manera breve como obtener las ecuacones que generan las curvas de resduo, de

Más detalles

SUCESIONES RECURSIVAS LINEALES

SUCESIONES RECURSIVAS LINEALES SUCESIONES RECURSIVAS LINEALES Juan Saba Susana Tesaur 1 Introduccón Una forma usual de defnr sucesones de números es nductvamente Por ejemplo, s alguen conoce la sucesón de Fbonacc, es probable que la

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

ESTALMAT-Andalucía Actividades 05/06. Título: Geometría con lápiz y papel. Sesión: 3 Fecha: 14/10/2005

ESTALMAT-Andalucía Actividades 05/06. Título: Geometría con lápiz y papel. Sesión: 3 Fecha: 14/10/2005 ESTALMAT-Andalucía Actvdades 05/06 Sesón: 3 Fecha: 14/10/2005 Título: Geometría con lápz y papel Las actvdades desarrolladas han sdo: - Por donde cortarías. (Como relaconar unos polígonos con otros medante

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos S 4 v v 5 Introduccón al Método de los Elementos Fntos Parte 4 Estmacón de error en problemas elíptcos Alberto Cardona, Víctor Facnott Cmec-Intec (UNL/Concet), Santa Fe, Argentna Estmacón de error en problemas

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles