IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV."

Transcripción

1 IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de mejor y resoluión de prolems B. Es un téni de trjo en grupo. C. Es un herrmient estdísti. 2.- Ls uss omúnes que pueden osionr vriiones en los s proesos son: A. 5M s B. 6M s C. 7M s 3.- En un sesión de torment de ides lo más importnte es: A. Que en d turno de portión de ides d miemro del grupo porte l suy B. Que ls persons puedn expresrse on useni de rítis y en liertd C. Que si existe un miemro del grupo on ides extrordinris se ierre l sesión 4.- El thll es: A. Un uen omplemento pr l interpretión del digrm de Preto B. Un téni que foment l prtiipión de todos los empledos en l me ontinu C. Un juego pr desrrollr l pidd en ténis de lidd 5.- El digrm de Preto: A. Estudi el omportmiento de dos vriles en el tiempo B. Distingue los dtos importntes de los que no lo son tnto C. Se utiliz pr registrr dtos 6.- El digrm de dispersión: A. Ayud onoer l relión entre dos vriles B. Relion el trtmiento de ides on su éxito C. Estudi el omportmiento de los grupos de trjo 7.- El digrm de us-efeto: A. Estudi en exlusiv ls uss y los efetos de un ml lidd B. Comprue e! efeto que produen ls ténis de lidd C. Bus l ríz de un prolem, estleiendo l relión que existe entre rterísti de lidd de un determindo produto o serviio y ls uss que ls pueden lterr

2 8.- Qué nomre posee l filosofi jpones sore el orden y limpiez?: A. Ls 5 S B. Despliegue de l Clidd C. Clidd Totl. 9.- Un histogrm: A. Muestr el vlor soluto de los dtos B. Muestr ómo vri un mgnitud en el tiempo C. Muestr l freueni on l que se repite un ierto resultdo 10.- El Control Estdístio de Proesos: A. Es un herrmient estdísti que yud mntener ls vriiones de! proeso dentro de unos límites tolerles B. Sirve exlusivmente pr inspeionr los proesos C. Es l herrmient fundmentl pr relizr los plnes de muestreo 11.- En el SPC ls vriles que son ontrolles se deen : A. Cuss signles B. Cuss desonoids C. Cuss no signles 12.- Un desjuste en un máquin que fet un proeso se puede onsiderr: A. Cus signle B. Cus desonoid C. Cus no signle 13.- Un modifiión en ls ondiiones mientles que fete un proeso puede onsiderr un: A. Vrile ontrolle B. Vrile no ontrolle C. Cus signle 14.- Un proeso se onsider que está jo ontrol estdístio undo: A. Ls uss que produen ls vriiones son signles B. Ls uss que produen ls vriiones son no signles C. Ls uss que produen ls vriiones son ontrolles 15.- L úni form de reduir ls vriiones deido vriles no ontrolles que hen que un proeso dé omo resultdo produtos no onformes es: A. Cmindo el proeso B. Eliminndo ls vriles no ontrolles C. Eliminndo ls vriles ontrolles

3 16.- Un muestr: A. Es un lote de produto B. Es un pequeñ prte de l produión que sirve pr relizr inspeiones C. Es un produto tomdo l zr entre todo el onjunto de l produión 17.- En un onjunto de dtos, l desviión típi es: A. L distni medi en l ul se distriuyen los dtos respeto l vlor medio B. L distni entre los límites superior e inferior de los dtos C. L desviión que se produe en los proesos deido ls vriiones 18.- En un distriuión norml el 95,44 44% de los dtos se enuentrn en el intervlo A. Un vez l desviión típi B. dos vees l desviión típi C. Seis vees l desviión típi 19.- Un proeso se onsider pz undo su índie de pidd es: A. Menor que 1,33 B. Myor o igul que 1,33 C. Igul En un pln de muestreo el nivel de lidd eptle (NCA) es: A. El porentje máximo de uniddes no onformes que estmos dispuestos eptr en un lote B. El porentje de uniddes no onformes enontrds en un muestr C. El porentje de uniddes onformes 21.- En un pln de muestreo el número de eptión es: A. El número de uniddes no onformes por el que el lote será rehzdo B. El porentje de uniddes no onformes enontrds en un muestr C. El número de uniddes no onformes que se eptn pr que un lote se eptdo 22.- El AMFE: A. Es un téni que yud eliminr los fllos en un produto o proeso ntes de que se produzn B. Sirve exlusivmente pr inspeionr los proesos C. Es l herrmient fundmentl pr ser qué es lo que quiere el liente 23.- El Pok-Yoke: A. Son sistems que evitn l posiilidd de que se ometn errores B. Es un téni pr prender de l ompeteni C. Es un téni que yud mejorr l gestión de inventrios

4 24.- Cuál de los siguientes ostes se puede onsiderr de prevenión?: A. Estudios de stisfión l liente B. Costes en reprión de produtos defetuosos C. Implntión de un Sistem de Gestión de l Clidd 25.- Cuál de los siguientes ostes se puede onsiderr de evluión?: A. Pgo de mults B. Atenión de grntís C. Ensyos destrutivos 26.- Cuál de los siguientes ostes se puede onsiderr por errores internos?: A. Otenión del ertifido de registro de empress AENOR B. Reher trjos C. Control estdístio de proesos 27.- Cuál de los siguientes ostes se puede onsiderr por errores externos?: A. Pérdid de onfinz por prte de los lientes B. Rediseños C. Clirión de los equipos de prues 28.- Los gstos por reprión de máquins se pueden onsiderr: A. Costes por errores internos B. Costes por errores externos C. Costes de evluión 29.- Los gstos por prues lortorios externos se pueden onsiderr: A. Costes por errores internos B. Costes por errores externos C. Costes de evluión 30.- Los gstos por penlizión por retrsos en l entreg de produtos se puede onsiderr: A. Costes por errores internos B. Costes por errores externos C. Costes de prevenión Ls uss s no signles: A. Son letoris y produen pequeñs vriiones. B. No son letoris y produen vriiones signifitivs. C. Son muy numeross.

5 32.- Se hn reogido los siguientes dtos de quejs en un serviio y su uent orrespondiente: A=2,, B=1, C=3,, D=30, E=5, F=20, G=15, H=15,, I=5, J=4. El resultdo es: A. El 20% de ls uss produen el 70% de ls quejs. B. El 50% de ls uss produen el 20% de ls quejs. C. El 40% de ls uss produen el 80% de ls quejs El gráfio siguiente nos die que: A. El proeso está fuer de ontrol. B. El proeso es inestle. C. El proeso es inestle y no está ontroldo En el gráfio del proeso nterior: A. No Hy uss de inestilidd, sólo está fuer de ontrol. B. Hy un us de inestilidd. C. Hy dos uss de inestilidd En el gráfio del proeso nterior: A. Es un gráfio X-R B. Es un gráfio de ontrol por triutos. C. Puede ser ulquier de los dos nteriores El riesgo de frinte es: A. El porentje de riesgo pr rehzr un lote ueno. B. El porentje de riesgo pr eptr un lote ueno. C. El porentje de riesgo pr eptr un lote mlo Qué sistem de ostes elegirís?: A. Costes de errores=100000, Costes onformes= %onformidd=60% B. Costes de errores=120000, Costes onformes=10000.%onformidd=50% C. Costes de errores=50000, Costes onformes= %onformidd=75%

6 38.- L téni 6 sigm depende diretmente/indiretmente de l téni: A. Funión de pérdid B. Reingenierí C. Ls dos nteriores Si se eptn en un lmen de produto termindo 12 produtos defetuosos por d 300 pr un nivel de inspeión II : A. El tmño del lote es 100 y l muestr es de 20 B. El tmño del lote es 300 y l muestr es de 12 C. Ninguno de los nteriores Según el ejeriio nterior, si en un u muestr se hn enontrdo 4 produtos no onformes : A. El lote se ept. B. El lote se rehz. C. El lote ni se ept ni se rehz.

7 IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: Not: Cd respuest orret vle:0,25p RESPUESTAS: RESPUESTAS: RESPUESTAS: RESPUESTAS: 1: 1: 1: 1: 8: 16: 24: 24: 24: 24: : : 2: 2: 2: 2: 9: 9: 9: 9: 17: 25: 25: 25: 25: : : 3: 3: 3: 3: 10: 10: 10: 10: 18: 18: 18: 18: 26: 26: 26: 26: : : 4: 4: 4: 4: 11: 11: 11: 11: 19: 19: 19: 19: 27: 27: 27: 27: : 5: 5: 5: 5: 12: 12: 12: 12: 20: 20: 20: 20: 28: 28: 28: 28: : 6: 6: 6: 6: 13: 13: 13: 13: 21: 21: 21: 21: 29: 29: 29: 29: : 7: 7: 7: 7: 14: 14: 14: 14: 22: 22: 22: 22: 30: 30: 30: 30: 15: 15: 15: 15: 23: 23: 23: 23: 31: Correts: Inorrets: Blno: NOTA: NOTA: NOTA: NOTA:

8 IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 9/6/2008 CICLO FORMATIVO: EQUIPOS E INSTALACIONES ELECTROTECNICAS CURSO: 1º MODULO: CALIDAD (EJERCICIOS) ALUMNO/A: 1.- Un serviio de reprión de ordendores h dispuesto pr sus lientes uns hojs de relmiones pr onoer l efiieni de su serviio. A prtir de los dtos otenidos en l Tl 9.11, diujr un digrm de Preto y verigur qué tipo de relmiones son ls que representn proximdmente el 80% del totl. 2.- Hllr los ostes y el porentje de produtos onformes pr el punto óptimo Errores internos= Errores externos= Prevenión y evluión= Totl= %onformidd=

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Optimización de gestión de inventarios (stocks)

Optimización de gestión de inventarios (stocks) Optimizión de gestión de inventrios (stoks) Andrés Rmos Universidd Pontifii Comills http://www.iit.upomills.es/rmos/ Andres.Rmos@omills.edu CONTENIDO CARACTERIZACIÓN MODELOS DETERMINISTAS ESTÁTICOS DE

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

Si este proceso de subdivisión se repitiese muchas veces, se obtendrían dos sucesiones, s i y S

Si este proceso de subdivisión se repitiese muchas veces, se obtendrían dos sucesiones, s i y S Integrles LA INTEGRAL DEFINIDA Integrl definid: áre jo un urv L integrl definid permite lulr el áre del reinto limitdo, en su prte superior por l gráfi de un funión f (, ontinu y no negtiv, en su prte

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Los ERP s y la contabilidad 1. PROCESO DE SELECCIÓN E IMPLANTACIÓN DE UN ERP

Los ERP s y la contabilidad 1. PROCESO DE SELECCIÓN E IMPLANTACIÓN DE UN ERP Inluye uestiornrio de evluión 0101110100010110010010 1010010100110001001100 1001010101001011010101 01011101000101100100101010010 10011000100110010010101010010 11010101001001010001001001001 00101010100101100001001010011

Más detalles

PLAN DIRECTOR RSE Innovación en RSE en Pymes de la provincia de huesca. Hacia una Pyme sostenible Programa RSE-PYME. Ministerio de Industria, Turismo

PLAN DIRECTOR RSE Innovación en RSE en Pymes de la provincia de huesca. Hacia una Pyme sostenible Programa RSE-PYME. Ministerio de Industria, Turismo 1 Introduión: L Responsilidd Soil Empresril o Corportiv es un estrtegi orportiv que impli el ompromiso voluntrio de ls empress, trvés de l pliión sistemáti de reursos, pr respetr y promover los derehos

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Guía de referencia de flujos de datos y arquitectura

Guía de referencia de flujos de datos y arquitectura Guí de refereni de flujos de dtos y rquitetur BES12 Versión 12.4 Pulido: 2016-02-29 SWD-20160229164157323 Contenido Aer de est guí... 5 Arquitetur: soluión de EMM de BES12... 6 Componentes de BES12...

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2013/15 Confereni de los Estdos Prte en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 30 de septiemre de 2013 Espñol Originl: inglés Quinto período de sesiones Pnmá,

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD UNICIENCIA 22 UNICIENCIA 22, 2008 pp. 5-9 2008 TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD Diego Chverri y Roerto J. Moy Deprtmento de Físi, Universidd Nionl RESUMEN

Más detalles

Evaluación del aprendizaje de conocimientos de estadística en titulaciones de la universidad

Evaluación del aprendizaje de conocimientos de estadística en titulaciones de la universidad Evluión del prendizje de onoimientos de estdísti en tituliones de l universidd CALIDAD, ACREDITACIÓN Y PROSPECTIVA UNIVERSITARIA CONSEJERÍA DE EDUCACIÓN Y EMPLEO Consejer de Eduión y Empleo Presidente

Más detalles

CUESTIONARIO PERFIL DEL INVERSIONISTA

CUESTIONARIO PERFIL DEL INVERSIONISTA I Expliión: BCR Soiedd Administrdor de Fondos de Inversión S.A., en delnte BCR SAFI y BCR Vlores S.A., hn diseñdo un uestionrio que le yudrá identifir su Perfil del Inversionist", en funión de su perepión

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS Un specto importnte pr el nálisis y l dministrción de n inventrio es determinr qé rtíclos representn l myor prte del vlor del mismo - midiéndose s

Más detalles

Los números racionales

Los números racionales UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y

Más detalles

Resultados de los primeros FTS tests T2 >T1

Resultados de los primeros FTS tests T2 >T1 Resultdos de los primeros FTS tests T2 >T (Xvier Espinl IFAE/PIC 3/03/2006) Se hn monitorizdo ls primers pruebs de trnsfereni Tier2 >Tier. Los tests efetudos hn sido de tres tipos: ) 00 Trnsferenis de

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

Control Eléctrico y Accionamientos Electrotecnia Corriente Continua ÍNDICE

Control Eléctrico y Accionamientos Electrotecnia Corriente Continua ÍNDICE Control Elétrio y Aionmientos Eletroteni Corriente Continu ÍNDCE Temrio. Págin Mgnitudes Elétris. Leyes Fundmentles. Ley de Ohm. 5 Leyes Fundmentles. Leyes de Kirhoff. 8 Trjo Elétrio. Poteni Elétri. 9

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c.

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES GENERALES Y CALIFICACIÓN

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

www.baygar.com La Calidad es nuestra Energía

www.baygar.com La Calidad es nuestra Energía www.ygr.om L Clidd es nuestr Energí s gsolin 2009-2010 2 www.ygr.om GRUPOS ELECTRÓGENOS Gsolin GESAN y los motores Hond y Vngurd presentn un gm de grupos eletrógenos que sumn ventjs y multiplin el rendimiento.

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

1.-Algunas desigualdades básicas.

1.-Algunas desigualdades básicas. Preprión Olimpid Mtemáti Espñol. Curso 05-6. Desigulddes (y polinomios, y funiones). 3 de Noviemre de 05. Fernndo Myorl..-Alguns desigulddes ásis. ) 0 pr ulquier R. L iguldd sólo se umple pr = 0. ) (Desiguldd

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

VARIABLE ALEATORIA CONTINUA. DISTRIBUCIÓN NORMAL.

VARIABLE ALEATORIA CONTINUA. DISTRIBUCIÓN NORMAL. 8 VARIABLE ALEATORIA CONTINUA. DISTRIBUCIÓN NORMAL. CONCEPTO DE INTEGRAL DEFINIDA. Conocimientos previos Pr hllr el áre del recinto limitdo por l curv f(), el eje de sciss y ls rects y, se utiliz l siguiente

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

VARIABLE DEPENDIENTE Y VARIABLE INDEPENDIENTE. Analicemos hechos cotidianos que involucran dos variable. Por ejemplo

VARIABLE DEPENDIENTE Y VARIABLE INDEPENDIENTE. Analicemos hechos cotidianos que involucran dos variable. Por ejemplo VRILE DEPENDIENTE Y VRILE INDEPENDIENTE Prof. Mrvin Montiel ry nliemos hehos otidinos que involurn dos vrile. Por ejemplo Ejemplo : Si se pg 0 olones l hor. El slrio de un trjdor depende de ls hors que

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2015/7 Confereni de los Estdos Prtes en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 3 de septiemre de 2015 Espñol Originl: inglés Sexto período de sesiones Sn Petersurgo

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL MODELO INSTRUCCIONES Y CRITERIOS

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores

Más detalles

MEMORIA DOCENTE DEL GRADO EN FINANZAS Y CONTABILIDAD

MEMORIA DOCENTE DEL GRADO EN FINANZAS Y CONTABILIDAD MEMORIA DOCENTE DEL GRADO EN FINANZAS Y CONTABILIDAD -Curso émio 211/212- Present en Junt e Fult pr su nálisis y vlorión, e uero on el rtíulo 46 el Reglmento Generl e Ativies Doentes, el 21 e ferero e

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 9

Más detalles

Daniel Montoya Profesor de Matemáticas

Daniel Montoya Profesor de Matemáticas Te doy l ienvenid mi págin, est está conceid como complemento l presentción del desrrollo forml de los contenidos en clses. Aquí se exponen ls mteris en form secuencil los progrms de mtemátics propios

Más detalles

1. Principios de Realidad y Localidad formulados por EPR (1935). 2. La paradoja EPR. 3. De la teoría a los experimentos: Desigualdades de Bell

1. Principios de Realidad y Localidad formulados por EPR (1935). 2. La paradoja EPR. 3. De la teoría a los experimentos: Desigualdades de Bell L PRDOJ EPR Y LS DESIGULDDES DE ELL. Principios de Relidd y Loclidd formuldos por EPR 935. p y p. L prdoj EPR. 3. De l teorí los experimentos: Desigulddes de ell 964. 4. Demostrción de l desiguldd HSH.

Más detalles

Serie de Trarados Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL

Serie de Trarados Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL Serie de Trrdos Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL Estrsurgo, 28.I.1981 STE 108 Trtmiento utomtizdo de dtos

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems

Más detalles

Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0,

Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0, Logritmos y eponenciles de otrs ses L función Leer con cuiddo el [S, 8] o ien [S, 4] y = Pr >, ln = e Definición: (Tp474) Pr R y > se define ln = e d AL- Deducir l fórmul de ( ) d d v AL- Si u y v son

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

(Texto pertinente a efectos del EEE) (2014/687/UE)

(Texto pertinente a efectos del EEE) (2014/687/UE) L 284/76 DECISIÓN DE EJECUCIÓN DE LA COMISIÓN de 26 de septiemre de 2014 por l que se estleen ls onlusiones sore ls mejores ténis disponiles (MTD) pr l produión de pst, ppel y rtón, onforme l Diretiv 2010/75/UE

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Optimización de gestión de inventarios (stocks)

Optimización de gestión de inventarios (stocks) Optimizión de gestión de inventrios (stoks) Andrés Rmos Universidd Pontifii Comills http://www.iit.upomills.es/rmos/ Andres.Rmos@omills.edu CONTENIDO CARACTERIZACIÓN MODELOS DETERMINISTAS ESTÁTICOS DE

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Casos prácticos resueltos

Casos prácticos resueltos Apéndice A Csos prácticos resueltos A.1. Introducción Hst hor, dentro de cd unidd temátic, se hn ido resolviendo supuestos concernientes l tem trtdo en el cpítulo. En éste, se pretenden desrrollr ejercicios

Más detalles

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y PROBLEMAS DE DE MÁUINAS ÉRMICAS, REFRIGERADORES y BOMBAS BOMBAS DE DE CALOR CALOR Equipo docente Antonio J. Brero / Alfonso Cler / Mrino Hernández Dpto. Físic Aplicd. E..S. Agrónomos (Alcete) Plo Muñiz

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

Números Irracionales

Números Irracionales Números Irrionles Los griegos ern onoedores de los números nturles: 0, 1,,,, 5, Estos números son los que se utilizn pr numerr o ontr, pero no nos sirven si queremos expresr ntiddes no exts, omo "l mitd

Más detalles

EL ACERO EN LA CONSTRUCCIÓN

EL ACERO EN LA CONSTRUCCIÓN EL ACERO EN LA CONSTRUCCIÓN 1. GENERALIDADES 2. DESIGNACIÓN DE LOS ACEROS 3. ACEROS PARA LA CONSTRUCCIÓN 1. GENERALIDADES ACERO es el nomre que se d ls leiones de hierro (Fe) y rono (C), en ls que el onjunto

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles