Tema 1: TRIGONOMETRIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 1: TRIGONOMETRIA"

Transcripción

1 Tema : TRIGONOMETRIA Raons trigonomètriques d un angle - sinus ( projecció sobre l eix y ) sin α sin α [, ] - cosinus ( projecció sobre l eix x ) cos α cos α [ -, ] - tangent tan α sin α / cos α tan α [ -, + ] - secant sec α / cos α - cosecant cosec α / sin α - cotangent cotan α / tan α Observacions :. Els angles es mesuren en graus i radians ( 60º π radians ). Cada angle entre 0º i 60º defineix un punt exclusiu P sobre la circumferència en ser representat, es a dir, té un parell de valors que corresponen al sinus i cosinus que l identifiquen. A un determinat valor de sinus o cosinus sempre corresponen dos angles entre 0º i 60º Ex: Si observem la taula veiem que els angles de 60º i 0 º tenen el mateix valor del sinus però que la parella de valors sinus l angle de 60º / cosinus és exclusiva de sin cos 0º 4º 60º 0º -

2 4. A partir de les raons trigonomètriques dels angles del primer quadrant es pot deduïr les d angles d altres quadrants. Signe de les raons trigonomètriques segons el quadrant r n r 4t sin cos tan ( Exercicis i ) Relacions entre raons trigonomètriques sin α+ cos α ( a partir d aquesta i amb la definició de tangent es poden resoldre tots els exercicis ) cos α tg α sec α - tg α + sin α tg α / ( tg α + ) cotg α cosec α - Resolució de triangles a) Triangles rectangles ( Exercicis i 4 ) A c b B a h H C A 90º a - hipotenusa sin α catet oposat / hipotenusa cos α catet contínu / hipotenusa tan α catet oposat / catet continu sin B a b cos B a c tan B c b a b + c ( Exercici )

3 b) Triangles no rectangles sin a A b c Teorema del sinus sin B sin C a b +c -.b.c.cosâ b a +c -.a.c.cos B c a +b -.a.b.cos C Teorema del cosinus (Exercicis 6 i 7 ) Equacions trigonomètriques Es tracta d equacions on la incógnita forma part d una raó trigonomètrica Cal modificar l expressió fins tenir tot en funció d una sola raó fent servir les fórmules. (Exercicis 8 i 9 )

4 Exercicis Exercici : Raons trigonomètriques de 0º? Per el dibuix veiem que l angle de 0º ( que defineix P ) està relacionat amb el de 0º ( P ) de manera que sin 0º sin 0º cos 0º -cos 0º - tan 0º -tan 0º - Exercici : Quin angle α té com a sin α si tan α < 0? Sabem que el sinus de 4º és, però en tractar-se d un angle del primer quadrant la tangent és positiva. Hi ha un altre angle amb el mateix valor del sinus: el de º i com està al segon quadrant la seva tangent és negativa. Exercici : Sigui un angle α [ π, π/ ] amb cos α - 4. Trobeu la resta de raons trigonomètriques. Com π 80º podem deduir que π/ és 70º i que l angle α és del tercer quadrant, per la qual cosa tindrà sinus negatiu i tangent positiva sin α + cos α sin α + (- 4 ) sin α sin α 6 9

5 sin α ± 6 7 ± 4 7 però com pertany al tercer quadrant sin α tan α sin α / cos α tan α - : ( - ) sec α / cos α sec α : ( - ) - 4 cosec α / sin α cosec α : - cotan α / tan α cotan α : Exercici 4: Si tan β - i π/ < β < π trobar la resta de raons trigonomètriques. De quin angle es tracta? Podem aplicar directament les fórmules : cos α tg α + sin α tg α / ( tg α + ) i des d aquí trobar el cos α ( ) + cosα ( perquè pertany al quart quadrant) el sinus sin α ( ) 4 ( ) + sin α - ( perquè pertany al quart quadrant) i la resta de raons trigonomètriques O be fer un sistema d equacions amb dues incógnites: sin α + cos α sin α + cos α tan α sin α / cos α sin α / cos α sin α + cos α - cos α sin α (- cos α) + cos α 4 cos α + cos α

6 cos α cos α cosα - cos α sin α sin α sin α - (quart quadrant) En relació a l angle observem que el valor tan β no correspon a cap dels angles de 0º, 4º o 60º i farem servir la calculadora per conèixer quin angle té aquest valor de tangent. La calculadora dona com a resultat 6,4º arctan - 6,4º es a dir a un angle de 4,4 º ( 6,4º + 60º ). Exercici : Des de un punt A en la vorera d un riu es veu un arbre. Si camines 00 metres per aquesta vora arribes a un punt B des de el que es veu l arbre sota un angle de 0º (tal com indica la figura). Calcula l amplada del riu. Observem que d aquest triangle rectangle em demanen el catet oposat a l angle B (que podem anomenar x) i ens donen la longitud del catet continu. La tangent és la que hem relaciona catet oposat i continu, x tan 0º 00 x x x 00 m

7 Exercici 6: Dos estacions de guardaboscos estan separades Km en línia recta. Dos guardaboscos, un a cada estació, observen el fum d un incendi. Els angles d observació de l incendi són de 0º i 60º, l angle es mesura en relació a la recta que uneix les estacions. Aproximadament, a quina distància de cada guardaboscos es troba l incendi? Foc α 0º β 60º Km Podem deduir que l angle que falta és 00º. A B C Apliquem el teorema del sinus: a b c sin A sin B sin C AC sin 0º AB sin 60º sin00º sin00º AC AC sin 0º,04 Km sin00º sin 60º,68 Km sin00º Exercici 7: Trobeu els angles d un triangle de costats, 4 i cm B A C Suposem AB cm, BC cm i AC 4 cm Apliquem el teorema del cosinus AC AB + BC AB BC cos B cos B cos B B arc cos 04,478º

8 Pel teorema del sinus podem conèixer altre angle AC sin04,478º 4 sin04,478º AB sin C sin C sin C sin C 0,484 C 8,9º sin04,478º Per trobar A A 80º - B C 46,67º Exercici 8: Resoleu cos ( x - π ) - Sabem que cos4º, però com busquem un angle amb valor de cosinus negatiu hem de pensar en el n i r quadrant. De forma semblant a l exercici podem deduir que cos º cos º - es a dir escriurem x - π º x 80º º x º x - π º x 80º º x 40º 4º º + K 60º x on K 0,,,... 4º + k 60º Exercici 9: Resoleu sin x cos x Com sin α + cos α tenim sin α - cos α

9 sin x cos x ( - cos x) cos x - cos x cos x 0 podem fer un canvi de variable t cos x d on es pot deduir que -t t 0 - t ( t + ) 0 t 0 o t + 0 t - cos x 0 cos x - x 90º i 70º x 80º x 80º, 90º, 70º + K 60º on K 0,,,...

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació.

Más detalles

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL Francesc Sala, primera edició, abril de 1996 última revisió, desembre de 2007 ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT

Más detalles

10 Calcula la distancia que separa entre dos puntos inaccesibles A y B.

10 Calcula la distancia que separa entre dos puntos inaccesibles A y B. 1 De un triángulo sabemos que: a = 6 m, B = 45 y C = 105. Calcula los restantes elementos. 2 De un triángulo sabemos que: a = 10 m, b = 7 m y C = 30. Calcula los restantes elementos. 3 Resuelve el triángulo

Más detalles

Semblança. Teorema de Tales

Semblança. Teorema de Tales Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Módulo del vector : Es la longitud del segmento AB, se representa por. Dirección del

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) = k (k R)

Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) = k (k R) 1 1 3 FUNCIONS LINEALS I QUADRÀTIQUES 3.1- Funcions constants Les funcions que apliquen a tots els elements del domini la mateixa imatge es diu funció constant, evidentment han d ésser del tipus f(x) k

Más detalles

4.7. Lleis de Newton (relacionen la força i el moviment)

4.7. Lleis de Newton (relacionen la força i el moviment) D21 4.7. Lleis de ewton (relacionen la força i el moviment) - Primera Llei de ewton o Llei d inèrcia QUÈ ÉS LA IÈRCIA? La inèrcia és la tendència que tenen el cossos a mantenirse en repòs o en MRU. Dit

Más detalles

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

Funciones trigonométricas (en el triángulo) α b. Trigonometría Física I, Internet. Trigonometría Física I, Internet

Funciones trigonométricas (en el triángulo) α b. Trigonometría Física I, Internet. Trigonometría Física I, Internet Funciones trigonométricas (en el triángulo) c B a A α b C Funciones trigonométricas (en el triángulo) Algunas consideraciones sobre el triángulo rectángulo Sea un triángulo rectángulo cualquiera ABC Se

Más detalles

LLOCS GEOMÈTRICS. CÒNIQUES

LLOCS GEOMÈTRICS. CÒNIQUES LLOCS GEOMÈTRICS. CÒNIQUES Pàgina REFLEXIONA I RESOL Còniques obertes: paràboles i hipèrboles Completa la taula següent, en què a és l angle que formen les generatrius amb l eix, e, de la cònica i b l

Más detalles

MATEMÀTIQUES ÀREES I VOLUMS

MATEMÀTIQUES ÀREES I VOLUMS materials del curs de: MATEMÀTIQUES ÀREES I VOLUMS EXERCICIS RECULL D APUNTS I EXERCICIS D INTERNET FET PER: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 08 de febrer de 2010 Aquests materials

Más detalles

TEORIA I QÜESTIONARIS

TEORIA I QÜESTIONARIS ENGRANATGES Introducció Funcionament Velocitat TEORIA I QÜESTIONARIS Júlia Ahmad Tarrés 4t d ESO Tecnologia Professor Miquel Estruch Curs 2012-13 3r Trimestre 13 de maig de 2013 Escola Paidos 1. INTRODUCCIÓ

Más detalles

SÈRIE 4 PAU. Curs DIBUIX TÈCNIC

SÈRIE 4 PAU. Curs DIBUIX TÈCNIC SÈRIE 4 PAU. Curs 2004-2005 DIBUIX TÈCNIC L examen consta de la realització de tres dibuixos: el dibuix 1, una de les dues opcions del dibuix 2 i una de les dues opcions del dibuix 3. Escolliu entre l

Más detalles

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6

6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6 Geometria dossier estiu 2012 2C 1. Dibuixa dues rectes, m i n, que siguin: a) Paral leles horitzontalment. c) Paral leles verticalment. b) Secants. d) Perpendiculars. 6 2. Dibuixa una recta qualsevol m

Más detalles

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC DIBUIX TÈCNIC I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES 1. Dist. d un punt a una recta - Abatiment del pla format per la recta i el punt 2. Dist. d un punt a un pla - Canvi de pla posant el pla de perfil

Más detalles

Introducció a la Trigonometria 4t ESO

Introducció a la Trigonometria 4t ESO Introducció a la Trigonometria 4t ESO Índex: 1. Unitats de mesura d'angles: graus i radians.... 3. Raons trigonomètriques bàsiques: sinus, cosinus i tangent. Definicions.... 5 3. Relacions entre les raons

Más detalles

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA ASIGNATURA: MATEMÁTICA Contenido: TRIGONOMETRÍA I TEORÍA Docente: Teneppe María Gabriela Medida de ángulos: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35 ESO Divisibilitat 1 ESO Divisibilitat 2 A. El significat de les paraules. DIVISIBILITAT Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 = 7 5 35 = 5 7 35 7 0 5 35

Más detalles

4.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º)

4.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) TEMA 4 RESOLUCIÓN DE TRIÁNGULOS MATEMÁTICAS I º Bac. TEMA 4 RESOLUCIÓN DE TRIÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE RAZONES TRIGONOMÉTRICAS SENO DEL ÁNGULO α: es

Más detalles

8 Geometria analítica

8 Geometria analítica Geometria analítica INTRODUCCIÓ Els vectors s utilitzen en diverses branques de la física que fan servir magnituds vectorials, per això és important que els alumnes en coneguin els elements i les operacions.

Más detalles

TRIGONOMETRIA. π radianes <> 180º

TRIGONOMETRIA. π radianes <> 180º TRIGONOMETRIA La trigonometría estudia las relaciones existentes entre los ángulos y los lados de un triángulo. La base de su estudio es el ángulo. Angulo es la porción del plano limitada por dos semirrectas

Más detalles

UTILIZAMOS LA TRIGONOMETRÍA.

UTILIZAMOS LA TRIGONOMETRÍA. UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios

Más detalles

Razones trigonométricas DE un ángulo agudo de un triángulo

Razones trigonométricas DE un ángulo agudo de un triángulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat per a més grans de 25 anys Convocatòria 2013 Dibuix tècnic Sèrie 3 Fase específica Opció: Enginyeria i arquitectura Bloc 1 A/B Bloc 2 A/B Bloc 3 A/B Qualificació Qualificació

Más detalles

Unidad 1: Trigonometría básica

Unidad 1: Trigonometría básica Ejercicio Unidad : Trigonometría básica Obtén los radianes correspondientes a los siguientes grados: π rad rad 6 a) 80º 80º π rad b) 0º 0º π π rad ' rad 80º 80º 6 rad c) º º π π rad 0'79 rad 80º d) 00º

Más detalles

Tutorial MT-b9. Matemática Tutorial Nivel Básico. Trigonometría en triángulo rectángulo

Tutorial MT-b9. Matemática Tutorial Nivel Básico. Trigonometría en triángulo rectángulo 45678904567890 M ate m ática Tutorial MT-b9 Matemática 006 Tutorial Nivel Básico Trigonometría en triángulo rectángulo Matemática 006 Tutorial Trigonometría en triangulo rectángulo.un poco de historia:

Más detalles

Trigonometría. Guía de Ejercicios

Trigonometría. Guía de Ejercicios . Módulo 6 Trigonometría Guía de Ejercicios Índice Unidad I. Razones trigonométricas en el triángulo rectángulo. Ejercicios Resueltos... pág. 0 Ejercicios Propuestos... pág. 07 Unidad II. Identidades trigonométricas

Más detalles

Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS

Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS DOSSIER DE REPÀS 1. Ordena els nombres de més petit a més gran: 01 0 01 101 0 001 0 001 0 1. Converteix els nombres fraccionaris en nombres decimals i representa ls en la recta: /4 1/ 8/ 11/10. Efectua

Más detalles

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21 Lección 3. Funciones Trigonométricas de Ángulos /0/0 Prof. José G. Rodríguez Ahumada de Actividades 3. Referencia Texto: Seccíón 6. Ángulo; Ejercicios de Práctica: Problemas impares -33 página 09 (375

Más detalles

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta

Más detalles

TEMA 4: Equacions de primer grau

TEMA 4: Equacions de primer grau TEMA 4: Equacions de primer grau Full de preparació Aquest full s ha de lliurar el dia de la prova Nom:... Curs:... 1. Expressa algèbricament les operacions següents: a) Nombre de rodes necessàries per

Más detalles

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD PROVES D ACCÉS A LA UNIVERSITAT PRUEBAS DE ACCESO A LA UNIVERSIDAD CONVOCATÒRIA: SETEMBRE

Más detalles

TRIGONOMETRIA. π radianes <> 180º

TRIGONOMETRIA. π radianes <> 180º TRIGONOMETRIA La trigonometría estudia las relaciones existentes entre los ángulos y los lados de un triángulo. La base de su estudio es el ángulo. Angulo es la porción del plano limitada por dos semirrectas

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan. II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre

Más detalles

1. Ángulos Referencia angular. TRIGONOMETRÍA La palabra, TRI-GONO-METRÍA, etimológicamente significa relación entre los lados

1. Ángulos Referencia angular. TRIGONOMETRÍA La palabra, TRI-GONO-METRÍA, etimológicamente significa relación entre los lados IES Joan Ramon Benaprès TRIGNMETRÍA La palabra, TRI-GN-METRÍA, etimológicamente significa relación entre los lados y ángulos de un triángulo 1 Ángulos Definición 1 (Ángulo) Un ángulo es la abertura de

Más detalles

1 Com es representa el territori?

1 Com es representa el territori? Canvi de sistema de referència d ED50 a ETRS89 El sistema de referència ETRS89 és el sistema legalment vigent i oficial per a Catalunya establert pel Decret 1071/2007. Les cartografies i plànols existents

Más detalles

Polígon. Taula de continguts. Noms i tipus. De Viquipèdia. Per a altres significats, vegeu «Polígon (desambiguació)».

Polígon. Taula de continguts. Noms i tipus. De Viquipèdia. Per a altres significats, vegeu «Polígon (desambiguació)». Polígon De Viquipèdia Per a altres significats, vegeu «Polígon (desambiguació)». Un polígon (del grec, "molts angles") és una figura geomètrica plana formada per un nombre finit de segments lineals seqüencials.

Más detalles

CAMPS DE FORÇA CONSERVATIUS

CAMPS DE FORÇA CONSERVATIUS El treball fet per les forces del camp per a traslladar una partícula entre dos punts, no depèn del camí seguit, només depèn de la posició inicial i final. PROPIETATS: 1. El treball fet pel camp quan la

Más detalles

Respostes a l examen. Testenclasse2

Respostes a l examen. Testenclasse2 Universitat Pompeu Fabra Permutació Número: 1 Respostes a l examen Usa sols llapis, bolígraf o retolador negre i omple bé les caselles. A la primera part de dalt posa sols el Nom i el Cognom, així com

Más detalles

Veure que tot nombre cub s obté com a suma de senars consecutius.

Veure que tot nombre cub s obté com a suma de senars consecutius. Mòdul Cubs i nombres senars Edat mínima recomanada A partir de 1er d ESO, tot i que alguns conceptes relacionats amb el mòdul es poden introduir al cicle superior de primària. Descripció del material 15

Más detalles

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos 5 Las Funciones Trigonométricas Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos Triángulos Rectos Un triángulo es recto (triángulo rectángulo) si uno de sus ángulos internos mide 90 o. La suma

Más detalles

UNITAT 3 OPERACIONS AMB FRACCIONS

UNITAT 3 OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de

Más detalles

Ángulos y razones trigonométricas

Ángulos y razones trigonométricas Departamento Matemáticas TEMAS 3 y 4. Trigonometría Nombre CURSO: 1 BACH CCNN 1 Ángulos y razones trigonométricas 1. Hallar las razones trigonométricas de los ángulos agudos del siguiente triángulo rectángulos.

Más detalles

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas UNIDAD II. FUNCIONES TRIGONOMÉTRICAS Tema. Funciones trigonométricas FUNCIONES TRIGONOMÉTRICAS Introducción: Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo

Más detalles

Trigonometría. Prof. Ana Rivas 69

Trigonometría. Prof. Ana Rivas 69 Trigonometría Es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente significa medida de triángulos (< Griego trigōnon "triángulo" +

Más detalles

Trigonometría. 1. Ángulos:

Trigonometría. 1. Ángulos: Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:

Más detalles

4, halla sen x y tg x. 5

4, halla sen x y tg x. 5 TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva

Más detalles

Unitat 9. Els cossos en l espai

Unitat 9. Els cossos en l espai Unitat 9. Els cossos en l espai Pàgina 176. Reflexiona Si et fixes en la forma dels objectes del nostre entorn, descobriràs els cossos geomètrics. Els cossos geomètrics sols existeixen en la nostra ment.

Más detalles

UNIDAD N 4: TRIGONOMETRÍA

UNIDAD N 4: TRIGONOMETRÍA Matemática Unidad 4 - UNIDD N 4: TRIGONOMETRÍ ÍNDICE GENERL DE L UNIDD Trigonometría....... 3 Sistema de medición angular... 3 Sistema seagesimal...... 3 Sistema Radial....... 3 Tabla de conversión entre

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos

Más detalles

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo RAZONES TRIGONOMÉTRICAS Razones trigonométricas en un triángulo rectángulo Seno El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B. Coseno El coseno

Más detalles

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3 Ana María Albornoz R. Ejercicios resueltos. Calcular los siguientes ites algebraicos + + 5 + + + 0 0 + pero + 0 0 0, pero 0 + + + 4 que es una forma indeterminada. Pero + + + + + + + + + + + + + + + +

Más detalles

Ejercicios resueltos: expresiones trigonométricas

Ejercicios resueltos: expresiones trigonométricas Ejercicios resueltos: expresiones trigonométricas 1) Si sen α = 0,6 y 90º < α < 180º, halla el resto de las razones trigonométricas. 2) Demuestra que, en un triángulo rectángulo, al suma de la tangente

Más detalles

Els triangles. El costat AB és oposat al vèrtex C i a l angle C. Propietats bàsiques

Els triangles. El costat AB és oposat al vèrtex C i a l angle C. Propietats bàsiques Els triangles Els triangles Es denomina amb la seqüència de vèrtexs:. és un angle interior, denominat senzillament angle del triangle. ' és un angle exterior.. ' Propietats bàsiques El costat és oposat

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

44 Dinàmica. Càlcul de la resultant de forces aplicades sobre un cos. Tercera llei de Newton. Forces d acció i reacció

44 Dinàmica. Càlcul de la resultant de forces aplicades sobre un cos. Tercera llei de Newton. Forces d acció i reacció 44 Dinàmica DINÀMICA P.. P.2. P.3. P.4. P.5. P.6. Càlcul de la resultant de forces aplicades sobre un cos Descomposició de forces en un pla Primera llei de Newton. Aplicacions Segona llei de Newton. Aplicacions

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 1 OPERACIONS AMB ENTERS

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 1 OPERACIONS AMB ENTERS UNITAT 1 OPERACIONS AMB ENTERS 1 Què treballaràs? En acabar la unitat has de ser capaç de... Sumar, restar, multiplicar i dividir nombres enters. Entendre i saber utilitzar les propietats de la suma i

Más detalles

Matemàtiques 1, Editorial Castellnou

Matemàtiques 1, Editorial Castellnou MATEMÀTIQUES 1r BATXILLERAT Llibre utilitzat: Matemàtiques 1, Editorial Castellnou Observacions: La unitat 3 s estudia abans qua la unitat 2, per què l alumnat hagi revisat la Trigonometria abans de necessitar-la

Más detalles

Trigonometría Resolución de triángulos.

Trigonometría Resolución de triángulos. Trigonometría Resolución de triángulos. Razones trigonométricas de un ángulo agudo. Consideraremos el triángulo rectángulo ABC tal que A = 90º Recordemos que en triángulo rectángulo cualquiera se cumplía

Más detalles

Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos

Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos Tema : Razones Trigonométricas. Resolución de Triángulos Rectángulos Matemáticas º Bachillerato CCNN.- Ángulos..- Angulo en el plano..- Criterio de Orientación de ángulos..- Sistemas de medida de ángulos.-

Más detalles

68 EJERCICIOS DE TRIGONOMETRÍA

68 EJERCICIOS DE TRIGONOMETRÍA 68 EJERCICIOS DE TRIGONOMETRÍA Repaso Trigonometría elemental:. Completar en el cuaderno la siguiente tabla: Grados 05º 5º 0º 5º Radianes 4π/9 rad π/5 rad rad Ejercicios libro: pág. 9:, y 4; pág. 4:, y.

Más detalles

UNITAT DONAR FORMAT A UNA PRESENTACIÓ

UNITAT DONAR FORMAT A UNA PRESENTACIÓ UNITAT DONAR FORMAT A UNA PRESENTACIÓ 4 Plantilles de disseny Una plantilla de disseny és un model de presentació que conté un conjunt d estils. Aquests estils defineixen tota l aparença de la presentació,

Más detalles

Tema 1: Equacions i problemes de primer grau.

Tema 1: Equacions i problemes de primer grau. Tema 1: Equacions i problemes de primer grau. 1.1. Igualtats, identitats i equacions. Dues expressions separades pel signe = és una igualtat. Les igualtats poden ser numèriques (només contenen números)

Más detalles

(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES

(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES (tema 9 del libro). FUNCIÓNES EXPONENCIALES Son funciones de la forma f ( ) a donde a 0 y a. Su dominio es todo R y van a estar acotadas inferiormente por 0, que es su ínfimo. Todas pasan por el punto

Más detalles

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio:

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio: Trigonometría La trigonometría trata sobre las relaciones entre los ángulos y los lados de los triángulos. El concepto fundamental sobre el que se trabaja es el de ángulo. Dos semirrectas con un origen

Más detalles

Programa Grumet Èxit Fitxes complementàries

Programa Grumet Èxit Fitxes complementàries MESURA DE DENSITATS DE SÒLIDS I LÍQUIDS Activitat 1. a) Digueu el volum aproximat dels següents recipients: telèfon mòbil, un cotxe i una iogurt. Teniu en compte que un brik de llet té un volum de 1000cm3.

Más detalles

Razones trigonométricas.

Razones trigonométricas. Razones trigonométricas. Matemáticas I 1 Razones trigonométricas. Medidas de ángulos. Medidas en grados (Deg.) El grado es el ángulo plano que teniendo su vértice en el centro de un círculo intercepta

Más detalles

TRIGONOMETRIA UNIDAD 11. Objetivo General. Al terminar esta unidad podrás resolver ejercicios y problemas utilizando las funciones trigonométricas.

TRIGONOMETRIA UNIDAD 11. Objetivo General. Al terminar esta unidad podrás resolver ejercicios y problemas utilizando las funciones trigonométricas. UNIDAD TRIGONOMETRIA Objetivo General Al terminar esta unidad podrás resolver ejercicios problemas utilizando las funciones trigonométricas. Objetivos específicos:. Recordarás las funciones trigonométricas

Más detalles

EXAMEN DE TRIGONOMETRÍA

EXAMEN DE TRIGONOMETRÍA 1. Deduce la expresión del seno del ángulo mitad. 2. Sabiendo que sen á = 1/4 y que á está en el primer cuadrante, calcula tg 2á. 3. Calcula cos(2x), siendo cos x=1/2. 4. Resuelve la ecuación: cos(x)=cos(2x)

Más detalles

A.1 Dar una expresión general de la proporción de componentes de calidad A que fabrican entre las dos fábricas. (1 punto)

A.1 Dar una expresión general de la proporción de componentes de calidad A que fabrican entre las dos fábricas. (1 punto) e-mail FIB Problema 1.. @est.fib.upc.edu A. En una ciudad existen dos fábricas de componentes electrónicos, y ambas fabrican componentes de calidad A, B y C. En la fábrica F1, el porcentaje de componentes

Más detalles

MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS

MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS 1. IDEA DE POTÈNCIA I DE RADICAL Al llarg de la història, han aparegut molts avenços matemàtics com a solucions a problemes concrets de la vida quotidiana.

Más detalles

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE: FECHA:

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE:   FECHA: DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS SEGUNDO EJES TEMÁTICOS La recta numérica Suma de números enteros

Más detalles

= + = 1+ Cuarta relación fundamental

= + = 1+ Cuarta relación fundamental 1.- Determina las razones trigonométricas de los siguientes ángulos, relacionándolos con algunos ángulos notables (0º, 0º,, 60º, 90º, 180º, 70º, 60º), indicando en qué cuadrante se encuentran: a) 40º b)

Más detalles

MÚLTIPLES I DIVISORS

MÚLTIPLES I DIVISORS MÚLTIPLE D UN NOMBRE MÚLTIPLES I DIVISORS El múltiple d un nombre és el resultat de multiplicar aquest nombre per 0, per 1, per 2, per 3, per 15, per 52 per qualsevol nombre natural. Per exemple: Escriu

Más detalles

TEMA 2 LA MECÀNICA DEL MOVIMENT

TEMA 2 LA MECÀNICA DEL MOVIMENT TEMA 2 LA MECÀNICA DEL MOVIMENT ÍNDEX: Introducció 2.1.- Les palanques de moviment. 2.2.- Eixos i Plans de moviment. 2.3.- Tipus de moviment INTRODUCCIÓ En aquest tema farem un estudi del cos des del punt

Más detalles

Avaluació 3/11/2010 ETSEIB-UPC Teoria (40% de la nota) Nom...Cognoms...Grup...

Avaluació 3/11/2010 ETSEIB-UPC Teoria (40% de la nota) Nom...Cognoms...Grup... TECNOLOGIES DE FABRICACIÓ I TECNOLOGIA DE MÀQUINES Avaluació 3/11/2010 ETSEIB-UPC Teoria (40% de la nota) Nom...Cognoms...Grup... 1. La figura representa una màquina trefiladora de fil de coure. El fil

Más detalles

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una

Más detalles

TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor

TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes

Más detalles

MATEMÁTICA 6º AÑO FUNCIONES TRIGONOMÉTRICAS

MATEMÁTICA 6º AÑO FUNCIONES TRIGONOMÉTRICAS MATEMÁTICA 6º AÑO 2012-1- PROFESORAS: RUHL, CLAUDIA --- SCARLATO MARÍA DEL CARMEN CURSOS: 6º1º 6º6º 6º8º FUNCIONES TRIGONOMÉTRICAS CIRCUNFERENCIA TRIGONOMÉTRICA En primer lugar tendremos en cuenta determinada

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

LITERATURA Y MATEMÁTICAS. La medición del mundo

LITERATURA Y MATEMÁTICAS. La medición del mundo Trigonometría LITERATURA Y MATEMÁTICAS La medición del mundo El cielo estaba encapotado, la tierra, embarrada. Trepó por encima de un seto y se encontró, jadeante, sudado y cubierto de agujas de pino,

Más detalles

2. Quins aspectes del model atòmic de Dalton es mantenen vigents i quins aspectes s ha demostrat que són incorrectes?

2. Quins aspectes del model atòmic de Dalton es mantenen vigents i quins aspectes s ha demostrat que són incorrectes? Unitat 8. de Dalton, Thomson i Rutherford 1. Activitat inicial Per comprovar quins són els teus coneixements previs sobre l estructura atòmica, fes un dibuix que representi com penses que és un àtom. Sobre

Más detalles

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.

Más detalles

EJERCICIOS DE TRIGONOMETRÍA

EJERCICIOS DE TRIGONOMETRÍA -Calcula las restantes razones trigonométricas del ángulo α en los siguientes casos: a) α I cuadrante; tg α=/4 b) α IV cuadrante; cos α=4/5 c) α I cuadrante; sen α=/5 d) α II cuadrante; cos α=-/ e) α III

Más detalles

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo

Más detalles

Módulo 26: Razones trigonométricas

Módulo 26: Razones trigonométricas INTERNADO MATEMÁTICA 2016 Guía del estudiante Módulo 26: Razones trigonométricas Objetivo: Conocer y utilizar las razones trigonométricas para resolver situaciones problemáticas. Trigonometría Es la rama

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Lo peor no es cometer un error, sino tratar de justificarlo, en vez de aprovecharlo como aviso providencial de nuestra ligereza

Más detalles

Dibuix tècnic Sèrie 1

Dibuix tècnic Sèrie 1 Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Dibuix tècnic Sèrie 1 Dades de la persona aspirant Qualificació

Más detalles

Curs de preparació per a la prova d accés a cicles formatius de grau superior. Matemàtiques BLOC 3: FUNCIONS I GRÀFICS. AUTORA: Alícia Espuig Bermell

Curs de preparació per a la prova d accés a cicles formatius de grau superior. Matemàtiques BLOC 3: FUNCIONS I GRÀFICS. AUTORA: Alícia Espuig Bermell Curs de preparació per a la prova d accés a cicles formatius de grau superior Matemàtiques BLOC : FUNCIONS I GRÀFICS AUTORA: Alícia Espuig Bermell Bloc : Funcions i gràfics Tema 7: Funcions... Tema 8:

Más detalles

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES

Más detalles

Seguretat informàtica

Seguretat informàtica Informàtica i comunicacions Seguretat informàtica CFGM.SMX.M06/0.09 CFGM - Sistemes microinformàtics i xarxes Generalitat de Catalunya Departament d Ensenyament Aquesta col lecció ha estat dissenyada

Más detalles

94' = 1º 34' 66.14'' = 1' 6.14'' +

94' = 1º 34' 66.14'' = 1' 6.14'' + UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene

Más detalles

VALORACIÓ D EXISTÈNCIES / EXPLICACIONS COMPLEMENTÀRIES DE LES DONADES A CLASSE.

VALORACIÓ D EXISTÈNCIES / EXPLICACIONS COMPLEMENTÀRIES DE LES DONADES A CLASSE. VALORACIÓ D EXISTÈNCIES / EXPLICACIONS COMPLEMENTÀRIES DE LES DONADES A CLASSE. Existeix una massa patrimonial a l actiu que s anomena Existències. Compren el valor de les mercaderies (i altres bens) que

Más detalles

1. a) Qué significa una potencia de exponente negativo?... ; b)

1. a) Qué significa una potencia de exponente negativo?... ; b) MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 1. a) Qué significa una potencia de eponente negativo?..... b) Simplificar: b 1) : b 4 ) b ) 9 1 b 4) 1 4. Simplificar potencias: a) 4 ( ) d) 9000 0'000000006

Más detalles

Seno (matemáticas) Coseno Tangente

Seno (matemáticas) Coseno Tangente Seno (matemáticas), una de las proporciones fundamentales de la trigonometría. En un triángulo rectángulo, el valor del seno (que suele abreviarse sen) de un ángulo agudo es igual a la longitud del cateto

Más detalles