CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A."

Transcripción

1 CÁLCULO DIFERENCIAL MATEMÁTICAS II Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci 1.- CONCEPTO DE DERIVADA. Se un unción rel deinid en un entorno del punto. Deinición: Se dice que es derivle en si eiste y es inito el límite. El vlor del límite se represent por y se llm derivd de en. Si hcemos = +h, l epresión nterior l podemos poner sí: = = h h h Deinición: Se dice que es derivle en A cundo es derivle en todo punto de A. Teorem: Si es derivle en el punto es continu en el punto. El recíproco no siempre es cierto; no tod unción continu en un punto es derivle en dicho punto..- DERIVADAS LATERALES. Se un unción rel deinid en un entorno del punto. Deinición: Se llm derivd de l derech de l límite, si eiste y es inito, + = Análomente, Deinición: Se llm derivd de l izquierd de l límite, si eiste y es inito, - = Con estos conceptos se puede deinir cuándo es derivle un unción en un intervlo cerrdo [,]. Deinición: Se dice que es derivle en [,] cundo es derivle en todos los puntos de, y demás es derivle por l derech en y por l izquierd en. 1

2 Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci 3.- FUNCIÓN DERIVADA. Se un unción deinid en A y derivle en dicho conjunto: : A R R Si cd A se le hce corresponder su derivd otenemos un nuev unción: : A R R que se llm unción derivd de en A. 4.- DERIVADAS SUCESIVAS. A l derivd de un unción en un punto tmién se l llm derivd primer. A prtir de l unción derivd primer se puede deinir, si eiste, su derivd que recie el nomre de derivd seund. Se denot y =. Análomente se deinen ls unciones derivds tercers, curt, quint,.. n-ésim. Se denotn:, iv, v,.. n. 5.- OPERACIONES CON FUNCIONES DERIVABLES. Sen y dos unciones derivles en un intervlo común I y se k R ; entonces +, -, k y son derivles en I y sus derivds son respectivmente: + = + - = - k =k = + Además si I entonces tmién es derivle en I y su derivd es: Rel de l cden: Si es derivle en y es derivle en, entonces es derivle en y su derivd es:

3 6.- INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA. MATEMÁTICAS II Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci h L deinición de tnente de un ánulo estlece que tn ; si h h clculmos el límite tenemos = tn = tn ; y por h h h tnto =tn, siendo tn l pendiente de l rect tnente l unción en el punto. Por tnto si un unción es derivle en un punto, l derivd en dicho punto coincide con l pendiente de l rect tnente l curv en dicho punto. 7.- TEOREMAS FUNDAMENTALES DEL CÁLCULO DIFERENCIAL. Teorem de Rolle: Si es un unción continu en [,], derivle en el intervlo, y demás =, entonces eiste un punto, en el que =. Demostrción: Por ser continu en [,], plicndo el teorem de Weierstrss, lcnz el máimo M y el mínimo m en el intervlo [,]. Si luno de estos dos vlores lo lcnz l unción en un punto interior l intervlo considerdo, entonces tiene en un etremo reltivo máimo o mínimo y por tnto =. En cso contrrio, tomrí sus vlores etremos m y M en los puntos etremos y del intervlo y se tendrí ==m=m por lo que serí un unción constnte en todo el intervlo [,] y = pr todo interior [,]. c.q.d. Geométricmente este teorem nos dice que eiste un punto del intervlo, donde l tnente l curv en dicho punto es prlel l eje de ls s ciss. Teorem del vlor medio de los incrementos initos: Si es un unción continu en [,] y derivle en,, eiste un punto, tl que: Demostrción: Considermos l siuiente unción 3

4 Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci 4 es continu en [,] por ser sum de unciones continus y tmién es derivle en, por l mism rzón y demás. Si clculmos otenemos ; de iul orm si clculmos otenemos y por tnto =. Por el teorem de Rolle, eiste l menos un punto, tl que =, es decir c.q.d. Teorem del vlor medio de Cuchy: Si y son dos unciones continus en [,] y derivles en,, eiste un punto, tl que: Demostrción: Considermos l unción F. Est unción es continu en [,] y derivle en, por serlo y. Además F F Por tnto F=F y plicndo el teorem de Rolle eiste un punto, tl que F =, es decir F por tnto: c.q.d. * Si y demás l unción derivd no se nul en,, l iuldd nterior se epres: Geométricmente el teorem del vlor medio o de los incrementos initos dice que l pendiente de l rect que une los puntos A, y B, es iul l pendiente de l tnente en un punto P,. O con otrs plrs, que eiste l menos un punto sore l curv que tiene tnente prlel l cuerd B A.

5 Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci Rel de L Hôpitl: Si y son dos unciones derivles en un entorno de, en donde, siendo = = entonces, si eiste, se veriic que. L Rel de L Hôpitl se puede plicr reiterdmente siempre que en cd pso se si dndo un indeterminción. Ejemplo: sen 1 cos sen 1 sen e 1 cos e 1 sen e sen e 1 cos e cos e sen e sen cos e 1 En los límites del tipo tmién podemos plicr l Rel de L Hôpitl. 1 ln ln 1 1 Ejemplo: 1 Todos los demás tipos de indeterminciones se pueden reducir los dos csos nteriores. 9.- CRECIMIENTO Y DECRECIMIENTO. EXTREMOS RELATIVOS. Deinición: Un unción es creciente en un intervlo I cundo pr cd dos puntos 1, I tles que 1 <, se tiene que 1. Deinición: Un unción es decreciente en un intervlo I cundo pr cd dos puntos 1, I tles que 1 <, se tiene que 1. Deinición: Un unción es estrictmente creciente en un intervlo I cundo pr cd dos puntos 1, I tles que 1 <, se tiene que 1 <. 5

6 Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci Deinición: Un unción es estrictmente decreciente en un intervlo I cundo pr cd dos puntos 1, I tles que 1 <, se tiene que 1 >. Deinición: Un unción se dice creciente en un punto si eiste un entorno de tl que es creciente en dicho entorno. Análomente se deine decreciente, estrictmente creciente y estrictmente decreciente en un punto. Proposición: Si > l unción es estrictmente creciente en. Demostrción: Por hipótesis = > entonces eiste un entorno de tl que entonces sino- = sino- ; por tnto: Si > - >, lueo si > > Si < - <, lueo si < < Y por tnto es estrictmente creciente. cqd Proposición: Si < l unción es estrictmente decreciente en. Demostrción: se procede de orm nálo l nterior. Proposición: Se continu en [,] y derivle en,. Se veriic: Si > en, entonces es estrictmente creciente en [,]. Si < en, entonces es estrictmente decreciente en [,]. En los puntos cuy derivd es nul, no puede irmrse nd, y que l unción puede ser creciente, decreciente o ninun de ls dos coss. En este cso tenemos el siuiente teorem. Teorem: Se derivle n veces en un punto ; se veriic: es estrictmente creciente o decreciente en l primer derivd no nul en dicho punto es de orden impr, es decir: = = = k = ; k+1 k+1<n Y demás se veriic: Si Si k+1 > entonces l unción es estrictmente creciente. k+1 < entonces l unción es estrictmente decreciente. Deinición: Un unción deinid en un conjunto S tiene en S un máimo soluto si S. 6

7 Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci Deinición: Un unción deinid en un conjunto S tiene en S un mínimo soluto si S. Llmremos etremo un vlor máimo o mínimo indistintmente. Deinición: Un unción deinid en un conjunto S tiene en S un máimo reltivo o locl si eiste un entorno S tl que. Deinición: Un unción deinid en un conjunto S tiene en S un mínimo reltivo o locl si eiste un entorno S tl que. Llmremos etremo reltivo un vlor máimo o mínimo reltivo indistintmente. Teorem: Si es derivle en y tiene en un máimo o mínimo reltivo entonces =. Este teorem nos permite hllr los puntos cndidtos máimos o mínimos. Un vez otenido los puntos en los que = estudiremos si son máimos, mínimos o ninun de ls dos coss. Teorem: Se tl que =, entonces Si > l unción lcnz un mínimo reltivo en. Si < l unción lcnz un máimo reltivo en. Teorem: Se derivle n veces en un punto ; se veriic: present en un máimo o mínimo l primer derivd no nul en dicho punto es de orden pr, es decir: = = = k-1 = ; k k<n Y demás se veriic: Si Si k > entonces es un mínimo. k < entonces es un máimo. 1.- CONCAVIDAD, CONVEXIDAD, PUNTOS DE INFLEXIÓN. Deinición: Se un unción rel deinid en un conjunto S. Se dice que l unción es cóncv en S si l tnente l curv en el punto se mntiene por dejo de l ráic de l unción. 7

8 Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci Deinición: Se un unción rel deinid en un conjunto S. Se dice que l unción es conve en S si l tnente l curv en el punto se mntiene por encim de l ráic de l unción. Deinición: Se dice que l unción es cóncv o conve en un intervlo cundo lo es en todo sus puntos. Teorem : Se un unción deinid en el intervlo I, con derivd seund continu en I. Se veriic: Si > entonces l unción es cóncv en. Si < entonces l unción es conve en. Deinición: Se dice que l unción present un punto de inleión en cundo en un entorno de dicho punto l tnente l curv trvies ést en ese punto. En relidd los puntos de inleión son quellos en los que l unción cmi de curvtur de cóncv conve, o l revés. Teorem: Si es un unción con derivd de orden n continu en, y tl que Entonces = = = n-1 = y n Si n es pr y n >, l unción es cóncv en. Si n es pr y n <, l unción es conve en. c Si n es impr, l unción tiene un punto de inleión en. 8

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

el blog de mate de aida. MATE I. Derivadas. Pág. 1

el blog de mate de aida. MATE I. Derivadas. Pág. 1 el blo de mte de id. MATE I. erivds. Pá. TASAS E VARIACIÓN L siuiente tbl orece el número de ncimientos en cd mes lo lro de un ño en un determind poblción: Meses 7 8 9 Ncimientos 7 8 98 9 8 7 Pr sber,

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso.

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso. Límite de un unción en un punto Diremos que () b si podemos logrr que los vlores de ( ) sen tn próimos b como quermos, con tl de tomr vlores de tn próimos como se preciso. Podemos dr un deinición más orml

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

BLOQUE 3. FUNCIONES REALES DE UNA VARIABLE REAL. LÍMITES Y CONTINUIDAD DE FUNCIONES

BLOQUE 3. FUNCIONES REALES DE UNA VARIABLE REAL. LÍMITES Y CONTINUIDAD DE FUNCIONES BLOQUE 3 FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES Funciones reles de un vrile rel Límite de un unción rel Continuidd de un unción rel Con este tem se inici el estudio de

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x)

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x) rte Vriles letoris. Vriles letoris continus En l sección nterior se considerron vriles letoris discrets, o se vriles letoris cuo rngo es un conjunto finito o infinito numerle. ero h vriles letoris cuo

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

Nombre: Carnet Sección: TERCER EXAMEN PARCIAL MA-1111 (40%) Conteste las siguientes preguntas justificando detalladamente sus respuestas.

Nombre: Carnet Sección: TERCER EXAMEN PARCIAL MA-1111 (40%) Conteste las siguientes preguntas justificando detalladamente sus respuestas. Universidd Simón Bolívr. Deprtmento de Mtemátics Purs Aplicds. MA-.Tipo A Nombre: Crnet Sección: TERCER EXAMEN PARCIAL MA- (0% Conteste ls siguientes pregunts justiicndo detlldmente sus respuests..- (

Más detalles

MATEMÁTICAS FUNCIONES DERIVABLES. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES

MATEMÁTICAS FUNCIONES DERIVABLES. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES Tem 5 Educción Secundri mister MATEMÁTICAS FUNCIONES DERIVABLES. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES 5. Funciones derivles. 5. Función derivd. 5.3 Derivds sucesivs. 5.4 Interción numéric

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

LÍMITE DE UNA FUNCIÓN

LÍMITE DE UNA FUNCIÓN LÍITE DE UNA FUNCIÓN. Limite de un unción en un punto.. Límites lterles.. Limites ininitos.. Límites en el ininito.. Propieddes de los límites. 6. Operciones con ininito. 7. Cálculo de límites. 8. Cálculo

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0 FUNCIONES FUNCIÓN: RELACIÓN ENTRE DOS MAGNITUDES X E Y TAL QUE A CADA VALOR DE X LE CORRESPONDE UN ÚNICO VALOR DE Y X: vrible independiente Y: vrible dependiente f()= Notción: f(2)=4, si =2, entonces =4

Más detalles

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,

Más detalles

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5 UNIDAD 5: LÍMITES Y CONTINUIDAD. 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Fíjte en el comportmiento de l unción ( x ) x 1 tom vlores cercnos. cundo x Si x se proxim, l unción tom vlores cercnos 5. Se escribe:

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

Definiciones intuitivas de relaciones y funciones

Definiciones intuitivas de relaciones y funciones RELACIONES Ls rses Deiniciones intuitivs de relciones unciones Jun es esposo de Mrí. Cín es hermno de Ael Mrcio es ms rnde que Mérid Cinco es menor que ocho Llevn implícito lo que comúnmente se entiende

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real.

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real. .-Deinición DERIVADAS Dada una unción y (), llamamos derivada de la unción en el punto a, (, ( a + ) al límite '( y es un número real. 0 Cuando eiste este límite, decimos que la unción es derivable en

Más detalles

Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos.

Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos. 1.3. L función Logrítmic Con el uso de los ritmos, los procesos de multiplicción, división, elevción potencis extrcción de ríces entre números reles pueden simplificrse notorimente. El proceso de multiplicción

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

(a;b] = {x / x R a x b}

(a;b] = {x / x R a x b} Intervlos y Entornos L geometrí nlític estlece un correspondenci entre puntos de un rect y números reles, de tl form que cd número rel le corresponde un punto de l rect y cd punto de l rect un único número

Más detalles

10. Optimización no lineal sin restricciones

10. Optimización no lineal sin restricciones 10. Optimizción no linel sin restricciones 10. Optimizción no linel sin restricciones Conceptos básicos Optimizción sin restricciones en dimensión 1 Métodos numéricos pr dimensión 1 Optimizción sin restricciones

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Derivada. lim 5x. Derivada por definición. Sea y = f (x) una función que depende de x. Se define la derivada de dicha función como otra función: lim h

Derivada. lim 5x. Derivada por definición. Sea y = f (x) una función que depende de x. Se define la derivada de dicha función como otra función: lim h S_A._LECV Derivada Derivada por deinición. Sea y = una unción que depende de. Se deine la derivada de dica unción como otra unción: La simbología de la derivada es y y Analíticamente la derivada es un

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

TEMA 11.-DERIVADAS INTRODUCCIÓN

TEMA 11.-DERIVADAS INTRODUCCIÓN TEMA.- Derivds - Mtemátics I TEMA.-DERIVADAS INTRODUCCIÓN A prtir del concepto de límite, introduciremos un concepto nuevo, el de derivd, que es undmentl en el desrrollo del nálisis mtemático L derivción

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

UNIDAD 2: DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b]

UNIDAD 2: DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] IES Padre Poveda (Guadi UNIDAD : DERIVADAS Y APLICACIONES TASA DE VARIACIÓN MEDIA Se deine la tasa de variación media de una unción ( y en un intervalo [ b] T V M [ a, b] a, como: ( ( a b a ( a, a, B (

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

UNIDAD 2 DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b]

UNIDAD 2 DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] IES Padre Poveda (Guadi UNIDAD DERIVADAS Y APLICACIONES.. TASA DE VARIACIÓN MEDIA. Se deine la tasa de variación media de una unción ( y en un intervalo [ b] T. V. M. [ a, b] a, como: ( ( a b a ( a, a,

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

SEMANA 8: INTEGRAL DE RIEMANN

SEMANA 8: INTEGRAL DE RIEMANN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl

Más detalles

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA . DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta

Más detalles

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) x D INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL º BT Mt I CNS FUNCIONES REALES DE VARIABLE REAL Función rel de vrible rel.- Un unción rel de vrible rel es un plicción de D en R, siendo D un subconjunto de R distinto del conjunto vcío D Φ. Al conjunto

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()

Más detalles

Primitivas e Integrales

Primitivas e Integrales Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Función derivada. lim

Función derivada. lim Pro. Enrique Mateus Nieves Función derivada TASA DE VARIACIÓN: Muchas leyes de la Física, la Química, la Bioloía o la Economía, son unciones que relacionan una variable dependiente y con otra variable

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Cálculo de Derivadas. 2º Bachillerato. Materiales (Editorial SM)

Cálculo de Derivadas. 2º Bachillerato. Materiales (Editorial SM) Cálculo de Derivadas. 2º Bacillerato Materiales Editorial SM Esquema Tasa de variación media en un intervalo Para una unción se deine la tasa de variación media de en un intervalo [a, b], contenido en

Más detalles

UNIDAD 10 DERIVADAS Y APLICACIONES.

UNIDAD 10 DERIVADAS Y APLICACIONES. IES Padre Poveda (Guadi UNIDAD 0 DERIVADAS Y APLICACIONES.. Tasa de variación media.. Derivada de una unción en un punto. Función derivada. Derivadas sucesivas.. Reglas de derivación. 4. Interpretación

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II Fse generl INSTRUCCIONES: El lumno deerá elegir un de ls dos opciones

Más detalles

Había bastante tráfico en la autovía. Es una velocidad media bastante baja. - La velocidad media entre la primera hora y la segunda hora ha sido de:

Había bastante tráfico en la autovía. Es una velocidad media bastante baja. - La velocidad media entre la primera hora y la segunda hora ha sido de: 66 Mtemátics I. Bcillerto de Ciencis. Cpítulo 8: Derivds LirosMreVerde.tk www.puntesmreverde.or.es CAPÍTULO 8: DERIVADAS. CONCEPTO DE DERIVADA.. Ts de vrición medi de un unción Actividdes de introducción

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Ejemplo 165. Dada una categoría C y dos objetos A y B, se puede formar la categoría C/AB cuyos objetos son diagramas de la forma

Ejemplo 165. Dada una categoría C y dos objetos A y B, se puede formar la categoría C/AB cuyos objetos son diagramas de la forma 42 (Octv clse : teorís de lecs. untores Representles y otros teorís de dirms. continución, un ejemplo de construcción de un cteorí prtir de otr. Dd un cteorí, se construye otr en l que los ojetos son dirms

Más detalles

0 PRELIMINARES. NÚMEROS REALES

0 PRELIMINARES. NÚMEROS REALES ACCESO A LA UNIVERSIDAD MATEMÁTICAS VOLUMEN II PRELIMINARES. NÚMEROS REALES. El conjunto de los número reles L representción más común de hce ver l conjunto como un líne rect del plno.,, 4, 8,.7,... 3

Más detalles

Teoría y ejercicios de Matemáticas II. Análisis

Teoría y ejercicios de Matemáticas II. Análisis 9.DERIVADAS 9.. VARIACIÓN DE UNA VARIABLE Las propiedades estudiadas en los temas anteriores, límites, continuidad, etc., nos aportan inormación puntual sobre las unciones; pero no nos dicen nada sobre

Más detalles