DISTRIBUCIONES DE PROBABILIDAD: BINOMIAL Y NORMAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISTRIBUCIONES DE PROBABILIDAD: BINOMIAL Y NORMAL"

Transcripción

1 DISTRIBUCIONES DE PROBABILIDAD: BINOMIAL Y NORMAL Ejercicio nº.- Extraemos tres cartas de una baraja y anotamos el número de ases. Haz una tabla con las robabilidades y calcula la media y la desviación tíica. Los osibles valores de x i son 0,,,3. La tabla de la distribución de robabilidad es la siguiente: Calculamos la media y la desviación tíica: μ Σ i x 0,3 μ 0,3 i i σ Σ i x μ 0,36 0,09 0,7 0,5 σ 0,5 Ejercicio nº.- Para cada una de las situaciones que se te roonen a continuación, di si se trata de una distribución binomial y, en caso afirmativo, identifica los valores de n y : a) Se calcula que el 5% de los niños que nacen son varones. En una oblación de 00 recién nacidos, nos reguntamos or el número de niñas que hay. b) Un examen tio test tiene 30 reguntas a las que hay que resonder verdadero o falso. Para un alumno que conteste al azar, nos interesa saber el número de resuestas acertadas que tendrá. a) Es una distribución binomial con n 00, 0, 49 B b) Es una distribución binomial con n 30, B 30, ( 00; 0,49) Ejercicio nº 3.- Una urna contiene 5 bolas rojas, 3 blancas y verdes. Extraemos una bola, anotamos su color y la devolvemos a la urna. Si reetimos la exeriencia 5 veces, calcula la robabilidad de sacar:

2 a) Alguna bola verde. b) Menos de dos bolas verdes. Halla el número medio de bolas verdes extraídas. Calcula también la desviación tíica. Si llamamos x "número de bolas verdes extraídas", se trata de una distribución binomial con n 5, 0, B( 5; 0,) 0 a) 5 [ x > 0] [ x 0] 0,8 0,67 [ x > 0] 0, 67 b) 5 4 [ x < ] [ x 0] + [ x ] 0, , 0,8 0,737 [ x < ] 0, 737 Hallamos la media y la desviación tíica: μ n 5 0, bola verde ( or término medio) μ σ nq 5 0, 0,8 0,89 σ 0,89 Ejercicio nº 4.- La función de densidad de una variable continua, x, viene dada or: ( ) f x 0 si x < 0 x si 0 x 4 si < x 3 0 si x > 3 a) Rereséntala gráficamente. b) Calcula P x < y P x 4. [ ] [ ] a) La gráfica es la siguiente: b) El area bajo la curva es. P [ x < ] es el área de un triángulo de base y altura es. Por tanto: P[ x < ] P[ 0 x ] P[ x < ]

3 P [ x 4] es el área de un rectángulo de base y altura. Por tanto: P[ x 4] P[ x 3] P[ x 4] Ejercicio nº 5.- Halla las siguientes robabilidades en una distribución N(0, ): [ < ] [ 0,6 < z,34] [, <,] a) z,73 b) < c) z < [ <,73] [ z >,73] [ z <,73] 0,958 0, 048 a) z [ 0,6 < z <, 34] [ z <,34] [ z < 0,6] 0, , 734 0, 775 b) [, < z <, ] ( [ z <, ] 0,5) ( 0,8849 0,5) 0, 7698 c) Ejercicio nº 6.- La edad de un determinado gruo de ersonas sigue una distribución N(35, 0). Calcula la robabilidad de que una ersona de ese gruo, elegido al azar, tenga: a) Más de 40 años. b) Entre 3 y 47 años. x a) z 0 0 z 0,5 0,695 0, [ x > 40] > [ > 0, 5] [ ] 3085

4 b) 3 35 x z 0,8849 0,5 0, [ 3 < x < 47] < < [, < <, ] ( ) 7698 Ejercicio nº 7.- En una distribución N(5, 6), halla el valor de k en cada caso: [ x < k] 835 [ x > k] 006 a) 0, b) 0, x 5 k 5 k 5 a) k 5 0,96 k 0, x 5 k 5 k 5 b) [ x > k] > z > [ x < k] < z < 0, 835 k 30,76 k 5 k 5 z 0, 006 z 0, k 5,5 k, k 40 6 Ejercicio nº 8.- Un examen de 00 reguntas admite como resuesta en cada una de ellas dos osibilidades, verdadero o falso. Si un alumno contesta al azar, calcula la robabilidad de que acierte más de 60 resuestas. Si llamamos x " número de resuestas acertadas", entonces x es una binomial con n 00,, en la que tenemos que calcular: [ x > 60 ] (La media de x es n 50. Su desviación tíica es nq ). 5 La calculamos aroximando con una normal: x es B 00, x' es N ( 50, 5) z es N( 0, ) 60, [ x > 60] [ x' 60,5] z [ z, ]

5 [ <,] 0,98 0,079 [ > 60] 0, 079 z x Ejercicio nº 9.- Lanzamos tres dados y anotamos el número de cincos que obtenemos. a) Cuál es la distribución de robabilidad? b) Calcula la media y la desviación tíica. a) Los osibles valores de x i son 0,,, 3. La tabla de la distribución de robabilidad es la siguiente: 08 b) μ Σ x i i 0,5 μ 0, σ Σ i xi μ 0,65 σ 0, Ejercicio nº 0.- En cada una de estas situaciones, exlica si se trata de una distribución binomial. En caso afirmativo, di cuáles son los valores de n y : a) El 3% de las chinchetas que se hacen en una determinada fábrica salen defectuosas. Se emaquetan en cajas de 0 chinchetas. Estamos interesados en el número de chinchetas defectuosas de una caja elegida al azar. b) En una urna hay bolas rojas, 3 blancas y verdes. Extraemos una bola, anotamos su color y la devolvemos a la urna. Reetimos la exeriencia 0 veces y estamos interesados en saber el número de bolas de cada color que hemos obtenido. ( 0; 0 03) a) Es una distribución binomial con n 0, 0,03 B, b) No se trata de una binomial, ya que tenemos más de dos resultados osibles: rojo, blanco, verde. Ejercicio nº.- Lanzamos un dado siete veces y vamos anotando los resultados. Calcula la robabilidad de obtener:

6 a) Algún tres. b) Más de cinco treses. Halla el número medio de treses obtenidos y la desviación tíica. Si hallamos x "número de treses obtenidos", se trata de una distribución binomial con n 7, B 7, 6 6 a) 5 6 [ x > 0] [ x 0] 0,7 [ x > 0] 0, 7 [ x > 5] [ x 6] + [ 7] b) x , 0009 x Hallamos la media y la desviación tíica: 7 μ n 7,7 μ, σ nq 7 0,986 σ 0, [ > 5] 0, 0009 Ejercicio nº.- Una varible continua tiene como función de densidad: ( ) f x ( 4 x ) si x 0, resto a) Reresenta gráficamente f(x). b) Calcula P x > y P x. [ ] [ ] [ ] a) La gráfica es la siguiente: b) El área bajo la curva es. P [ x > ] es el área de un triángulo de base y altura es. Por tanto: 4

7 P[ x > ] P[ x 4] 4 P[ x > ] Entre y tenemos un traecio de bases y y altura. Por tanto: 8 4 P [ x ] P[ x ] Ejercicio nº 3.- Calcula, en una distribución N(0, ), las siguientes robabilidades: [ < ] [ 0, < z 3] [,8 < 0,5] a) z,3 b) < c) z < [ <,3] [ z >,3] [ z,3] 0,9893 0, 007 a) z [ 0, < z < 3] [ z < 3] [ z < 0,] 0,9987 0,5478 0, 4509 b) [,8 < z < 0,5] [ z < 0,5] [ z <,8 ] [ z < 0,5] [ >, 8] c) z [ < 0,5] ( [,8 ]) 0,5596 ( 0,964) 0, 537 z z Ejercicio nº 4.- Las ventas diarias, en euros, en un determinado comercio siguen una distribución N(950, 00). Calcula la robabilidad de que las ventas diarias en ese comercio: a) Sueren los 00 euros. b) Estén entre 700 y 000 euros.

8 a) x z z,5 0,8944 0, b) [ x > 00] > [ >, 5] [ ] x < z < 0,5 z < 0,5 z < [ 700 < x < 000] < < [ ] [ ] [ ] [ < 0,5] [ z > ] [ z < 0, 5] ( [ z ] ),5987 ( 0,843) 0, 44 z 0 Ejercicio nº 5.- Halla el valor de k en cada caso, sabiendo que z sigue una distribución N(0, ): [ < k] 939 [ k < z < k] 847 a) z 0, b) 0, (,49) 0,939 k, 49 [ k < z < k] ( [ z < k] 0,5) ( ( k ) 0,5) φ( k ) 0,936 k, 43 a) φ b) φ 0, 847 Ejercicio nº 6.- El 7% de los antalones de una determinada marca salen con algún defecto. Se emaquetan en caja de 80 ara distribuirlos or diferentes tiendas. Cuál es la robabilidad de que en una caja haya más de 0 antalones defectuosos? Si llamamos x "número de antalones defectuosos en una caja", entonces x es una binomial con n 80 ; 0,07, en la que hay que calcular [ x > 0]. La calculamos aroximando con una normal: La media de x es n 80 0, 07 5, 6; su desviación tíica es nq, 8. x es B ( 80; 0,07) x' es N( 5,6;,8) z es N( 0, ) 0,5 5,6 [ x > 0] [ x' 0,5] z [ z, 5],8 z <,5 0, 984 0, 058 x > 0 0, [ ] [ ] 058

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº.- En una urna hay bolas numeradas de al. Etraemos una bola al azar y observamos

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B: Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos: 1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización

Más detalles

m de ir hacia la izquierda o hacia la derecha. Imita el recorrido de un perdigón lanzando una moneda 7 veces y haciendo la asignación

m de ir hacia la izquierda o hacia la derecha. Imita el recorrido de un perdigón lanzando una moneda 7 veces y haciendo la asignación Matemáticas aplicadas a las Ciencias Sociales I Resuelve Página 7 Por qué las casillas centrales del aparato de Galton están más llenas que las extremas? Para explicarlo, sigamos el camino recorrido por

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010

MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010 IES ATENEA San Sebastián de los Rees MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I Eamen de la tercera evaluación Nombre apellidos Fecha: 0 de junio de 00.- (, 5 puntos) En seis modelos de zapatillas deportivas

Más detalles

Ejercicios de Cálculo de Probabilidades

Ejercicios de Cálculo de Probabilidades Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

5 2,7; ; ; 3; 3,2

5 2,7; ; ; 3; 3,2 Actividades de recuperación para septiembre 3º ESO, MATEMÁTICAS La recuperación de la asignatura consta de dos partes: Entregar los siguientes ejercicios resueltos correctamente. Aprobar el examen de recuperación.

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Página 7 REFLEXIONA Y RESUELVE Lanzamiento de monedas Al lanzar cuatro monedas pueden darse posibilidades: CCCC, CCC+, CC+C, CC++, C+CC, Complétalas y justifica los resultados

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una gran caja vacía. Echamos en la caja R, 0 V

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

EJERCICIOS PROBABILIDAD

EJERCICIOS PROBABILIDAD EJERCICIOS PROBABILIDAD 0. Razona y di si los siguientes experimentos son aleatorios o deterministas: Dejar caer una moneda desde una altura determinada y medir el tiempo que tarda en llegar al suelo.

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

3 PROBABILIDAD Y DISTRIBUCION NORMAL

3 PROBABILIDAD Y DISTRIBUCION NORMAL 3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC SIGMA 28 Abel Martín (*) y Rosana Álvarez García (**) En dos artículos anteriores ya hemos estudiado la distribución Binomial

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO

RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO 00- Sea el experimento consistente en lanzar un dado cúbico y los sucesos A={,,3} y B={3,4}. Halla A I B Lanzamos un dado cúbico, cuál es la probabilidad de

Más detalles

Probabilidad. Distribución binomial y normal

Probabilidad. Distribución binomial y normal 4 Probabilidad. Distribución binomial y normal. Probabilidad condicionada Piensa y calcula alcula mentalmente: a) la probabilidad de que al sacar una bola, sea roja. b) la probabilidad de que al sacar

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2015-2016 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos

Más detalles

Espacio muestral. Operaciones con sucesos

Espacio muestral. Operaciones con sucesos Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado

Más detalles

( ) = = ( ) ( ) 1 = La probabilidad de que no ocurra ninguno de los dos es la probabilidad de la intersección de los complementarios ó contrarios.

( ) = = ( ) ( ) 1 = La probabilidad de que no ocurra ninguno de los dos es la probabilidad de la intersección de los complementarios ó contrarios. CUESTONES. Sean y B dos sucesos con (0,5, (B0, y ( B0,. Calcular las siguientes robabilidades (, (, ( B, (. B B B B ( ( B 0' B B 0' ( B ( B ( B ( B ( B B ( B B ( B B 0' 0'5 + 0' 0' 7 B B B ( ( B ( B (

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Probabilidad del suceso imposible

Probabilidad del suceso imposible 2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;

Más detalles

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

EJERCICIOS DEL BLOQUE DE PROBABILIDAD.

EJERCICIOS DEL BLOQUE DE PROBABILIDAD. EJERCICIOS DEL BLOQUE DE PROBABILIDAD. 1.- Cuál es la probabilidad de sacar los dos ases al lanzar dos dados? 2.- Cuál es la probabilidad de obtener tres caras, lanzando al aire una moneda tres veces?.

Más detalles

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Tema 11 Cálculo de Probabilidades.

Tema 11 Cálculo de Probabilidades. Tema 11 Cálculo de Probabilidades. 11.1 Experimentos aleatorios. Espacio muestral PÁGINA 248 EJERCICIOS 1. Decide si los siguientes experimentos son aleatorios o deteministas. a) Medir apotemas de un pentágono

Más detalles

UNIDAD XI Eventos probabilísticos

UNIDAD XI Eventos probabilísticos UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN EJERCICIOS DE REPASO PARA EXAMEN FINAL DE ESTADÍSTICA

UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN EJERCICIOS DE REPASO PARA EXAMEN FINAL DE ESTADÍSTICA 1 UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN EJERCICIOS DE REPASO PARA EXAMEN FINAL DE ESTADÍSTICA A continuación se presentan unos ejercicios que tiene como intención repasar los

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

Análisis de Datos Práctica 1

Análisis de Datos Práctica 1 Análisis de Datos 2013 - Práctica 1 1. Sea = f1; 2; 3; 4; 5; 6; 7g, E = f1; 3; 5; 7g, F = f7; 4; 6g, G = f1; 4g. Describir: a) E \ F c) E \ G 0 e) E 0 \ (F [ G) b) E [ (F \ G) d) (E \ F 0 ) [ G f) (E \

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

= 10. pertenece al intervalo en el que estamos, es decir, en 2,8.

= 10. pertenece al intervalo en el que estamos, es decir, en 2,8. ROBLEMAS SOLUCIONADOS SOBRE VARIABLES ALEATORIAS CONTINUAS DIST NORMAL AROX DE LA DIST BINOMIAL ROFESOR ANTONIO IZARRO 1º (Castilla y León, Junio, 99 Sea X una variable aleatoria cuya función de distribución

Más detalles

Probabilidad Condicional

Probabilidad Condicional Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

8.- Obtén el valor de n para que el polinomio sea divisible entre x + 3.

8.- Obtén el valor de n para que el polinomio sea divisible entre x + 3. 1º BACHILLERATO CCSS NÚMEROS Y ÁLGEBRA 1.- Calcula: a) 5,2 10 2 + 3,15 10-2 4,2 10-3 b)(3,6 10 3 ) : (1,2 10-4 ) 2.- Realiza las siguientes operaciones: 3.- Racionaliza: 4.- Racionaliza: 5.- Simplifica

Más detalles

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/99 SP XII José Mª Chacón Íñigo IES Llanes, Sevilla Te explicamos como realizar la operación de distribución de probabilidad

Más detalles

PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.

PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar. PROBABILIDAD. 1 EXPERIENCIAS ALEATORIAS. SUCESOS. Experiencia aleatoria es aquella cuyo resultado depende del azar. Suceso aleatorio es un acontecimiento que ocurrirá o no dependiendo del azar. Espacio

Más detalles

MATEMÁTICAS 4º E.S.O.

MATEMÁTICAS 4º E.S.O. CUADERNO DE VERANO. MATEMÁTICAS º E.S.O. LA FONTAINE EDUCATIONIS LA FONTAINE (Burjassot) Colegio de Educación Infantil, Primaria y Secundaria Obligatoria 1 Los ejercicios complementarios de matemáticas,

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

37. E l 20% de l os em pleados de un a em presa s on in genieros y otro 20% s on econom istas. El 7 5% d e los in gen ieros ocup an un puesto

37. E l 20% de l os em pleados de un a em presa s on in genieros y otro 20% s on econom istas. El 7 5% d e los in gen ieros ocup an un puesto 37. E l 20% de l os em pleados de un a em presa s on in genieros y otro 20% s on econom istas. El 7 5% d e los in gen ieros ocup an un puesto directivo y e l 50% d e los econ om istas tam bién, m ientras

Más detalles

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales. Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.

Más detalles

Bloque 4. Estadística y Probabilidad

Bloque 4. Estadística y Probabilidad Bloque 4. Estadística y Probabilidad 2. Probabilidad 1. Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

Tiempo completo Tiempo parcial Total Mujeres Hombres Total

Tiempo completo Tiempo parcial Total Mujeres Hombres Total ASIGNACION DE ROBABILIDAD A manera de introducción al tema analicemos las diferencias entre eventos mutuamente excluyentes, no mutuamente excluyentes, dependientes e independientes. Ejemplo : En un grupo

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2009

PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA SOLUCIONARIO UNIBERTSITATERA SARTZEKO HAUTAPROBAK 25 URTETIK GORAKOAK 2009ko MAIATZA ESTATISTIKA PRUEBAS DE ACCESO

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

UNIDAD II Eventos probabilísticos

UNIDAD II Eventos probabilísticos UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo? Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10 1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B).

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B). Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, curso 2006 2007. Ejercicio 1. Dados cuatro sucesos A, B, C y D, la probabilidad de que ocurra al menos uno

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

DISTRIBUCIÓN DE POISSON

DISTRIBUCIÓN DE POISSON DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad

Más detalles

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2013 Resolución de 02/04/2013, de la Viceconsejería de Educación, Universidades e Investigación (DOCM

Más detalles

Ejercicios elementales de Probabilidad

Ejercicios elementales de Probabilidad Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.

Más detalles

2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.

2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?. ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

DISTRIBUCIÓN NORMAL. > = P (Z > 0,6) = 0, El 72,58% de las vacas pesa más de 570 kg. Puede esperarse que 73 vacas superen ese peso.

DISTRIBUCIÓN NORMAL. > = P (Z > 0,6) = 0, El 72,58% de las vacas pesa más de 570 kg. Puede esperarse que 73 vacas superen ese peso. DISTRIBUCIÓN NORMAL 1. El peso de las 100 vacas de una ganadería se distribuye según una normal de media 600 kg y una desviación típica de 50 kg. Se pide: Cuántas vacas pesan más de 570 kilos? Cuántas

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 0 DISTRIUIONES DE PROILIDD DE VRILE DISRET. L INOMIL Página PR EMPEZR, REFLEXION Y RESUELVE Problema Dibuja los recorridos correspondientes a: +, + +, +, + + + +, + + + + + + + + + + Problema Observa que

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

SESION 12 LA DISTRIBUCIÓN BINOMIAL

SESION 12 LA DISTRIBUCIÓN BINOMIAL SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

PÁGINA 120. Pág. 1. Unidad 12. Estadística

PÁGINA 120. Pág. 1. Unidad 12. Estadística 1 Soluciones a las actividades de cada epígrafe PÁGINA 1 1 Un fabricante de tornillos desea hacer un control de calidad. Para ello, recoge 1 de cada tornillos producidos y lo analiza. a) Cuál es la población?

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Tema Autor: Antonio Rivero uesta, Tutor.A. Palma de Mallorca. Lanzamos una moneda dos veces consecutivas. onsideramos el espacio de posibilidades formado por los cuatro casos Ω = {,,, }. En este espacio,

Más detalles

Tema 15: Azar y probabilidad

Tema 15: Azar y probabilidad Tema 5: Azar y probabilidad 5 5. Sucesos aleatorios Ejemplo. Si lanzamos dos monedas, cuál es el espacio muestral? E XX, CC, XC, CX cúal es el suceso al menos una cruz? XC, CX, XX cuál es el suceso salir

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. VARIABLE DISCRETA

DISTRIBUCIONES DE PROBABILIDAD. VARIABLE DISCRETA UNIDD 0 DISTRIUIONES DE PROILIDD. VRILE DISRET Página 28. Imita el recorrido de un perdigón lanzando una moneda veces y haciendo la asignación: R derecha RUZ izquierda Por ejemplo, si obtienes + el itinerario

Más detalles

MATEMATICAS APLICADAS. 3º ESO PENDIENTE Cuadernillo Parte 1

MATEMATICAS APLICADAS. 3º ESO PENDIENTE Cuadernillo Parte 1 MATEMATICAS APLICADAS 3º ESO PENDIENTE Cuadernillo Parte 1 Estadística. Probabilidad. Números Racionales. Potencias y notación científica. Polinomios. Departamento de Matemáticas 1/12 ESTADÍSTICA 1.- Indica

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz Me tocará? No me tocará? Si jugamos al parchís, sacaré un cinco para salir de casa? No lo sabemos, todo depende de la suerte o el azar.

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

EJERCICIOS DE VERANO NÚMEROS ENTEROS NÚMEROS RACIONALES : 5 = )

EJERCICIOS DE VERANO NÚMEROS ENTEROS NÚMEROS RACIONALES : 5 = ) EJERCICIOS DE VERANO Después de estudiar cada lección del libro y practicar los ejercicios hechos en clase, debes hacer los correspondientes a la lección estudiada que tienes a continuación. En negrita

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta cinco de los seis ejercicios propuestos.

Más detalles