es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible."

Transcripción

1 nálisis eáico José rí ríne edino PROBLES DE SITES rouesos en eáenes) Preguns de io es. El sise es incoible: ) Si = b) Si = c) Ningun de ls neriores. 8 si r) =, SCD. Si =,, siendo r) = r) = Sise incoible. L resues es b). ) El sise coible indeerindo: ) Siere, r odo R. b) Nunc, r ningún R. c) Ningun de ls neriores. Ls rices, de coeficienes lid, resecivene, son: λ ) ) Ese deerinne vle si = o = -. Si r) = = r). El sise será coible deerindo. Si =, se iene. El rngo de es. Pr ver el rngo de clculos: =. Por no, el rngo de es. Si =, se iene. El rngo de es.

2 nálisis eáico José rí ríne edino Pr ver el rngo de clculos: =. Por no, el rngo de es. Luego, si = o = -, el sise es incoible. sí ues, nunc es coible indeerindo. L resues es b). ) El sise : ) Es coible r odo e R. b) Es coible si 8/. c) Es incoible si =. Ls rices, de coeficienes lid, resecivene, son: λ 8) ) Ese deerinne vle si = o = 8/. Con eso: Si 8/ r) = = r). El sise será coible deerindo. Si =, se iene El rngo de es. Pr ver el rngo de clculos:. Por no, el rngo de bién vle. Luego, si = el sise es coible indeerindo. L resues es b)

3 nálisis eáico José rí ríne edino. J) El sise iene infinis soluciones: ) Si = ± b) Si c) Ningun de ls neriores. si r) =, SCD. Si =,, siendo r) = r) = Sise incoible. L resues es c): Si = el sise es hoogéneo con r) = Sise CI: infinis soluciones.. J) El sise iene solución únic: ) Si. b) Si =. c) Si =. si r) =, SCD. L resues es ) 6. J) El sise es indeerindo ) Nunc b) Si = c) Si El deerinne ) es cero si = r ese vlor: rg) = rg) = luego el sise es incoible. Si rg) = rg) = el sise es deerindo. En consecuenci ese sise nunc es indeerindo. L resues es )

4 nálisis eáico k. S) El sise k, iene infinis soluciones: k ) ) Si k ±. b) Si k =. c) Si k =. Un sise hoogéneo iene solución disin de l rivil cundo el rngo de l ri de coeficienes es enor que el núero de incógnis. En ese cso, el rngo debe ser enor que ; or no, el deerinne de l ri de coeficienes debe ser nulo. Eso es: k k k k k = o k =. k L resues es c) José rí ríne edino

5 nálisis eáico José rí ríne edino Probles. J) ) uno) Esudi, deendiendo de los vlores del ráero rel, l coibilidd del siguiene sise de ecuciones lineles: ) ) ) b), unos) Resuelve el sise cundo se coible indeerindo. Se l ri de coeficienes * l ri lid. El sise será coible cundo el rngo de se igul l de *: r) = r*). * El deerinne de vle ) ) ) ) ) ) Ese deerinne vle si = o =. Con eso: Si r) = = r*). El sise será coible deerindo. Si =, se endrá: * 6 Es evidene que r) =. Por or re, el enor ) 6 6, luego r*) =. Por no, si = el sise es incoible. Si =, se iene * 9 Es evidene que r) = r*) =. Luego el sise es coible indeerindo. Su solución generl es

6 nálisis eáico José rí ríne edino 6. ), uno) En el sise ) esudi su nurle, según los vlores de, resuélvelo cundo se osible. Ls rices, de coeficienes lid, son:. El deerinne de es - ). Si r) = = r). El sise es coible deerindo. Su solución es:. Si = Ls rices son:, bs con rngo, luego el sise es coible indeerindo, siendo l solución generl. Si = Ls rices son:, siendo r) =. Pueso que = iene deerinne igul, r) =, el sise es incoible.

7 nálisis eáico José rí ríne edino. P) unos) Discue, según los vlores del ráero, el siguiene sise de ecuciones lineles: ) ) Se l ri de coeficienes l ri lid: El deerinne de, ) ) ) Observción: Si F se le su F, qued ás fácil. ) ) Con eso: Si r) = = r). El sise será coible deerindo. Si =, ls rices quedn: Coo l ª colun C) es nul l C = C, el rngo de bs rices es : r) = r) =. En consecuenci, el sise será coible indeerindo. Si =, ls rices quedn:. El rngo de es, ues. Pero el rngo de es, ues el enor. En consecuenci, el sise será incoible.

8 nálisis eáico José rí ríne edino 8. P) ), unos) Esudi, deendiendo de los vlores del ráero rel, l coibilidd del siguiene sise de ecuciones lineles: ) ) ) b) Resuelve el sise cundo =, unos) cundo =, unos). Se l ri de coeficienes * l ri lid. El sise será coible cundo el rngo de se igul l de *: r) = r*). * El deerinne de vle ) ) ) ) ) Ese deerinne vle si =, = o =. Con eso: Si, r) = = r*). El sise será coible deerindo. Si =, se endrá: * Es evidene que r) =. Por or re, el enor, luego r*) =. Por no, si = el sise es incoible. Si =, se iene * Es evidene que r) =. Por or re, coo el enor 8, se deduce que r*) =. Luego, bién en ese cso el sise es incoible. o Si = : *. Coo uede observrse, l cur colun, l lid, es igul l ercer ulilicd or. En consecuenci, l ri lid no cbi el rngo. Por no, el rngo de * es

9 nálisis eáico José rí ríne edino 9 igul l de e igul, que. Luego, si = el sise es coible indeerindo. b) Solución r =. E E E E Pr =, el sise inicil es equivlene : E E Hciendo =, se iene:. Oción r = Pr = el sise es: E E 6 E E Observción: El deerinne de se odrí hber silificdo coo sigue: F F = = Ls soluciones de ) son =, = =.

10 nálisis eáico José rí ríne edino. S9) unos) Esudi el siguiene sise de ecuciones lineles deendiene del ráero rel resuélvelo cundo se coible indeerindo: ) Se l ri de coeficienes l ri lid. El sise será coible cundo el rngo de se igul l de : r) = r). Trnsforciones de Guss) F F F F ) ) Deerinne de : ) ) ) ) Ese deerinne vle si =, = o =. Con eso: Si, r) = = r). El sise será coible deerindo. Si =, se endrá: Es obvio que el rngo de vle, ienrs que el de es. Por no, en ese cso, el sise es incoible. Si =, se iene En ese cso, bién de ner inedi, se ve que r) = r) =. El sise vuelve ser incoible. Si = : Coo bos rngos son igules, r) = = r), el sise será coible indeerindo. Soluciones: Pr =, el sise inicil es equivlene :

11 nálisis eáico, cu solución es 6. S8) ), unos) Discue el sise según el vlor del ráero. b), unos) Hll, si eise, l solución cundo =. ) Esudindo los rngos de ls rices de coeficienes lid. 8 si = ±. Por no: Si, r) = = r) El sise es coible deerindo. Si =, r) = r) = El sise es incoible. Si =, r) = r) = El sise es coible indeerindo. b) Pr = el sise es equivlene ) ) ) 6 ) ; ) ) ) José rí ríne edino

12 nálisis eáico José rí ríne edino. S6) Esudi el siguiene sise de ecuciones lineles deendiene del ráero uno) resuélvelo en los csos en que se coible indeerindo, unos). ) Se l ri de coeficienes l ri lid. El sise será coible cundo el rngo de se igul l de : r) = r). El deerinne de, ) Ese deerinne vle si = o = Con eso: Si, r) = = r). El sise será coible deerindo. Si = se endrá: El rngo de es. Sin ebrgo, el rngo de vle, ues. Por no, el sise será incoible. Si = se endrá: Coo l colun de érinos indeendienes es l su de ls ors res, el r) = r) =. Por no, el sise será coible indeerindo. Pr =, el sise inicil es equivlene : cu solución es

13 nálisis eáico José rí ríne edino 8. unos) S) ) uno) Esudir el siguiene sise de ecuciones lineles deendiene del ráero. ) b) uno) Resolverlo cundo = cundo =. Se l ri de coeficienes l ri lid. El sise será coible cundo el rngo de se igul l de : r) = r). El deerinne de, ) Ese deerinne vle si = o = Con eso: Si, r) = = r). El sise será coible deerindo. Si = se endrá: Coo F = F r) = r) =. El sise será coible indeerindo. Si = se endrá: El rngo de es, ls coluns ª ª son igules. Sin ebrgo, el rngo de vle, ues. En ese cso, el sise será incoible. Pr =, el sise inicil es equivlene :. Su solución es Pr =, el sise es elendo l regl de Crer, se obienen ls soluciones:

14 nálisis eáico José rí ríne edino 6 ; ; 9. J9) Se consider el sise, donde es un ráero rel. ) Discue el sise en función del vlor de., unos) b) Resuelve el sise r =., unos) c) Resuelve el sise r =., unos) ) Sen ls rices, de coeficienes,, lid con los érinos indeendienes. El rngo de es ues, ienrs que Pr deerinr el rngo de consideros el enor ) Observándose que si = el rngo de vldrá, ero si el rngo será. Por no: Si r) = r) =. El sise será incoible. Si = r) = r) =. El sise será coible indeerindo. b) Si = el sise no iene solución. c) Pr = el sise es: hciendo = )

15 nálisis eáico. J8), unos) ) Discuir, según los vlores de, el siguiene sise de ecuciones lineles: b) Resolverlo, si es osible, r el cso =. ) Esudindo los rngos de ls rices de coeficienes lid. En l ri, coo l rier segund fil son igules, el rngo). El único enor que uede no ser nulo es, que es disino de cundo. Luego, el rngo) = si, e igul si =. Pr l ri esudios el enor ). En consecuenci, rngo) = si ; es igul si = o =. Por no: Si, r) = > r) El sise es incoible. Si =, r) = r) = El sise es incoible. Si =, r) = r) = El sise es coible indeerindo. b) Pr = el sise es equivlene José rí ríne edino

16 nálisis eáico José rí ríne edino 6. J), unos) Ddo el sise de ecuciones ) Discue su coibilidd según los vlores de. b) Resuélvelo r =. ) Se l ri de coeficienes l ri lid. El sise endrá solución cundo r) = r). λ El deerinne de, λ El deerinne es nulo cundo =. Con eso: Si r) = = r). El sise será coible deerindo. Si = se iene:. Coo uede verse, C = C; or no, r) = = r) el sise será coible indeerindo. b) Si = se iene:. Su solución es:

17 nálisis eáico José rí ríne edino. J) ) uno) Discuir, según los vlores del ráero, el sise: b), unos) Si r lgún vlor de es coible indeerindo, dd sus soluciones. Se l ri de coeficienes l ri lid. El sise endrá solución cundo r) = r). El deerinne de, ) ) Discusión: Si r) = = r). El sise será coible deerindo. Si =, r) = = r), ues,. El sise es hoogéneo con infinis soluciones. Si =, se iene:. Los rngos son diferenes, ues el enor. Por no: r) = r) = sise incoible. b) Resolución r =. El sise qued: solución: Si, no se ide) l solución es: ) ; ) ;

18 nálisis eáico José rí ríne edino 8. J6) Esudir el sise según los vlores de uno) resolverlo r =, unos) ) Se l ri de coeficienes l ri lid. El sise será coible cundo el rngo de se igul l rngo de. Si r) = r) =, será coible deerindo; si r) = r) <, coible indeerindo. El deerinne de, ) Con eso: Si r) = = r). El sise será coible deerindo. Si =, ls rices son:, con r) = r) =, ues el enor. Por no el sise será incoible. Si =, ls rices son:, con r) = r) =, ues l colun de los érinos indeendienes esá reeid.. En ese cso, el sise será coible indeerindo. Si =, el sise qued, que es coible deerindo. Su solución uede hllrse or Crer. ; ;

APLICACIONES DE LAS MATRICES

APLICACIONES DE LAS MATRICES PLIIONES DE LS MTRIES Ejercicio nº.- ) Encuenr los vlores de pr los que l ri: no es inversible. Ejercicio nº.- lcul, si es posible, l invers de l ri: Pr los csos en los que. Ejercicio nº.- Hll un ri,,

Más detalles

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales eáics II Sises lineles Sises de ecuciones lineles Observción: L orí de esos sises se hn propueso en ls pruebs de Selecividd, en los disinos disrios universirios espñoles.. L ri plid de un sise de ecuciones

Más detalles

MATEMÁTICAS II Tema 3 Sistemas de ecuaciones lineales

MATEMÁTICAS II Tema 3 Sistemas de ecuaciones lineales Álger: Sises de ecuciones lineles ATÁTICAS II Te Sises de ecuciones lineles Sises de res ecuciones con res incógnis Definiciones Un sise de res ecuciones lineles de con res incógnis, en su for esándr,

Más detalles

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos eáics II Bchillero de Ciencis) Soluciones de los roles rouesos Te wwweicsjco José rí ríne edino T Sises de ecuciones lineles Proles Resuelos Clsificción resolución de sises or éodos eleenles Resuelve uilindo

Más detalles

Tema 3. Sistemas de ecuaciones lineales

Tema 3. Sistemas de ecuaciones lineales eáics II (Bchillero de Ciencis) Álger: Sises de ecuciones lineles 7 Te Sises de ecuciones lineles Sises de res ecuciones con res incógnis Definiciones Un sise de res ecuciones lineles de con res incógnis,

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios resuelos de lger Ejercicios de Meáics. Se N M. ) Clcul e pr que MN = NM. ) Clcul M M ) MN ; NM = = = ) M = I M = M M = I M = M... Se ve que si el eponene es pr es igul l ri unidd si es ipr es

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos Álgebr: Sisems wwwmemicsjmmmcom José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues:

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues: nálisis eáio (eáis Eresriles ) José rí rínez eino ROLES DE TRCES DETERNNTES eguns e io es () Ls ries, y sus rsuess, y, ulen: ) ) ) Ningun e ls neriores Soluión: En ese so se ule ), ues: L resues es ) ()

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9 Te Sistes de Ecuciones.- Introducción..- Sistes de Ecuciones Lineles..- Método de Guss..- Discusión de Sistes Lineles..- Regl de Crer..- Mtri Invers..- Ecuciones Mtriciles..- Rngo de un Mtri..- Ejercicios

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo.

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo. Inegrles INTEGRAL IMPROPIA Eensión del oneo de inegrl definid L inegrl definid d requiere que: El inervlo [, ] se finio L funión f () esé od en el inervlo [, ] L funión f () se oninu en diho inervlo Cundo:

Más detalles

FRACCIONES ALGEBRAICAS

FRACCIONES ALGEBRAICAS FRACCIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA?. Cuáno dee ñdirse / r oener l unidd?. De ué número h ue resr / r oener l se re del número?. Qué número sumdo con sus / con sus / es?. Un erson inviere los

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

Definición de un árbol Rojinegro

Definición de un árbol Rojinegro Definición de un árol Rojinegro Árol inrio esrico (los nodos nulos se ienen en cuen en l definición de ls operciones odo nodo oj es nulo) Cd nodo iene esdo rojo o negro Nodos oj (nulos) son negros L rí

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

TEMA 1 SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

TEMA 1 SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Te Sises de ecuciones. Méodo de Guss TEMA SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS RESOLVER E INTERPRETAR GEOMÉTRICAMENTE SISTEMAS LINEALES EJERCICIO : Resuelve los siguienes sises h un inerpreción geoéric

Más detalles

Determinantes. Ejercicio nº 1.-

Determinantes. Ejercicio nº 1.- Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

Tema 4. SISTEMAS DE ECUACIONES LINEALES

Tema 4. SISTEMAS DE ECUACIONES LINEALES Te SISTS D CUCIONS LINLS Sises de res ecucioes co res icógis So de l for: Ls lers i, ij i represe, respecivee, ls icógis, los coeficiees los érios idepediees L solució del sise es el cojuo de vlores de,

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1 RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales José Mrí Mríne Medino de ecuciones lineles Observción: L morí de esos problems provienen de ls pruebs de selecividd. Resuelve el siguiene sisem de ecuciones: 9 Aplicndo el méodo de Guss: 9 6 6 L solución

Más detalles

Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: = 11 0 Solución: x = 4, y = 7. = 0 Solución: x = 5

Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: = 11 0 Solución: x = 4, y = 7. = 0 Solución: x = 5 Unidd. Deerminnes Memáis II Resuelve Págin Deerminnes de orden Resuelve los siguienes sisems lul el deerminne de d mriz de oeiienes: ) * ) * ) * d) * e) * ) * ) Soluión:, ) Soluión: λ, λ ) Soluión:, d)

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

= 27. 1 1, con b un parámetro real. Se pide: a) Para qué valores del parámetro b el sistema de ecuaciones lineales A

= 27. 1 1, con b un parámetro real. Se pide: a) Para qué valores del parámetro b el sistema de ecuaciones lineales A ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CCSSII: º) (Andlucí, Junio ) Un cliene de un supermercdo h pgdo un ol de 56 euros por 4 liros de leche, 6 kg de jmón serrno liros de ceie de oliv Plnee resuelv un

Más detalles

3 Sistemas de ecuaciones lineales

3 Sistemas de ecuaciones lineales Solucionrio Sistems de ecuciones lineles CTIVIDDES INICILES.I. Resuelve los siguientes sistems de ecuciones. ) c) 6 ), λ, λλ R, c) Sistem incomptible,.ii. En cd cso, escribe un sistem de ecuciones cu solución

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f) 80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( )

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( ) TRICES emáics º chillero. Inroducción. Definición de mriz El concepo de mriz como un bl ordend de números escrios en fils y columns es muy niguo, pero fue en el siglo XIX cundo J.J. Sylverser (8-897) cuñó

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Jun nonio González o Proesor de emáics del Colegio Jun XIII Zidín de Grnd ITEGRCIÓ ITEGRES IDEFIIDS ÉTODOS DE ITEGRCIÓ PRIITIV DE U FUCIÓ ITEGR IDEFIID Sen y F dos unciones reles deinids en un mismo dominio

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

Vectores en el espacio. Producto escalar

Vectores en el espacio. Producto escalar Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,

Más detalles

UNIDAD 10. SISTEMAS DE ECUACIONES LINEALES

UNIDAD 10. SISTEMAS DE ECUACIONES LINEALES Tem. Sistems de Ecuciones UNIDD. SISTEMS DE ECUCIONES LINELES. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA Mtemátics º ESO Fernndo Brroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA. En cd cso escribe un polinomio que cumpl ls condiciones que se indicn. Con grdo coeficientes enteros. Trinomio de grdo sin

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

El alumno elegirá el Ejercicio A o el B, del que sólo hará TRES de los cuatro problemas propuestos. Cada problema se puntuará de 0 a 3,33.

El alumno elegirá el Ejercicio A o el B, del que sólo hará TRES de los cuatro problemas propuestos. Cada problema se puntuará de 0 a 3,33. ALICANTE / JUNIO 98. LOGSE / MATEMÁTICAS II El lumno elegirá el Ejercicio A o el B, del que sólo hrá TRES de los curo problems propuesos. Cd problem se punurá de,. EJERCICIO A Problem.- Hll el volumen

Más detalles

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL

Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL Fcultd de Ciencis Ects ecnologís UNSE Apuntes de Cátedr: Investigción Opertiv / I Año: 6.- II. LA PROGRAMACIÓN LINEAL El Método Siple Definición: Un progr linel es quel que optiiz el siguiente odelo teático

Más detalles

JUNIO 2001. Considérese el sistema de ecuaciones dependiente del parámetro real a:

JUNIO 2001. Considérese el sistema de ecuaciones dependiente del parámetro real a: JUNIO INSTRUCCIONS: l emen resent dos ociones B; el lumno deberá elegir un de ells contestr rondmente los cutro ejercicios de que const dich oción en h. min. OPCIÓN jercicio. ( Puntución máim: untos) Considérese

Más detalles

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1 TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Determinntes ACTIVIDADES INICIALES I. Enumer ls inversiones que precen en ls siguientes permutciones y clcul su pridd, comprándols con l permutción principl 34. ) 34 b) 34 c) 43 d) 34 e)43 f) 34 ) 3,4,

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina MTRICES Mtrices de números reles. Definimos mtriz rel de elementos pertenecientes R y de dimensión n fils por m columns, quel conjunto de números reles escritos de l form siguiente: n n mtriz nxm m m nm

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

Resumen: Límites, Continuidad y Asíntotas

Resumen: Límites, Continuidad y Asíntotas Resue: Líites, Cotiuidd y Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. : *? ** *

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES ( )

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES (  ) MATEMÁTICAS III (Crrer de Economí) OPTIMIZACIÓN CON RESTRICCIONES ( http://www.geocities.com/jls ) El propósito centrl de l economí como cienci es el estudio de l signción óptim de los recursos escsos.

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles