Criterios de Convergencia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Criterios de Convergencia"

Transcripción

1 Semaa - Clase 3 7/09/08 Tema : Series. Itroducció Criterios de Covergecia Sólo podremos calcular la suma de alguas series, e la mayoría os será imposible y os tedremos que coformar co saber si coverge o o, o peor aú, si ua suma parcial coverge si poder calcular el valor de esa suma. Los térmios de ua serie puede ser positivos, egativos o úmeros complejos y las series puede coverger (decrecer o crecer hacia u valor fiito) diverger (icremetar o decrecer idefiidamete) u oscilar, Existe ua serie de criterios y teoremas de aplicació geeral que expodremos a cotiuació. 2. Covergecia Absoluta o Codicioal Para estudiar la covergecia de ua serie dada i.e. a i siempre podremos asociarle otra de la forma a i, es decir la serie de valores absolutos, co lo cual garatizamos la positividad (y que sea úmeros reales) de los térmios de la serie. Si la serie de los valores absolutos a i coverge, etoces tambié covergerá la serie origial a i y diremos que esa serie es absolutamete covergete. Si embargo si la serie de valores absolutos diverge, o podremos decir que a i siempre coverja. De hecho si coverge diremos que es codicioalmete covergete y, co u rearreglo de sus térmios podrá coverger, diverger u oscilar. Teorema: Si a coverge, etoces tambié coverge a y se tiee que a a = = Para ua serie de térmios positivos el criterio de covergecia más ituitivo (ecesario pero o suficiete) es que e límite cuado el térmio -ésimo tieda a cero. Co lo cual teemos que si esta codició o se satisface, la serie diverge. Teorema: Si la serie a coverge, el térmio -ésimo tiede a cero, esto sigifica que: lím a = 0. Héctor Herádez / Luis Núñez Uiversidad de Los Ades, Mérida

2 Semaa - Clase 3 7/09/08 Tema : Series Notemos que para la serie = / se tiee que lím = 0, si embargo, como ya vimos ateriormete, esta serie diverge. Esto sigifica que el teorema sumiistra ua codició suficiete para que exista la divergecia de la serie, es decir, si para el térmio -ésimo de la serie a o se cumple que tiede a cero cuado, etoces la serie a diverge. 3. Criteterio de Comparació E segudo lugar de simplicidad está el criterio de comparació etre u par de series de térmios positivos. Si coocemos el comportamieto de ua de ellas comparamos el de la otra. Esto es, supoga que cosideremos dos serie, ua de prueba =0 a y ua serie coocida y covergete (o divergete) =0 ã, etoces Si ã coverge y se tiee que ã a =0 ã =0 =0 a a coverge =0 Por otro lado Si ã diverge y se tiee que 0 ã a =0 ã =0 =0 a a diverge =0 Para ilustrar esta estrategia cosideremos las siguietes series s = = E ese caso compararmos co ua serie coocida =0 =! +! = 0! +! + 2! + 3! + = + + 2! + 3! + = + e }{{} e y es claro que la serie idicada o es otra cosa que e, co lo cual la serie claramete coverge y su suma es + e. Héctor Herádez / Luis Núñez 2 Uiversidad de Los Ades, Mérida

3 Semaa - Clase 3 7/09/08 Tema : Series 4. Criterio de la Raíz Dada ua serie de térmios positivos s = =0 a, el criterio de la raíz (o tambié de la raíz de Cauchy) puede resumirse e el siguiete par de afirmacioes. Si: (a ) ρ < para u suficietemete grade y ρ idepediete de = coverge (a ) > para u suficietemete grade y ρ idepediete de = diverge (a ) = para u suficietemete grade y ρ idepediete de = (?) Otra forma, más compacta de expresarlo sería Si ρ = lím (a ) etoces: ρ < = coverge ρ > = diverge ρ = = (?) Es fácil ver que si utilizamos el criterio de comparació, etoces cuado ρ < la serie coverge (a ) ρ a ρ cuado ρ la serie diverge Dada la siguiete serie: por lo tato: [ ] (a ) = = + La serie coverge. =0 5. Criterio de D Alembert [ ] 2 + ( ) + ρ = lím ( +, ) = e <. Dada ua serie de térmios positivos s = =0 a, el criterio de D Alembert o tambié llamado criterio del cociete, compara el valor relativo de u térmio de la serie co el que Jea Le Rod D Alembert París, Fracia Matemático fracés pioero e el estudio de las ecuacioes difereciales y su utilizació e la Física, e particular e el estudio de los fluídos Más detalles e Héctor Herádez / Luis Núñez 3 Uiversidad de Los Ades, Mérida

4 Semaa - Clase 3 7/09/08 Tema : Series le precede. Este criterio se resume tambié fácilmete ρ < = coverge ( ) a+ Si ρ = lím etoces: ρ > = diverge a ρ = = idetermiado Nótese que si ρ < ρ < r < a + a < r a + = a r Etoces para u N <, pero tambié suficietemete grade, tedremos que los térmios de la serie a partir de ese N será a N + a N+ + a N+2 + a N+3 = a N + ra N + r 2 a N + r 3 a N = a N ( + r + r 2 + r 3 + r 4 ) y que o es otra cosa que ua serie geométrica co razó r < y por cosiguiete coverge. Es claro que u argumeto similar se puede utilizar para probar la divergecia. U ejemplo imediato lo costituye la serie = co lo cual tiee que coverger. = [ ρ = lím 2 2 ( = 2 2 )] = 2 <, + = 2 ( + ), 6. Criterio de la Itegral de Maclauri El criterio de la Itegral de Maclauri 2 es otro criterio de comparació, pero esta vez se compara la serie co ua itegral. Así supodremos que existe ua fució f(x) cotíua y moótoamete decreciete para u valor de x x 0 y que, adicioalmete, se cumple que para algú valor etero x = el valor de la fució es igual a u térmio de la serie. Esto es f() = a. Etoces se tedrá que si el límite lím N N dx f(x) existe y es fiito, etoces = a coverge. Por el cotrario si el límite o existe o es ifiito, etoces diverge. 2 Coli Maclauri 698, Argyllshire, Escocia Ediburgo, Escocia. Matemático escocés quie escribió el Tratado de los Fluxioes el primer tratado que expuso de ua maera sistemática y rigurosa el cálculo diferecial ideado por Newto. Este tratado fue como respuesta a la crítica de Berkeley sobre la falta de rigurosidad de los métodos Newto. Héctor Herádez / Luis Núñez 4 Uiversidad de Los Ades, Mérida

5 Semaa - Clase 3 7/09/08 Tema : Series La idea de este criterio es comparar la itegral de f(x) (es decir, el área bajo la curva) co la suma de rectágulos que represeta la serie. Etoces, la suma parcial Pero: s i > i+ dx f(x) s i = i a = i+ i f(). s i a < i dx f(x) dode a = f(), co lo cual, al hacer i tedremos que si el límite de la itegral existe, etoces la serie = a coverge. s dx f(x) a = = dx f(x) s i i dx f(x) + a dx f(x) + a. U ejemplo imediato podría ser determiar si la siguiete serie coverge N ( ) ( ) = 3 2 f(x) = ( ) 2 x 3 2 lím dx ( ) N 2 x 3 2 lím N N 3 = co lo cual claramete coverge Este criterio es muy útil para acotar (etre u ífimo y u supremo) el residuo de ua determiada serie. Vale decir a = = N a + = =N+ a } {{ } Residuo N+ dx f(x) =N+ a N+ dx f(x) + a N+ 2. Comprobar que la fució Zeta de Riema, ζ(p) = = p, efectivamete coverge. E este caso f(x) = x p, etoces x p+ ζ(p) = p dx x p p+ Para p = = l x Para p = y es claro que para p > el límite existe y es fiito, por lo tato, la fució Zeta de Riema, ζ(p) = = p, coverge para p >. Héctor Herádez / Luis Núñez 5 Uiversidad de Los Ades, Mérida

6 Semaa - Clase 3 7/09/08 Tema : Series 7. Series alterates y covergecia codicioal Hasta ahora todos los criterios que aalizamos era para ua serie de térmios positivos s = =0 a por lo cual todos esos criterios os llevaba al cocepto de series absolutamete covergete. Esto es, si =0 a coverge, etoces =0 a tambié coverge. Si embargo, muchas veces os tedremos que coformar co que ua serie sea simplemete covergete y o requerir que sea absolutamete covergete. Este es el caso de las series alterates. Series e las cuales se alteras térmios positivos y egativos. So series del tipo a a 2 + a 3 a 4 + a 5 a a 2 a 2 + = ( ) + (a ) co a 0 Etoces, si la serie es moótoa decreciete para u suficietemete grade teemos lo que se deomia el Criterio de Leibiz: a > a > N ( ) + (a ) coverge, si: = a 0 = cuado De otro modo la serie oscilará. Estas codicioes so fáciles de ver si reorgaizamos la serie de los primeros 2m térmios, a partir de u determiado N par y N >, etoces s 2m = (a N a N ) + (a N 2 a N 3 ) + + (a N+2m 2 a N+2m ) dode todos los parétesis so positivos, co lo cual s 2m > 0 y se icremeta al icremetar m. Ahora bie, si rearreglamos la serie tedremos que s 2m = a N (a N a N 2 ) (a N 3 a N 4 ) + (a N+2m a N+2m 2 ) a N+2m dode, otra vez los parétesis so positivos y es imediato comprobar que etoces s 2m < a para todo m. Como a 0 cuado, la serie alterate ecesariamete coverge. La series alterates ya era coocidas desde hace mucho tiempo, como por ejemplo la serie = a = x x2 2 + x3 3 x ( ) ( ) x +. Esta serie coverge y su suma es log( + x) para < x. Para x positivo es ua serie alterate y e el caso particular de x = se tiee: ( ) ( ) + = log(2) Héctor Herádez / Luis Núñez 6 Uiversidad de Los Ades, Mérida

7 Semaa - Clase 3 7/09/08 Tema : Series Otra relació iteresate es: ( ) ( ) 2 Teorema: alterate + = π 4 Si {a } es ua sucesió moótoa decreciete co límite igual a cero, la serie ( ) a, coverge. Si S es su suma y s su suma parcial -ésima, se tiee que: = 0 < ( ) (S s ) < a + para. Estudiemos la serie ( ) ( ) = , = Sabemos que / es ua sucesió moótoa decreciete y que: lím = 0, por lo tato, de acuerdo al teorema aterior la serie coverge; como ya hemos visto. Sea a 2 = 2 y a 2 = Por otro lado, se tiee tambié que: + dx x para =, 2, 3,.... lím a = 0, y que a es moótoa decreciete, por lo tato la serie ( ) a, = Héctor Herádez / Luis Núñez 7 Uiversidad de Los Ades, Mérida

8 Semaa - Clase 3 7/09/08 Tema : Series coverge. La suma parcial (2 ) se puede escribir de la siguiete maera: y obteemos s 2 = 2 dx x dx 2 x + + dx x + = s 2 = dx x = l(). lím ( ) l() = γ, dode γ se cooce como la costate de Euler, γ 0, Héctor Herádez / Luis Núñez 8 Uiversidad de Los Ades, Mérida

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

Convergencia absoluta y series alternadas

Convergencia absoluta y series alternadas Tema 11 Covergecia absoluta y series alteradas Ua vez que dispoemos de diversos criterios de covergecia para series de térmios o egativos, abordamos el estudio de la covergecia de series de úmeros reales

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros Cap ³tulo 6 Series Num ericas. Problemas resueltos Salvador Vera Ballesteros www.satd.uma.es/matap/svera 6. Series um ericas. De icioes De ici o 6. (Serie) Dada ua sucesi o um erica i ita: fa g fa ;a ;a

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales - Ferado Sáchez - - 7 Sucesioes Cálculo I y series de úmeros reales Sucesioes de úmeros reales 20 205 De maera similar a como se hizo para sucesioes de úmeros racioales, se defie ua sucesió de úmeros reales

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos Cálculo I ( o de Grado e Iformática, 202-3) Aputes sobre series uméricas: pregutas frecuetes y ejemplos resueltos ) Pregutas frecuetes. Coceptos, teoremas y ejemplos básicos P-. Ua serie ifiita es ua suma

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6 . SUCESIONES Se puede cosiderar que ua sucesió es ua lista de úmeros escritos e u orde defiido: a, a 2, a 3, a 4,..., a,... El úmero a recibe el ombre de primer térmio, a 2 es el segudo térmio y, e geeral,

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

Introducción a las sucesiones. y series numéricas

Introducción a las sucesiones. y series numéricas UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Itroducció a las sucesioes y series uméricas Ramó Bruzual Marisela Domíguez Caracas, Veezuela

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3 Tema 3 Cálculo de ites El presete tema tiee u iterés emietemete práctico, pues su pricipal fialidad es aportar los ejemplos que se echaba de meos e el tema aterior. Empezaremos estableciedo las reglas

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles

Sucesiones y series. Josep Bernat Pané P01/75005/00104

Sucesiones y series. Josep Bernat Pané P01/75005/00104 Sucesioes y series Josep Berat Paé P0/75005/0004 FUOC P0/75005/0004 Sucesioes y series Ídice Itroducció 5 Objetivos 7 Sucesioes de úmeros reales 9 Cocepto geeral de sucesió 9 Sucesioes acotadas 3 Sucesioes

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

5.1. Tipos de convergencia

5.1. Tipos de convergencia Estadística Tema 5 Covergecia de Variables Aleatorias 51 Tipos de covergecia 52 Ley de los grades úmeros 53 Teorema cetral del límite 54 Método delta Objetivos 1 Motivació estudio secuecias de VAs 2 Covergecia

Más detalles

Capítulo 1. Por tanto, como la sucesión 1 tiene límite cero, podríamos intuir que

Capítulo 1. Por tanto, como la sucesión 1 tiene límite cero, podríamos intuir que Capítulo SERIES DE NÚMEROS REALES ) Series covergetes. Comportamieto algebraico. Ejemplos otables. Codició ecesaria de covergecia 2) Criterio de comparació. Covergecia absoluta. 3) Criterios de covergecia

Más detalles

CAPÍTULO 2. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE

CAPÍTULO 2. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE CAPÍTULO. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE INTRODUCCIÓN El objetivo de este capítulo es estudiar alguos métodos uméricos para hallar raíces reales de ua ecuació o-lieal e ua

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

Propiedades de las series numéricas (18.03.2015)

Propiedades de las series numéricas (18.03.2015) Propiedades de las series uméricas 8.03.205) ) Si itercalamos e la sucesió {a } N u úmero fiito de térmios de suma b, el carácter de la serie a o varía y, si coverge, su suma aumeta e b. D: Sea b +b 2

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA Cálculo Diferecial Ejercicios y Problemas resueltos Juliá Rodríguez Ruiz (Catedrático de Ecoomía Aplicada. UNED) Mariao Matilla García (Profesor Titular

Más detalles

Tema 4 Sucesiones numéricas

Tema 4 Sucesiones numéricas Tema 4 Sucesioes uméricas Objetivos 1. Defiir sucesioes co wxmaxima. 2. Calcular elemetos de ua sucesió. 3. Realizar operacioes co sucesioes. 4. Iterpretar la defiició de límite de ua sucesió. 5. Calcular

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

4. Series, Taylor y límites indeterminados

4. Series, Taylor y límites indeterminados 4 Series, Taylor y ites idetermiados 4 Series de úmeros reales Queremos hacer sumas de ifiitos úmeros reales, llamadas series: a + a + a + = a = Por ejemplo, sumemos /5+/5 +/5 +/5 4 +/5 5 + Sumar u úmero

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

Ley de los números grandes

Ley de los números grandes Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.

Más detalles

SERIES INFINITAS.SERIES DE POTENCIAS. S = lim S. ( 1)

SERIES INFINITAS.SERIES DE POTENCIAS. S = lim S. ( 1) SERIES INFINITAS.SERIES DE POTENCIAS. Defiicioes y otació. A la suma de ua sucesió de térmios se deomia SERIE y el valor de dicha suma, si es que tiee alguo, se defie como S lim S. U ejemplo de serie ifiita,

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

CAPÍTULO XIII. SUCESIONES

CAPÍTULO XIII. SUCESIONES CAPÍTULO XIII SUCESIONES NUMÉRICAS SECCIONES A Sucesioes covergetes y límites de oscilació Sucesioes moótoas y acotadas B Sucesioes recurretes C Ejercicios propuestos 59 A SUCESIONES CONVERGENTES Y LÍMITES

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Elementos de Análisis Matemático

Elementos de Análisis Matemático Elemetos de Aálisis Matemático Curso 005-006, grupo A, Pedro López Rodríguez Pla de la asigatura TEMARIO Tema. El úmero real. Los úmeros aturales, eteros, racioales y reales. Pricipio de iducció. Itroducció

Más detalles

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE Departameto de Aálisis Matemático Curso 00/003 Profesores resposables Oscar Blasco Atoio Galbis Jesús García Josep Martíez Aíbal Moltó Carme de las Obras Sergio Segura

Más detalles

Tema 4.7: Factorización de funciones holomorfas. Productos in nitos. Teorema de factorización de Weierstrass

Tema 4.7: Factorización de funciones holomorfas. Productos in nitos. Teorema de factorización de Weierstrass Tema 4.7: Factoriació de fucioes holomorfas. Productos i itos. Teorema de factoriació de Weierstrass Facultad de Ciecias Experimetales, Curso 008-09 E. de Amo Por u lado teemos que la teoría local de fucioes

Más detalles

TEMA 25 (Oposiciones de Matemáticas)

TEMA 25 (Oposiciones de Matemáticas) TEMA 25 (Oposicioes de Matemáticas) LÍMITES DE FUNCIONES. CONTINUIDAD Y DISCONTINUIDAD. TEOREMA DE BOLZANO.. Itroducció. 2. Límites de fucioes. 2.. Límite de ua fució e u puto. 2.2. Límites laterales.

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

1 Ejercicios Resueltos

1 Ejercicios Resueltos Uiversidad de Satiago de Chile Autores: Miguel Martíez Cocha Facultad de Ciecia Carlos Silva Corejo Departameto de Matemática y CC Emilio Villalobos Marí Ejercicios esueltos (ejemplar de prueba) Mediate

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

Sucesiones y series infinitas

Sucesiones y series infinitas Sucesioes y series ifiitas E la última secció de este capítulo le pediremos que utilice ua serie para deducir ua fórmula para determiar la velocidad de ua oda oceáica. Epic Stock / Shutterstock E U previo

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

MODULO PRECALCULO QUINTA UNIDAD

MODULO PRECALCULO QUINTA UNIDAD www.mateladia.org MODULO PRECALCULO QUINTA UNIDAD Límites Cotiuidad y Derivada.... y cotiuó Alicia:

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Métodos Numéricos/ Calculo Numérico/ Análisis Numérico. Raíces de ecuaciones Teoría General de la iteración

Métodos Numéricos/ Calculo Numérico/ Análisis Numérico. Raíces de ecuaciones Teoría General de la iteración Métodos Numéricos/ Calculo Numérico/ Aálisis Numérico. Raíces de ecuacioes Teoría Geeral de la iteració Bibliografía: Métodos Numéricos G. Pacce Editorial EUDENE -1997. Problemas resueltos de Métodos Numéricos.

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles