Control Moderno. Ene.-Jun Diseño de controlador por retroalimentación de estado. Dr. Rodolfo Salinas. mayo 2007

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Control Moderno. Ene.-Jun Diseño de controlador por retroalimentación de estado. Dr. Rodolfo Salinas. mayo 2007"

Transcripción

1 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun Diseño de controlador por retroalimentación de estado Dr. Rodolfo Salinas mayo 2007 Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas

2 Retroalimentación de estado Diseño de un controlador por retroalimentación de estado. Lazo abierto y lazo cerrado Para los casos en donde un sistema inestable se quiera llevar hacia la estabilidad. Se utiliza asingación de polos (colocación de polos) del sistema. Esta acción se realizará mediante el diseño de un controlador por retroalimentación de estado en la entrada del sistema. Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 1

3 Lazo abierto y lazo cerrado u x = Ax+Bu y = Cx+Du y Lazo Abierto ẋ = Ax + Bu y = Cx No existe retroalimentación de la salida hacia la entrada B = 0 El control no está dada como una función de la salida del sistema u = 0 ẋ = Ax + Bu. La matriz del sistema en lazo abierto sera A Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 2

4 u x = Ax+Bu y = Cx+Du y K Lazo Cerrado ẋ = Ax + Bu ; u = Kx = Ax + BKx = (A + BK)x Se cierra el lazo de retroalimentación de la salida-entrada u = Kx, donde K es una matriz de ganancias K R 1 n que multiplican a cada una de las variables de estado x R n 1 En general u = Ky, pero si y = x, u = Kx, y = Cx, C = I La matriz de lazo cerrado del sistema de esta manera es A c = A + BK Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 3

5 Controlabilidad Propiedad de acoplamiento entre la entrada u y el estado x de un sistema dinámico. ẋ = Ax + Bu involucra las matriz del sistema A y de entrada B Controlabilidad: propiedad que determina si es posible llevar un sistema dinámico de una posición inicial x(t 0 ) al origen x(t f ) = 0 en tiempo finito t 1 ; t 1 > t 0 mediante una entrada u(t). Condición: C = B AB A 2 B A n 1 B ρ(c) = n Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 4

6 Asignación de polos Procedimiento que consiste en determinar las ganancias K de la retroalimentación de estado tal que los polos del sistema en lazo cerrado tengan ciertos valores deseados. Valores propios del sistema de lazo cerrado son las raices de polinomio característico (λ) = det si A + BK = 0 Condición: si y solo si el sistema de lazo abierto (A, B) es controlable, se puede lograr tener los valores propios deseados Γ = {λ 1, λ 2,..., λ n } Ec. caract. de lazo cerrado (con retro) se iguala a ec. caract. deseada det si A + BK = 0 (s λ 1 )(s λ 2 ) (s λ n ) = 0 k 1, k 2,..., k n Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 5

7 Diseño de controlador por retroalimentación de estado 1. Verificar si el sistema es controlable 2. Obtener la ecuación característica del sistema y sus valores propios 3. Expresar la matriz lazo cerrado A c y su ecuación característica 4. Determinar ecuación característica deseada polos deseados 5. Encontrar ganancias de retroalimentación K por asignación de polos igualar términos similares de ec. caract. de lazo cerrado y deseada resolver para las ganancias de retro. K R n desconocidas 6. Escribir el control por retroalimentación de estado u = Kx y comprobar Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 6

8 Ejemplo 1 Suponga que se tiene un sistema ẋ = 1 2 x Ecuación característica del sistema det si A = 0. det si A = det s s 2 = 0 = (s 1)(s 2) 1 = 0 = s 2 3s + 1 = 0 s 1 = 2.618, s 2 = Las raices del sistema estan en semiplano derecho sistema es inestable. Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 7

9 El sistema expresado en la ecuación de estado anterior es equivalente a ẋ = x + 0 pregunta pensar : cómo se puede hacer que este sistema sea estable? Respuesta : no es posible estabilizarlo sin disponer de una entrada u. Para tratar de estabilizar es necesaria una matriz de entrada B 0 0. Por ejemplo, podemos considerar el sistema ẋ = x + 0 u u el cual sabemos de antemano que es inestable (matriz A). Diferencia es que cuando aparece la u existe la posibilidad de alterar esta propiedad del sistema utilizando una entrada u = Kx = k 1 k 2 x. Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 8

10 Controlabilidad Si deseamos colocar polos tal que sistema sea estable, la condición necesaria es controlabilidad verificar que el rango de C sea = dimensión del sistema n = 2 C = B AB, verificar si sistema es controlable, ρ(c) = 2? AB = C = B AB = = 1 1 det(c) = 1 ρ(c) = n Asi se verifica que este sistema si es controlable y se satisface condición para asignar los polos en posiciones nuevas mediante un controlador. Siguiente paso: considerar sistema en lazo cerrado y efectuar diseño de Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 9

11 control. ẋ = Ax + Bu, A = 1 2, B = 1 0, K = k 1 k 2 El procedimiento anaĺıtico consta d primero obtener la ecuación de estado en lazo cerrado y la matriz del sistema en lazo cerrado A c ẋ = Ax + B( Kx) = Ax BKx = (A BK)x = ( 1 2 = k k matriz lazo cerrado A c = Siguiente paso: deseados k 1 k 2 )x = x 1 k k k1 k )x realizar asignación de polos de acuerdo a los valores Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 10

12 Asignación de polos Polos de lazo cerrado se determina por medio de ec. caract. de A c det si A c = det s (1 k 1) 1 + k 2 1 s 2 = 0 = (s 2)(s (1 k 1 )) ( 1)( 1 + k 2 ) = 0 = s 2 (1 k 1 ) + 2s + ( 1 + k 2 ) + 2(1 k 1 ) = 0 = s 2 + (k 1 3)s (1 2k 1 + k 2 ) = 0 Diseñe un control por retroalimentación de estado (buscar k 1 y k 2 ) para que asumiendo que se desea los polos de este sistema en s = 5 y s = Obtener ecuación característica del sistema con dichos valores multiplicando los factores correspondientes a cada uno de ellos. Ecuación característica de polos deseados (deseada) Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 11

13 (s + 5)(s + 6) = 0 s s + 30 = 0 2. Comparar con ecuación característica del sistema en lazo cerrado s 2 + (k 1 3)s + (1 2k 1 + k 2 ) = 0 comparando términos similares, se obtienen el sistema de ecuaciones algebráicas y se resuelve para k 1 y k 2 k 1 3 = 11 k 1 = 14, 1 2(14) + k 2 = 30 k 2 = k 1 + k 2 = 30 K = hacen que sistema sea estable con polos en los lugares deseados mediante una retroalimentación de estado u = Kx. Para comprobar que k 1 y k 2 hacen su función, substituir en ecuación característica de lazo cerrado y obtenier ecuación característica deseada, o multiplicarlas para encontrar ecuación característica del sistema. Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 12

14 Ejemplo 2 Hay casos en el que el sistema ya sea estable, pero se quiere una respuesta del estado mas dinámica Suponga que se tiene un sistema ẋ = 4 3 x se desea colocar los polos en s = 7 y s = 5. Ecuación característica det si A = 0. det si A = det s s + 3 = 0 = (s 1)(s + 3) ( 4) = 0 = s 2 + 2s + 1 = 0 s 1 = 1, s 2 = 1 estable Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 13

15 Controlabilidad 0 2 AB = = C = B AB = 2 6 Para este sistema ρ(c) = n = 2? det(c) = 4 ρ(c) = 2 Ecuación característica de lazo cerrado ẋ = Ax + B( Kx) = Ax BKx = (A BK)x 0 = ( k k 2 )x = 4 3 = x 4 2k 1 3 2k )x 2k 1 2k 2 matriz lazo cerrado A c = 4 2k 1 3 2k 2 Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 14

16 Asignación de polos Obtener ecuación característica de lazo cerrado det si A c = det s k 1 s k 2 = 0 = (s 1)(s k 2 )) k 1 ) = 0 = s 2 + 3s + 2k 2 s s 3 2k k 1 = 0 = s 2 + (2 + 2k 2 )s k 1 2k 2 = 0 Ecuación característica de polos deseados (deseada) (s + 5)(s + 7) = 0 s s + 35 = 0 Comparando términos similares en ambas ecuaciones se obtiene 2 + 2k 2 = 12 k 2 = 5, 1 + 2k 1 2(5) = 35 = k 1 = k 1 2k 2 = 35 Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 15

17 K = 22 5 u = Kx. u = Kx = 22 5 x1 x 2 = 22x 1 5x 2 Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 16

18 Ejemplo 3 Suponga que se tiene un sistema ẋ = Ax + Bu, x R 3 1, u R 1 1 ẋ = x Diseñar controlador por retroalimentación de estado para asignar los polos en s = 2 + j4, s = 2 j4 y s = 10. Matriz de controlabilidad C = B AB A 2 B AB = = A 2 B = A A B = = Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 17

19 C = B AB A 2 B = Para este sistema ρ(c) = n = 3? det(c) = 1 0 ρ(c) = 3 Matriz del sistema de lazo cerrado A c ẋ = Ax + B( Kx) = Ax BKx = (A BK)x, A c = A BK ( = ) 0 k 1 k 2 k 3 x ( = ) x k 1 k 2 k 3 = k 1 5 k 2 6 k 3 x Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 18

20 0 1 0 matriz lazo cerrado A c = k 1 5 k 2 6 k 3 Asignación de polos Ecuación característica de lazo cerrado det si A c = det s = det s s k k 2 s k k 1 5 k 2 6 k 3 = 0 = s 2 (s k 3 ) k ( s(5 + k 2 ) ) = 0 = s 3 + s 2 (6 + k 3 ) + s(5 + k 2 ) k 1 = 0 Ecuación característica deseada (s + 10)(s + 2 j4)(s 2 j4) = 0 s s s = 0 6+k 3 = 14 k 3 = 8, 5+k 2 = 60 k 2 = 55, 1+k 1 = 200 k 1 = 199 Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 19

21 Simplificando ecuación característica deseada: (s + 10)(s + 2 j4)(s 2 j4) = (s + 10)(s 2 + 4s + 4 j 2 (16)) = 0 (s + 10)(s 2 + 4s + 20) = (s + 10)(s 2 + 4s + 20) = 0 s 3 + 4s s + 10s s = s s s = 0 El controlador que coloca los polos del sistema en lazo cerrado en los lugares deseados de s = 2 ± j4, y s = 10 es u = Kx = x 1 x 2 x 3 = 199x 1 55x 2 8x 3 Control Moderno N1 mayo 2007 Dr. Rodolfo Salinas 20

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Dr. Rodolfo Salinas abril 2007 Control Moderno N1 abril 2007 Dr. Rodolfo Salinas Modelo Ecuación

Más detalles

EXAMEN PARCIAL I

EXAMEN PARCIAL I UNIVERSIDAD NACIONAL DE INGENIERÍA - FIM MT 7 Control Moderno y Óptimo EXAMEN PARCIAL - 04I Problema : Un tanque vacio con masa m o es posicionado sobre g un resorte lineal con rigidez k. El tanque es

Más detalles

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones. 10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son

Más detalles

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección

Más detalles

Controlabilidad y observabilidad

Controlabilidad y observabilidad Controlabilidad p. 1/16 Controlabilidad y observabilidad En las próximas clases discutiremos dos conceptos fundamentales de la teoría de sistemas: controlabilidad y observabilidad. Esos dos conceptos describen

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a

Más detalles

Que es una Ecuación Diferencial? (ED) Para qué sirven las ecuaciones diferenciales?

Que es una Ecuación Diferencial? (ED) Para qué sirven las ecuaciones diferenciales? Que es una Ecuación Diferencial? (ED) Una ecuación diferencial (ED), es una ecuación que relaciona una función desconocida y una o más derivadas de esta función desconocida con respecto a una o más variables

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I)

EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I) C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 G( z) ( z.5) z C. a) Determinar la región del plano z

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Ecuaciones no Algebraicas

Ecuaciones no Algebraicas Capítulo 6 Ecuaciones no Algebraicas G eneralmente para lograr resolver problemas de la vida cotidiana utilizando matemática, se ocupan ecuaciones algebraicas, ya que estas son suficientes para la mayoría

Más detalles

Ecuaciones de 1er Grado 2. Incógnitas. Ing. Gerardo Sarmiento Díaz de León

Ecuaciones de 1er Grado 2. Incógnitas. Ing. Gerardo Sarmiento Díaz de León Ecuaciones de 1er Grado 2 Incógnitas Ing. Gerardo Sarmiento Díaz de León 2009 Teoría sobre ecuaciones de primer grado con 2 icognitas solución por los 3 metodos CETis 63 Ameca, Jalisco Algebra Área matemáticas

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

6.1. Condición de magnitud y ángulo

6.1. Condición de magnitud y ángulo Capítulo 6 Lugar de las raíces La respuesta transitoria de un sistema en lazo cerrado, está ligada con la ubicación de los polos de lazo cerrado en el plano complejo S. Si el sistema tiene una ganancia

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

Sistemas lineales homogéneos

Sistemas lineales homogéneos Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 1 Sistemas lineales homogéneos Estudiaremos los sistemas de la forma x (t) = Ax(t) + b(t) Sistemas homogéneos: x = Ax

Más detalles

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

Solución de Sistemas de Ecuaciones Diferenciales Lineales

Solución de Sistemas de Ecuaciones Diferenciales Lineales Solución de Sistemas de Ecuaciones Diferenciales Lineales Departamento de Matemáticas, CCIR/ITESM 9 de febrero de Índice..Introducción.................................................Ejemplo.................................................3.Ejemplo................................................

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático

Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático ASIGNATURA: TEORÍA DE SISTEMAS LINEALES Nombre de la asignatura: TEORÍA DE SISTEMAS LINEALES Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático Tiempo de dedicación del estudiante

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.5 Obtención de una ecuación diferencial asta ahora el problema tratado ha sido: Obtener la solución general de una ED lineal homogénea con coeficientes

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales 1 Parte IV Ecuaciones Diferenciales Esta sección tiene como propósito dar algunos de los conceptos básicos relacionados con las ecuaciones diferenciales e ilustrar su importancia en la resolución de problemas

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES

1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES Capítulo 1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES 1.1 INTRODUCCIÓN Este libro trata del álgebra lineal. Al buscar la palabra lineal en el diccionario se encuentra, entre otras definiciones, la siguiente:

Más detalles

Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA.

Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Reemplazos Algebraicos Gabriel Darío Uribe Guerra Universidad de Antioquia XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Universidad de Nariño San Juan de Pasto Mayo 2016 1/23 Introducción

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

15. LUGAR DE LAS RAICES - CONSTRUCCION

15. LUGAR DE LAS RAICES - CONSTRUCCION 15. LUGAR DE LAS RAICES - CONSTRUCCION 15.1 INTRODUCCION El lugar de las raíces es una construcción gráfica, en el plano imaginario, de las raíces de la ecuación característica de un lazo de control para

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Ejercicios Resueltos

Ejercicios Resueltos Ejercicios Resueltos Ejercicio 1 La función de transferencia de un sistema de control tiene como expresión: Determinar, aplicando el método de Routh, si el sistema es estable. Para comprobar la estabilidad

Más detalles

Tema 6. Diseño de controladores discretos

Tema 6. Diseño de controladores discretos Ingeniería de Control Tema 6. Diseño de controladores discretos Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Como obtener el

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

Tema 5. Análisis de sistemas muestreados

Tema 5. Análisis de sistemas muestreados Ingeniería de Control Tema 5. Análisis de sistemas muestreados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Relacionar la estabilidad

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

Docente: Aldo Salinas Encinas Página 1

Docente: Aldo Salinas Encinas Página 1 1.- Dada la ecuación en x 5.- Dado la ecuación Si 2 es una solución, determine el valor de 4 9 16 25 36 2.- Determine la verdad (V) o falsedad (F) de las siguientes afirmaciones: I) Toda ecuación posee

Más detalles

Ecuaciones de 2º grado

Ecuaciones de 2º grado Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Control de un Robot planar de 2 GDL

Control de un Robot planar de 2 GDL Control de un Robot planar de 2 GDL América Morales.-César Cortés.-César Tolentino.-Mario Méndez.- Fernando Coronado Robótica y Manufactura Avanzada-CINVESTAV, Saltillo México. Abstract En este reporte

Más detalles

Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3! + 5! 3!

Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3! + 5! 3! Expresiones algebraicas. Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3 + 5 3 (9 3) - 12 " Elementos de una expresión

Más detalles

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No : Valores y vectores propios a algunos problemas de la tarea (al 9 de junio de 04. Para la matriz A A Indique cuáles vectores son vectores propios: ( ( ( v, v, v 3 3 Recordemos

Más detalles

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief El modelo desarrollado por Wassily Leontief, es una aplicación interesante de las matrices, que fue útil para pronosticar los efectos en

Más detalles

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo

Propiedades de los Sistemas Lineales e Invariantes en el Tiempo Propiedades de los Sistemas Lineales e Invariantes en el Tiempo La respuesta al impulso de un sistema LTIC (h(t)), representa una descripción completa de las características del sistema. Es decir la caracterización

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces ELC-33103 Teoría de Control Lugar Geométrico de las Raíces Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm 1. Introducción La característica básica de la

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2.

Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2. Contenido 1. Definiciones 1.1 Término algebraico 1.2 Expresión algebraica 1.3 términos semejantes 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO 7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO CONCEPTOS ECUACIÓN es una igualdad entre dos epresiones algebraicas que contienen elementos desconocidos llamados incógnitas. RAÍZ O SOLUCIÓN de una

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

Tema 3: Ecuaciones. Tema 3: Ecuaciones. Ecuaciones de primer grado. Ecuaciones de segundo grado. Ecuaciones polinómicas de grado superior

Tema 3: Ecuaciones. Tema 3: Ecuaciones. Ecuaciones de primer grado. Ecuaciones de segundo grado. Ecuaciones polinómicas de grado superior Tema 3: Ecuaciones Ecuaciones Igualdades de expresiones algebraicas Polinómicas Racionales Primer grado ax=b Segundo grado ax 2 + bx+c=0 Bicuadradas ax 4 + bx 2 +c=0 solución Determinada: Indeterminada:

Más detalles

Presentado por: Laura Katherine Gómez Mariño. Universidad Central

Presentado por: Laura Katherine Gómez Mariño. Universidad Central Presentado por: Laura Katherine Gómez Mariño. Universidad Central IMPORTANCIA DEL TEMA ESCOGIDO: Es una herramienta usada en simulación, que es parte crucial en un sistema de control industrial. Un controlador

Más detalles

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN *

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN * 40 CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5. Determine la solución general de y 6y y 34y 0 si se sabe que y e 4x cos x es una solución. 52. Para resolver y (4) y 0, es necesario encontrar

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

EJERCICIOS REPASO 2ª EVALUACIÓN

EJERCICIOS REPASO 2ª EVALUACIÓN MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA. Ejemplos de Ecuaciones No Lineales en

MATEMÁTICA TICA SUPERIOR APLICADA. Ejemplos de Ecuaciones No Lineales en MATEMÁTICA TICA SUPERIOR APLICADA Ejemplos de Ecuaciones No Lineales en Ingeniería a Química Universidad Tecnológica Nacional Facultad Regional Rosario Ejemplos de Aplicación A continuación n se presentan

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

Simulación Numérica de Yacimientos

Simulación Numérica de Yacimientos Simulación Numérica de Yacimientos Dr. Fernando Rodríguez de la Garza e-mail: frodriguezd@pep.pemex.com Tel: 5550872, 5622 307 al 9 Capítulo 4. Simulación Numérica de Flujo Multifásico Unidimensional 4.

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

MODELOS LINEALES. Alejandro Vera Trejo

MODELOS LINEALES. Alejandro Vera Trejo MODELOS LINEALES Alejandro Vera Trejo Objetivo Se representará una situación determinada a través de la construcción de una o varias ecuaciones lineales. Se resolverán situaciones reales por medio de ecuaciones

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS.

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. 160 LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. JUSTIFICACIÓN En esta lección centraremos nuestro estudio en aquellas ecuaciones diferenciales homogéneas mediante

Más detalles

2. [2014] [EXT-B] Determinar los valores de los parámetros a y b para los que tiene inversa la matriz A =

2. [2014] [EXT-B] Determinar los valores de los parámetros a y b para los que tiene inversa la matriz A = MasMatescom [204] [EXT-A] Estudiar, para los distintos valores del parámetro m, el siguiente sistema de ecuaciones Resolverlo cuando m = 3 mx-y+3z = 0 x+y+7z = 0 2x-my+4z = 0 2 [204] [EXT-B] Determinar

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles

Preparando la selectividad

Preparando la selectividad Preparando la selectividad PRUEBA nº 2. Ver enunciados Ver Soluciones Opción A Ver Soluciones Opción B Se elegirá el ejercicio A o el ejercicio B, del que se harán los TRES problemas propuestos. LOS TRES

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss.

MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss. MATEMÁTICAS TEMA Sistemas de Ecuaciones. Método de Gauss. ÍNDICE. Introducción. 2. Ecuaciones lineales.. Sistemas de ecuaciones lineales. 4. Sistemas de ecuaciones escalonado ó en forma triangular.. Métodos

Más detalles

REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4

REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4 REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES 6.1.1 Para reescribir una ecuación con más de una variable debes usar el mismo proceso que para resolver una ecuación de una variable. El resultado final suele

Más detalles

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b)

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I o Bachillerato Internacional. Grupo I. Curso 2009/200. Hoja de ejercicios III Polinomios EJERCICIO Calcular el cociente y el resto en las siguientes divisiones:.

Más detalles