Variables aleatorias continuas y Teorema Central del Limite

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Variables aleatorias continuas y Teorema Central del Limite"

Transcripción

1 Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015

2 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R con f 0, tal que P(X C) = f (x) dx. Ejemplos: Uniforme: X U(a, b) Normal: X N (µ, σ) Exponencial: X E(λ). Otras: " distribuciones derivadas de la normal": χ 2, t-student. Otras: Gamma, Beta, Weibull, Cauchy, Laplacian, etc. C

3 Distribución uniforme Definición X se dice uniformemente distribuida en (a, b) si su función de densidad está dada por f (x) = 1 b a I (a,b)(x) = { 1 b a a < x < b 0 c.c. Función de distribución acumulada: 0 x a x a F (x) = b a a < x < b 1 x b E[X] = a + b 2. Var(X) = 1 12 (b a)2.

4 Gráficos f (x) = 1 0 x 3 2 I x 3 (3,5)(x) F(x) = 2 3 < x < 5 1 x 5

5 Maximo de uniformes Sean X 1, X 2,..., X n v.a. independientes con f.d.a. F 1, F 2,..., F n, y sea M = max {X 1, X 2,..., X n } 1 i n. Entonces n F M (t) = F i (t). Esto se prueba observando que en general si M es un maximo de variables independientes F M (x) = P(M x) = P(X 1 t,, X n t) = (F 1 (x)) (F n (t)) Si ademas X i U(a, b), entonces F M (t) = i=1 t n (b a) n I [a,b](t) + 1I (b, (t).

6 Distribución exponencial Definición Una v.a. X con función de densidad dada por f λ (x) = λ e λx, x > 0, para cierto λ > 0 se dice una v.a. exponencial con parámetro λ. E[X] = 1 λ Var(X) = 1 λ 2

7 Función de densidad

8 Propiedades Una variable aleatoria con distribución exponencial X E(λ) tiene F(x) = 1 exp( λx), x > 0. c > 0, c X E( 1 c λ). falta de memoria. P(X > s + t X > s) = P(X > t). Las variables exponenciales son las únicas v.a. continuas con falta de memoria. El análogo en el caso discreto son las v.a. geométricas.

9 Mínimo de exponenciales Sean X 1,, X n v.a. independientes con f.d.a. F 1,, F n, y sea m = min 1 i n {X 1, X 2,..., X n }. Entonces n F m (t) = (1 (1 F i (t))). i=1 Esto se prueba observando que en general si m es un minimo de variables independientes 1 F m (t) = P(m > t) = (1 F 1 (t)) (1 F n (t)). Si ademas X i E(λ i ), entonces 1 F m (x) = e λ 1x e λ 2x... e λnx = e ( i λ i ) x. Por lo cual m E( i λ i)

10 Distribución Normal Definición La v.a. X se dice normalmente distribuida con media µ y varianza σ 2 si su función de densidad de probabilidad está dada por f (x) = 1 2πσ e (x µ)2 /2σ 2, x R. µ R, σ > 0. Notación: X N(µ, σ). Distribución normal estándar: Z N(0, 1). f Z (x) = 1 2π e x 2 /2, x R.

11 Variando µ Máximo: x = µ 1 Valor Máximo: 2πσ 1 2π π 2 0.2

12 Variando σ

13 La desviación estándar P( X µ < σ) 68% P( X µ < 2σ) 95% P( X µ < 3σ) 99.7%

14 Distribución Normal estándar Φ(x) = P(Z x) = 1 2π x No existe una fórmula cerrada para Φ(x). Si X N(µ, σ), entonces X µ Z = N(0, 1). σ Si X N(µ, σ), ax + b N(aµ + b, a σ). e t 2 /2 dt. ( ) x µ P(X x) = Φ. σ

15 La función Φ(x) P(X 2) = P(Z 1) = Φ(1).

16 Valores de Φ(x) Para α (0, 1), z α es el número real tal que P(Z > z α ) = α. Los valores de Φ(z) están tabulados: Φ(z α ) = P(Z α) = 1 α Φ( z) = 1 Φ(z), por lo tanto es suficiente tabular para z 0, o z 0.

17 Tabla de Φ(z) Z N(0, 1) P(Z 1.51) = z

18 Valores usuales de z α α = 0.05 z α = 1.64 P( 1.64 Z 1.64) = 0.90

19 Valores usuales de z α α = z α = 1.96 P( 1.96 Z 1.96) = 0.95

20 Valores frecuentes de z α α = 0.01 z α = 2.33 P( 2.33 Z 2.33) = 0.98

21 Desigualdad de Chebyshev Lema (Desigualdad de Markov) Si X toma sólo valores no negativos y a > 0, entonces P(X a) E[X] a. Teorema (Desigualdad de Chebyshev) Si X es v.a. con media µ y varianza σ 2, entonces para k > 0 P( X µ kσ) 1 k 2.

22 Leyes de los grandes números Si X 1, X 2,..., X n,... son v.a. independientes e idénticamente distribuidas, con media µ: Ley débil de los grandes números: ( ) X 1 + X X n P µ n > ɛ 0 n. Ley fuerte de los grandes números: Con probabilidad 1 se cumple que: X 1 + X X n lim n n = µ.

23 LGN 100 número de caras número de cecas 0.7 frecuencia relativa=proporción de caras N=cantidad de tiradas N=cantidad de tiradas

24 Teorema Central del límite Teorema (Teorema Central del Límite) Sean X 1, X 2,..., variables aleatorias igualmente distribuidas, con media µ y varianza σ 2. Entonces lim P n ( X1 + X X n nµ σ n ) < x = Φ(x).

25 Muestra finita 5 51 intervalos 7 25 intervalos intervalos intervalos

26 Teorema Central del límite Ejemplo Supongamos que un programa suma números aproximando cada sumando al entero más próximo. Si todos los errores cometidos son independientes entre sí y están distribuidos uniformemente entre -0.5 y 0.5 y se suman 1500 números, A lo sumo cuántos números pueden sumarse juntos para que la magnitud del error total se mantenga menor que 10 con probabilidad 0.9?

27 Resolución Cada error cometido es una variable aleatoria ε k con distribución U[ 0.5, 0.5] E(ε k ) = [0.5 + ( 0.5)]/2 = 0 Var(ε k ) = (0.5 (0.5)) 2 /12 = 1/12 Definamos S n = n k=1 ε k, si deseamos encontrar el n más grande para el cual 0.9 = P( S n < 10) Usando el TCL [S 1500 ne(ε)]/ nvar(ε) N(0, 1) ( ) 10 ne(ε) P( S n < 10) = P S n ne(ε) 10 ne(ε) nvar(ε) nvar(ε) nvar(ε) = P 10 n 12 Z 10 n 12 = 1 2P Z 10 n 12

28 Resolución por lo cual y 10 n = 1 2P Z 10 n 12 = P Z 10 n 12 = 0.05 = Entonces, despejando resulta n = =

29 Teorema Central del límite Ejemplo Suponga que se tienen 100 lámparas de un cierto tipo, cuya duración puede modelarse como una variable exponencial de parámetro λ = Si la duración de cada lámpara es independiente de la duración de las otras, encuentre la probabilidad de que el promedio muestral T = (1/100)(T T 100 ) se encuentre entre 400 y 550 horas.

30 Resolución Como n es 100, podemos suponerlo suficientemente grande y aproximar la distribución del promedio por una normal. La esperanza y varianza de S n = T T n son E(S n ) = E(T T 100 ) = 100.E(T 1 ) = = Var(S n ) = Var(T T 100 ) = 100.Var(T 1 ) = P(400 (1/100)T 1 + +T ) = P(40000 T 1 + +T ) Φ(55000 E(S n )/ Var(S n )) Φ(40000 E(S n )/ Var(S n )) = Φ( /5000) Φ( /5000) = Φ(1) Φ( 2) = =

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Modelado de la aleatoriedad: Distribuciones

Modelado de la aleatoriedad: Distribuciones Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva Bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4)

Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4) Análisis Estadístico de Datos Climáticos Distribuciones paramétricas de probabilidad (Wilks, cap. 4) 2013 Variables aleatorias Una variable aleatoria es aquella que toma un conjunto de valores numéricos

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 4: Algunas Distribuciones Notables de Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 4: Algunas Distribuciones Notables de Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 4: Algunas Distribuciones Notables de Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

5 Variables aleatorias contínuas

5 Variables aleatorias contínuas 5 Variables aleatorias contínuas Una variable aleatoria continua puede tomar cualquier valor en un intervalo de números reales.. Función de densidad. La función de densidad de una variable aleatoria continua

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales 1. Función de distribución binomial: Si X distribuye bin ( n, p), entonces f n x x n

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 2.1. Variables aleatorias: funciones de distribución,

Más detalles

Unidad Temática 3 UT3-1: Variable Aleatoria

Unidad Temática 3 UT3-1: Variable Aleatoria Autoevaluación UT3 Unidad Temática 3 UT3-1: Variable Aleatoria Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza.

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

VARIABLE ALEATORIA. Una variable aleatoria discreta es el modelo teórico de una variable estadística discreta (con valores sin agrupar).

VARIABLE ALEATORIA. Una variable aleatoria discreta es el modelo teórico de una variable estadística discreta (con valores sin agrupar). VARIABLE ALEATORIA VARIABLE ALEATORIA DISCRETA VARIABLE ALEATORIA CONTINUA DISTRIBUCIÓN DE PROBABILIDAD. PROBABILIDAD INDUCIDA. FUNCIÓN DE DISTRIBUCIÓN EN VARIABLE DISCRETA FUNCIÓN DE DISTRIBUCIÓN EN VARIABLE

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Distribuciones de probabilidad con R Commander

Distribuciones de probabilidad con R Commander Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

TEOREMA DEL LÍMITE CENTRAL

TEOREMA DEL LÍMITE CENTRAL Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Tema 4: Variable aleatoria. Métodos Estadísticos

Tema 4: Variable aleatoria. Métodos Estadísticos Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Considérese el siguiente sistema de ecuaciones dependiente del parámetro

Más detalles

6.1. Esperanza Matemática de Variables Aleatorias Discretas.

6.1. Esperanza Matemática de Variables Aleatorias Discretas. Capítulo 6 Esperanza Matemática 6 Esperanza Matemática de Variables Aleatorias Discretas Recordemos que una variable aleatoria X es discreta, si existe una sucesión (x n ) n de números reales tales que

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados. El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

ESTADÍSTICA. Se trata de una variable aleatoria binormal con n=5, probabilidad= ¼. B(5, ¼); La probabilidad es P= P(x=3) +P(x=4) + P(x=5):

ESTADÍSTICA. Se trata de una variable aleatoria binormal con n=5, probabilidad= ¼. B(5, ¼); La probabilidad es P= P(x=3) +P(x=4) + P(x=5): ESTADÍSTICA AYUDAS PARA EL TEST (1ºParcial) 1) La suma de probabilidades de todos los casos posibles de un experimento tiene que ser igual a uno. 2) La probabilidad de aprobar este test (5 preguntas, cada

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidades y stadística Computación Facultad de Ciencias actas y Naturales Universidad de uenos ires na M ianco y lena J Martínez 004 Variables aleatorias continuas jemplo: Con el in de realizar un

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Tema 5 Variables aleatorias: distribuciones de probabilidad y características.

Tema 5 Variables aleatorias: distribuciones de probabilidad y características. Tema 5 Variables aleatorias: distribuciones de probabilidad y características. 1. Introducción Según se ha reflejado hasta el momento, el espacio muestral asociado a un experimento aleatorio puede ser

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

ESTRUCTURA DE LINEAS DE ESPERA

ESTRUCTURA DE LINEAS DE ESPERA ESTRUCTURA DE LINEAS DE ESPERA La teoría de las colas es el estudio de líneas de espera. Cuatro características de un sistema de la formación de colas o líneas de espera son: la manera en que los clientes

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

La reordenación aleatoria de un conjunto finito

La reordenación aleatoria de un conjunto finito La reordenación aleatoria de un conjunto finito Pérez Cadenas J. I. 0.06.2003 Resumen Al desordenar y, a continuación, reordenar aleatoriamente un conjunto finito es posible que algunos de sus elementos

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles