X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL Introducción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción"

Transcripción

1 Fndmentos y eoís Físcs ES Aqtect. MECÁNCA GENERAL.4. FUNDAMENOS DE ANÁLSS ENSORAL.4.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds tbjndo con escles y ectoes. Ests mgntdes físcs exsten ndependentemente de clqe sstem de efeenc tempet, fezs... No obstnte, p epesentls escogemos n sstem de efeenc y ls especfcmos po ss componentes. Ls componentes qe especfcn dchs mgntdes dependen del sstem de efeenc escogdo y po tnto, es esencl conoce l ley de tnsfomcón qe nos pemt encont l elcón ente ls componentes de dch popedd físc en dstntos sstems de efeenc..4.. nsfomcón de coodends Cndo n popedd físc está epesentd po n escl, el lo de ést no depende del sstem de ejes coodendos tlzdo. Cndo n popedd físc es de cácte ectol, s módlo no depende de l oentcón escogd p los ejes coodends, peo sí ss componentes según estos ejes. Vmos encont l elcón ente ls componentes de l popedd físc expesd en n sstem de efeenc otogonl OXYZ y n sstem de efeenc otogonl OXYZ otdo especto l pmeo: Z Z Y Y X X OXYZ y,,, Sen, y y los ectoes ntos qe defnen ls deccones del sstem de efeenc los qe defnen ls deccones del sstem de efeenc OXYZ. Sen ls componentes del ecto en el sstem de efeenc OXYZ y,, ss componentes en el sstem OXYZ. o tnto, podemos escb:

2 Fndmentos y eoís Físcs ES Aqtect meo encontemos l elcón ente los ectoes ntos qe defnen no y oto sstem de efeenc. Los ectoes ntos, y se peden escb como combncón lnel de los ectoes ntos, y del sstem OXYZ: donde el segndo índce de los coefcentes ndc de qe ecto nto del sstem OXYZ se tt y el pmeo ndc l componente ctesn. dedc el lo de los coefcentes bst mltplc esclmente ls expesones nteoes po cd no de los ectoes ntos del sstem OXYZ:... Y en genel podemos escb p sgente expesón p dedc los loes de los coefcentes : cos, j j j donde el podcto j epesent l poyeccón del ecto nto sobe l deccón dd po el ecto nto j. Como todos ellos son ectoes ntos, cd n de estos coefcentes no es más qe el coseno del ánglo qe fomn los dos ectoes ntos. A los cosenos de los ánglos qe fom n ecto con los ejes ctesnos del sstem de efeenc en el qe se escben ss componentes se les denomnn cosenos dectoes. En el cso ptcl de n ecto nto, ss componentes coesponden ss cosenos dectoes. S tommos l expesón del ecto esct l nco de l demostcón y mltplcmos mbos membos de l gldd po obtenemos: De gl mne mltplcndo po y obtenemos: Expesones qe escts de fom mtcl dn lg :

3 Fndmentos y eoís Físcs ES Aqtect R donde R es l mtz de otcón cys componentes son los cosenos dectoes..4.. Defncón de tenso y leyes de tnsfomcón L sgente pegnt qe debemos hcenos es s con escles y ectoes es sfcente p descb tods ls mgntdes físcs y ls elcones qe exsten ente ells. L espest es negt, y qe exsten mgntdes físcs p ls qe el cácte escl o ectol es demsdo estngdo, y qe enen defnds po n myo númeo de componentes. Vemos nos ejemplos qe nttmente nos pemtn obse l necesdd de ope con mgntdes más complejs: - En n medo sótopo y elástco exste n elcón lnel ente esfezo y defomcón, F KX sendo K n escl. Qé scede s el medo es nsótopo? F yx seán de dfeente deccón y po ello hbá qe eemplz el escl K po n opedo mtemátco más genel cpz de modfc el módlo y sentdo de X. - El msmo poblem se plnte cndo se estd l otcón de n cepo especto n eje. S el cepo es n nllo delgdo qe g con elocdd ω especto n eje noml, se tene qe el momento ngl L ω, sendo n escl. S l fom del cepo es bt, no pede se escl, pes L y ω no tenen l msm deccón. o tnto de mne genel, podemos llm tenso n entdd mtemátc qe nos pemte descb ls mgntdes físcs y ls elcones qe exsten ente ells. Un tenso exste ndependentemente de clqe sstem de efeenc, no obstnte, p tbj más fáclmente con ellos peden se especfcdos po ss componentes especto n sstem de efeenc. El númeo de componentes o númeos qe se eqeen p epesent n tenso en n sstem de efeenc son n m, sendo n l dmensón del espco en el qe se tbj y m el oden del tenso. En este sentdo, dependendo de l complejdd de l mgntd físc necestemos más o menos componentes lo qe fjá el oden del tenso qe l epesente. Además de ss componentes, n popedd fndmentl qe se p descb n tenso es l ley de tnsfomcón de ss componentes, como y hemos sto p el cso de ectoes. Cndo se tt de tnsfomcones ente sstem de coodends geneles o btos, los tensoes defndos se conoce como tensoes geneles. Cndo ls tnsfomcones se elzn ente sstems de ejes ctesnos otdos ente sí, los tensoes qe nteenen son los tensoes ctesnos. Gn pte de l Mecánc se pede desoll en témnos de tensoes ctesnos, po lo qe s no se especfc lo conto tlz el témno tenso eqle consde n tenso ctesno. Como hemos delntdo, los tensoes se peden clsfc po s oden. En n espco tdmensonl qe es donde mos tbj, n tenso de oden m tendá m componentes. Los tensoes con los qe mos tbj nomlmente n se los sgentes:

4 Fndmentos y eoís Físcs ES Aqtect - enso de oden ceo:, qed especfcdo en clqe sstem de efeenc po n componente. o tnto, n escl es n ejemplo de tenso de ngo más smple. El lo de l componente qe lo epesent no depende del sstem de coodends tlzdo. - enso de oden no:, qed especfcdo po tes componentes en el espco físco tdmensonl y se conoce comúnmente como ectoes. S módlo no depende del oentcón escogd p los ejes coodendos po sí ss componentes según estos ejes. L ley de tnsfomcón p los tensoes de oden no es l st nteomente p ectoes: sendo R l mtz de cosenos dectoes. R - enso de oden dos: 9, qed especfcdo po nee componentes, es dec, n mtz. L ley de tnsfomcón de n tenso de segndo oden es l msm qe l de n mtz fente n otcón: R R R R t sendo R l mtz de los cosenos dectoes dedcd p l tnsfomcón de ectoes o tensoes de oden no. Aho y de mne genel podemos hbl de cmpos tensoles en los qe cd pnto del espco se le soc n tenso. Un cmpo escl es n cmpo tensol de oden ceo, n cmpo ectol es n cmpo tensol de pme oden y n cmpo tensol de oden dos soc n mtz cd pnto del espco pos de tensoes de segndo oden Algnos tpos de tensoes de segndo oden son los sgentes: - enso smétco: n tenso smétco es qel p el cl j j. Dchos tensoes tenen ses componentes ndependentes. - enso ntsmétco: n tenso ntsmétco es qel p el cl j j, po lo qe. Dchos tensoes qedn detemndos po tes coodends ndependentes. - enso dgonl: es n tenso cys úncs componentes no nls son ls de l dgonl pncpl. S tods ls componentes del tenso dgonl son gles, el tenso se denomn esféco. - enso ndd: es n tenso dgonl esféco cys componentes son gles l ndd. 4

5 Fndmentos y eoís Físcs ES Aqtect.4.5. Deccones pncples de n tenso de segndo oden Se denomnn ejes pncples de n tenso l sstem de ejes coodendos en el cl el tenso tene fom dgonl. Se denomnn ectoes pncples o toectoes los ectoes qe defnen ls deccones pncples. n toecto se cmple: es dec, cndo n ecto de plc sobe el ecto especto l qe se epesentn y λ le denomn tolo, lo popo o lo pncpl. está dgdo según n de ls deccones pncples, el ecto esltnte es popoconl l msmo, con ndependenc del sstem de efeenc peo con mbos expesdos especto del msmo sstem. A λ se Ls opecones con tensoes ctesnos de segndo oden son gles ls elzds con ls mtces socds. El cálclo de los loes popos y deccones pncples de n tenso se dentfc con los de l coespondente mtz. o tnto, s l eccón nteo l escbmos de l sgente mne: donde epesent l mtz dentdd. Al se de se ceo: n ecto no nlo, debe cmplse qe el detemnnte El poblem se edce l conocdo poblem de dgonlzcón de n mtz: Los loes popos o toloes λ, λ, λ son ls íces de l eccón esltnte del desollo del sgente detemnnte: L mtz dgonl qe epesent el tenso : λ λ λ 5

6 Fndmentos y eoís Físcs ES Aqtect Ls componentes, b, c de los tes ectoes,, qe fomn los ejes del neo sstem coodendo otogonl, llmdos ejes pncples, se clcln ssttyendo los loes de los tes toloes en el sgente sstem: λ b c λ b c Algnos tensoes de segndo oden qe nos n pece en Mecánc son, el tenso de tensones, el tenso de defomcones... y smplfcá enomemente el poblem pode edclos n mtz dgonl. El desollo del detemnnte consttye n polnomo de oden tes, denomndo polnomo ccteístco qe gldo ceo nos pemte clcl los tes loes popos del tenso λ, λ y λ. El desollo del polnomo ccteístco pede escbse de l sgente mne: det λ λ λ det Los tes coefcentes del polnomo son los denomndos nntes del tenso, esto es s loes es ndependente del sstem de efeenc escogdo p epesent ls componentes del tenso: z del tenso o nnte Lnel nnte Cdátco det nnte Cúbco.4.6. opeddes de los tensoes smétcos de segndo oden L myo pte de los tensoes de segndo oden qe descben popeddes físcs son smétcos. Los tensoes smétcos de segndo oden tenen n see de popeddes my mpotntes. Ests son: - Exste sempe n sstem de ejes en el cl el tenso tom l fom dgonl y los tes toloes son eles. - Como los nntes no dependen del sstem de coodends, en el cso de qe exstn tes toloes eles podemos expes los nntes tmbén en el sstem de ejes pncples de l sgente mne: λ λ λ λ λ λλ λλ λλλ 6

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso Físc y Mecánc de ls Constccones ES Aqtect/ Cso 8-9 AMLACÓN DE MECÁNCA DEL SÓLDO. FUNDAMENOS DE ANÁLSS ENSORAL.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds

Más detalles

TEMA 1 Revisión de fundamentos de análisis tensorial

TEMA 1 Revisión de fundamentos de análisis tensorial EMA 1 Revsón de fundmentos de nálss tensol ESAM 1. 1. Intoduccón Escles, vectoes exsten ndependentemente de un sstem de efeenc Repesentcón: - sstem de efeenc - componentes que dependen del sstem de efeenc

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3.

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3. Edcaga.com VECTORES En este apatado amos a tabaa eclsamente con los ectoes en el espaco a los qe amos a llama F. VECTOR FIJO Lo pmeo tendemos qe sabe qe es n ecto. Así qe llamamos ecto fo AB a n ecto qe

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defncón de pdct escl de ectes. Se denmn pdct escl de ds ectes (, ) y (, ), l núme: cs α y l epesentms p En el pdct escl se mltplcn ds ectes, pe el esltd es n núme (escl). S ls ectes petenecen

Más detalles

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad...

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad... Fdmetos Teoís Físcs TS Aqtect.. CÁLCUL VCTIAL... INTDUCCIÓN L ecác es l pte de l Físc qe estd el eqlbo el mometo de los cepos. Se dde e Cemátc qe se ocp del mometo de los cepos depedetemete de ls fes qe

Más detalles

Tema 0: Introducción al Cálculo Vectorial

Tema 0: Introducción al Cálculo Vectorial I.E. Jn Rmón Jméne Tem 0: Intodccón l Cálclo Vectol 1.- Mgntdes escles ectoles.- Vecto. Opecones con Vectoes 3.- Podcto escl 4.- Podcto ectol 5.- Decón Vectol 6.- Integcón Vectol 7.- Momento de n Vecto

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo.

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo. educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (, ). Los númeos eles y se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E IES Pade Poeda (Gadx) Matemátcas II UNIDAD 8: VECTORES EN EL ESPACIO.. VECTORES FIJOS EN EL ESPACIO. Sea E el connto de pntos del espaco qe notaemos po A B C K Dados dos pntos A B de E se llama ecto fo

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defnón de pdt esl de vetes. Se denmn pdt esl de ds vetes ( ) y ( ) p l núme: s y l epesentms En el pdt esl se mltpln ds vetes pe el esltd es n núme (esl). S ls vetes peteneen l esp vetl

Más detalles

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso.

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso. Técncs Computconles, Cuso 007-008. Pedo Sldo.- Álgeb lnel o entemos en detlle n en defncones demsdo fomles sno que eemos úncmente quellos conceptos que necestemos dunte el cuso.. Espcos ectoles Un espco

Más detalles

11. COMPENSACIÓN DEL RADIO

11. COMPENSACIÓN DEL RADIO Capítlo 3: Desaollo del poama. COMPENSACIÓN DEL RADIO. Intodccón Los pntos tomados dectamente po palpacón sobe la spece de la peza en cestón no son pntos eales de dcha spece, ya qe el pnto ecodo tene las

Más detalles

NÚMEROS COMPLEJOS. r φ. (0,0) a

NÚMEROS COMPLEJOS. r φ. (0,0) a Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1

I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1 I.E.S. editeáneo de álg Septiembe Jn Clos lonso Ginontti OCIÓN DE EXEN Nº Considee el sigiente sistem de ecciones dependiendo del pámeto [7 UNTOS] Clcle los loes de p qe el sistem teng solción. b [ UNTOS]

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES TALLER VERTICAL DE MATEMÁTICA VECTORES Cets mgntudes, que quedn pefectmente defnds po un solo númeo el su medd o módulo) se denomnn MAGNITUDES ESCALARES pudendo epesentse po segmentos tomdos soe un ect.

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

TEMA 3.2 Mecánica del medio continuo: Análisis de deformaciones

TEMA 3.2 Mecánica del medio continuo: Análisis de deformaciones TEMA. Mecánca del medo contno: Análss de defomacones Físca Mecánca de las Constccones ... Intodccón ESTUDIO DE LOS SÓLIDOS DEFORMABLES: efectos de las feas aplcadas MÉTODO DE TRABAJO: las TENSIONES INTERIORES

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y Mgnetsmo uso 009/00 stems de onductoes - ondensdoes Eym E- stems de onductoes. Los sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón.

Más detalles

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc..

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc.. écncs Computconles Cuso 7-8. Pedo lvdo 5.- juste de cuvs El juste de cuvs es un poceso mednte el cul ddo un conjunto de pes de puntos { } sendo l vble ndependente e l dependente se detemn un uncón mtemátc

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

CINEMÁTICA Y DINÁMICA DE ROTACIÓN

CINEMÁTICA Y DINÁMICA DE ROTACIÓN Uel Fcult e Cencs Cuso e Físc I p/lc. Físc y Mtemátc Cuso CINEMÁTICA Y DINÁMICA DE OTACIÓN. Momento e otcón- Un cuepo ígo se muee en otcón pu s c punto el cuepo se muee en tyecto ccul. Los centos e estos

Más detalles

Campos Eléctricos estáticos

Campos Eléctricos estáticos Cpos éctcos estátcos cucones de Mxwe p e cso estátco. S os cpos son estátcos s funcones ue os descben no dependen de be tepo t ueo se efc en todos os csos ue s cones de os sos seán nus es dec ue t ntoducendo

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y gnetsmo uso 005/006 stems de onductoes. os sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón. e cctezn po: Un númeo de de conductoes

Más detalles

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES 6 Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto

Más detalles

TEMA 0: FÍSICA DE 2º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS.

TEMA 0: FÍSICA DE 2º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS. TEMA 0: FÍSICA DE º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS.. TRIGONOMETRÍA.. Raones tgonométcas de n ánglo agdo.. Raones tgonométcas de n ánglo calqea.. Relacones ente las aones tgonométcas.4.

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Preguntas 1 y 2: Vectores y operaciones con vectores. v w, queremos indicar que v r y w son dos vectores paralelos.

Preguntas 1 y 2: Vectores y operaciones con vectores. v w, queremos indicar que v r y w son dos vectores paralelos. Resmen Unidad 5: Vectoes en el espacio. Pegntas : Vectoes opeaciones con ectoes. En n ecto tenemos qe distingi: Módlo: es la longitd del ecto se epesenta po La flecha indica el sentido del ecto Diección:

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO ) Defncón de ector fo y ector lre. Vector de poscón de n pnto. ) Módlo de n ector. Dstnc entre dos pntos. c) Opercones áscs con ectores. d) Prodcto esclr. Expresón nlítc. e) Propeddes

Más detalles

Para especificar la posición de un punto en el espacio, se utilizan sistemas de referencia. Esta posición se define en. sistema de referencia.

Para especificar la posición de un punto en el espacio, se utilizan sistemas de referencia. Esta posición se define en. sistema de referencia. P especfc l poscón de un puno en el espco, se uln ssems de efeenc. Es poscón se defne en fom elv lgún deemndo ssem de efeenc. 1 En un ssem de efeenc cesno, esen es ees denomndos ees cesnos X, Y, Z oogonles

Más detalles

SISTEMAS DE REFERENCIA

SISTEMAS DE REFERENCIA SISTEMS DE REERENCI P especfc l poscón de un puno en el espco, se uln ssems de efeenc. Es poscón se defne en fom elv lgún deemndo ssem de efeenc. 1 En un ssem de efeenc cesno, esen es ees denomndos ees

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

Hacia la universidad Geometría

Hacia la universidad Geometría Hc l unvesdd Geomeí OPCIÓN A Solucono ) Clcul es vecoes que sen pependcules u ) peo que no sen plelos ene sí. b) Clcul un veco que se pependcul l ve u l pmeo que hs ddo como eemplo del pdo neo. ) Los vecoes

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

Solución a los ejercicios de vectores:

Solución a los ejercicios de vectores: Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tem FUNDAMENTOS PROPIEDADES ALGEBRAICAS DE LOS NÚMEROS REALES R.- Qué conjuntos epesentn N, Z, Q, R? R.- Qué elementos se encuentn en los conjuntos A = { m Z m

Más detalles

ANÁLISIS CINEMÁTICO DE MECANISMOS PLANOS

ANÁLISIS CINEMÁTICO DE MECANISMOS PLANOS ÁLISIS IÁIO ISOS LOS nemátc de ecnsmos em 4 Itz tj López de Lozg Gmend eptmento de Ingeneí ecánc eknk Ingentz Sl ÁLISIS IÁIO ISOS LOS 1. undmento teóco. plccón con unones de otcón 3. plccón con pes psmátcos

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E IES Pade Poeda (Gadx Matemátcas II UNIDAD 8 VECTORES EN EL ESPACIO VECTORES FIJOS EN EL ESPACIO Sea E el connto de pntos del espaco qe notaemos po A B C K Dados dos pntos A B de E se llama ecto fo de ogen

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiciones de Secndaia) TEM 41 MOVIMIENTOS EN EL PLNO. COMPOSICIÓN DE MOVIMIENTOS. PLICCIÓN L ESTUDIO DE LS TESELCIONES DEL PLNO. FRISOS Y MOSICOS. 1. Intodcción. 2. Conceptos Básicos.

Más detalles

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA UNVERSDD NCONL DEL CLLO FCULTD DE NGENERÍ ELÉCTRC Y ELECTRÓNC ESCUEL PROFESONL DE NGENERÍ ELÉCTRC CURSO: TEORÍ DE CMPOS ELECTROMGNÉTCOS PROFESOR: ng. JORGE MONTÑO PSFL PROBLEMS RESUELTOS DE CORRENTE ELÉCTRC

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Sistemas de Reacciones Múltiples

Sistemas de Reacciones Múltiples stems de eccones Múltples eccones Químcs mples Un sol ecucón cnétc Múltples En ee En Plelo EJEMPLO. Poduccón de nhíddo ftálco pt de o-xleno: o toluldehdo O, O o xleno ftld nhíddo ftálco Esto se puede epesent

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

TEMA 3.1 Mecánica del sólido deformable: Análisis de tensiones

TEMA 3.1 Mecánica del sólido deformable: Análisis de tensiones TEMA. Mecánca del sóldo defomable: Análss de tensones Físca Mecánca de las Constuccones ... Intoduccón MECÁNICA DEL MEDIO CONTINUO OBJETIVO: - estudo del compotamento de los medos defomables - establece

Más detalles

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA Dr. José A. Peñlbert Unversdd de Puerto Rco en Croln Deprtmento de Cencs Nturles Introduccón Hn surgdo un sere de teorís sobre el funconnmento

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

TEMA 6. Radiación electromagnética. Miguel Ángel Solano Vérez

TEMA 6. Radiación electromagnética. Miguel Ángel Solano Vérez TM 6 Rdición electomgnétic Miguel Ángel Solno Vée lectodinámic Tem 6: Rdición electomgnétic Índice 6. Intoducción 6. Potenciles en el dominio de l fecuenci 6.. l potencil vecto 6.. l potencil vecto 6.3.3

Más detalles

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA.

ALGEBRA Y GEOMETRIA ANALITICA. ALGEBRA Y GEOMETRIA ANALITICA. - ESPACIOS VECTORIALES. Aptes de l Cáted. Albeto Setell. Colboo Cst Mscett Ves Begoz Edcó Pe CECANA CECEJS CET Jí. UNNOBA Uesdd Ncol de Nooeste de l Pc. de Bs. As. P meses

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Para poder isalizar los elementos de R 3 ={(x,y,z)/x,y,z R}, primero fijamos n sistema de coordenadas, eligiendo n pnto en el espacio llamado el origen qe denotaremos por O, y tres

Más detalles

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A Opción A Ejecicio A [ 5 puntos] Se sabe que la función f: R R definida po f ( - +b+ si ) =, es deiable. a -5+a si > Detemina los aloes de a y b Paa se deiable debe de se, pimeamente, función continua,

Más detalles

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica.

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica. LEY DE COULOMB La Ley de Coulomb es la pmea ue se estuda en Electcdad ella consttuye una LEY UNIVERSAL poue es posble deducla del expemento y s ese expemento se ealza bajo las msmas condcones físcas cualuea

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

Una viga se encuentra sometida a Flexión Pura cuando el momento Flector es la única fuerza al interior de la sección.

Una viga se encuentra sometida a Flexión Pura cuando el momento Flector es la única fuerza al interior de la sección. 3. FLEXÓ E VGS RECTS 3.1.- Conceptos Báscos Una ga se encentra sometda a Fleón Pra cando el momento Flector es la únca fera al nteror de la seccón. Ejemplo: Una ga smplemente apoada de l L solctada por

Más detalles

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA

OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA . DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

AUTOCALIBRACIÓN Y SINCRONIZACIÓN DE MÚLTIPLES CÁMARAS PTZ

AUTOCALIBRACIÓN Y SINCRONIZACIÓN DE MÚLTIPLES CÁMARAS PTZ UNIVERSIDAD AUTÓNOMA DE MADRID ESCUELA POLITÉCNICA SUPERIOR AUTOCALIBRACIÓN Y SINCRONIZACIÓN DE MÚLTIPLES CÁMARAS PTZ -PROYECTO FIN DE CARRERA- Jave Gacía Ocón Mayo de 27 AUTOCALIBRACIÓN Y SINCRONIZACIÓN

Más detalles

TEMA 1: MODELOS DE REPRESENTACIÓN DE OBJETOS 3D

TEMA 1: MODELOS DE REPRESENTACIÓN DE OBJETOS 3D TEMA : MODELOS DE REPRESENTACIÓN DE OBJETOS 3D.. MODELOS DE SUPERFICIES Exsten vaas azones paa quee epesenta un objeto medante un modelo de supefce: Cuando el objeto msmo es una supefce que podemos supone

Más detalles

Gráficamente se representan mediante un punto en una escala (de ahí el nombre).

Gráficamente se representan mediante un punto en una escala (de ahí el nombre). 1.- Intoducción. L Cinemátic es l pte de l ísic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de ot pte de l ísic: l Dinámic. L Cinemátic esponde l necesidd

Más detalles

Tema 4: Potencial eléctrico

Tema 4: Potencial eléctrico 1/38 Tem 4: Potencil Eléctico Fátim Msot Conde Ing. Industil 2007/08 Tem 4: Potencil Eléctico 2/38 Índice: 1. Intoducción 2. Enegí potencil eléctic 1. de dos cgs puntules 2. de un sistem de cgs 3. Intepetción

Más detalles

Coordenadas Generales.

Coordenadas Generales. oodenadas eneales. k cte. j cte. cte. Base catesana Base cíndca. j k cos, cos, φ cte. cte. cte. Base esféca Base geneal. cos cos En una base geneal, un elemento de aco está detemnado po llamando ds ds

Más detalles

2.1- Nociones de Álgebra lineal

2.1- Nociones de Álgebra lineal écncs Computconles, Cuso 7-8. Pedo Sldo.- ocones de Álgeb lnel o entemos en detlle n en defncones demsdo fomles sno que eemos úncmente quellos conceptos que necestemos dunte el cuso... Espcos ectoles Un

Más detalles

ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO

ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO.- PRODUCTO ESCALAR....- MODULO Y ÁNGULO....- PRODUCTO VECTORIAL...4 4.- PRODUCTO MIXTO DE TRES VECTORES...5 5.- ANGULO DE RECTA Y PLANO...6 6.- ÁNGULO DE DOS PLANOS....7 SI α : AX BY CZ

Más detalles

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas:

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas: VECTORES Y ESCLRES Las magntudes escalaes son aquellas que quedan totalmente defndas al epesa la cantdad la undad en que se mde. Eemplos son la masa, el tempo, el tabao todas las enegías, etc. Las magntudes

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

UNIDAD 12. ECUACIONES DE RECTA Y PLANO

UNIDAD 12. ECUACIONES DE RECTA Y PLANO 4 Unidad. Ecaciones de la ecta el plano UNIDD. EUIONES DE RET Y PLNO. Intodcción. Espacio fín... Vecto en el espacio. Vecto libe fijo... Opeaciones con ectoes.. Dependencia e independencia de ectoes. ase.4.

Más detalles

Unidad I - Electroestática

Unidad I - Electroestática Undd I - Electoestátc Intoduccón ues de nteccón: ccones dstnc ues Electomgnétcs ues Eléctcs Un poco de hsto El témno eléctco, tene su ogen en ls expeencs elds en l ntgüedd donde se obsevo ue cundo se fotd

Más detalles

Distribuciones de corriente axiales con simetría de revolución.

Distribuciones de corriente axiales con simetría de revolución. Electc Mgnetsmo 1/11 Mgnetostátc Defncón. El potencl vecto mgnétco. Meos nefnos. Popees. Le e ot vt. Le e Ampèe. mpo en puntos lejos. Momento mgnétco. ompotmento en el nfnto. oentes lgs. Enegí Mgnétc.

Más detalles

ÁLGEBRA Y GEOMETRÍA MATRICES Y DETERMINANTES TIPOS DE MATRICES

ÁLGEBRA Y GEOMETRÍA MATRICES Y DETERMINANTES TIPOS DE MATRICES MTRIES Y ETERMINNTES TIPOS E MTRIES ÁLGER Y GEOMETRÍ Mti nl: O Todos los elementos son nlos. Mti tingl speio: Los elementos sitdos po debjo de l digonl pincipl son 0. Mti tingl infeio: Los elementos sitdos

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

r f W = F dr r i F = F(r ) [2] c) Como consecuencia, el trabajo realizado a lo largo de una trayectoria cerrada es nulo, W = F(r )dr )dr = q ref ref

r f W = F dr r i F = F(r ) [2] c) Como consecuencia, el trabajo realizado a lo largo de una trayectoria cerrada es nulo, W = F(r )dr )dr = q ref ref letos Físc p Cencs e Ingeneí 1 8.04-1 Intoduccón El concepto de potencl electostátco suele ntoducse en los textos de Físc, de dos foms dfeentes: I.- En un nvel elementl se estlece, en pme lug, el concepto

Más detalles

ESPACIO VECTORIAL. 1. VECTORES EN EL ESPACIO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo).

ESPACIO VECTORIAL. 1. VECTORES EN EL ESPACIO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ESPACIO VECTORIAL. Vetores en el espo. Estrtr de espo etorl. Dependen e ndependen lnel. ses. Prodto eslr 5. Prodto etorl. Prodto mxto. VECTORES EN EL ESPACIO Un etor fo AB es n segmento orentdo qe del

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO OBE LA APLICACIOE E E UTILIZAO EL ACOBIAO Ce ÁCHEZ ÍEZ Estdos qí ls codcoes báscs de deecbldd de ls coes deds desde e P ello seos l t cob costtd po ls deds pcles de ls coes copoetes de l plccó dd ls popeddes

Más detalles

P. VASCO / JULIO 05. LOGSE / FÍSICA / EXAMEN COMPLETO

P. VASCO / JULIO 05. LOGSE / FÍSICA / EXAMEN COMPLETO XAMN COMPLO legi n bloqe de poblemas y dos cestiones. PROBLMAS BLOQU A 1.- Umbiel, n satélite de Uano descibe na óbita pácticamente cicla de adio R 1 67 6 m y s peiodo de eolción ale,85 5 s. Obeón, oto

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

CAPITULO 8 INTEGRALES DE SUPERFICIE

CAPITULO 8 INTEGRALES DE SUPERFICIE CAPIULO 8 Nestas almas, cyas facltades peden compende la maallosa aqtecta del mndo, y med el cso de cada planeta agabndo, aún escalan tas el conocmento nfnto Chstophe Malowe. INEGRALE E UPERFICIE 8.. Paametacón

Más detalles

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5

Más detalles

CAPÍTULO III TRABAJO Y ENERGÍA

CAPÍTULO III TRABAJO Y ENERGÍA TRAJO Y ENERGÍA CAPÍTULO III "De todos los conceptos físcos, el de enegía es pobablemente el de más vasto alcance. Todos, con fomacón técnca o no, tenen una pecepcón de la enegía y lo que esta palaba sgnfca.

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

CAPÍTULO 7. DINÁMICA DEL ROBOT PARALELO

CAPÍTULO 7. DINÁMICA DEL ROBOT PARALELO 2 CAPÍLO 7. DNÁMCA DEL ROBO PARALELO En est seccón se descbe el nálss dnáco del obot plelo: Se descben ls popeddes de s de los eleentos que lo confon; específcente, se obtene l s totl, el cento de s y

Más detalles

Distribuciones de corriente axiales con simetría de revolución.

Distribuciones de corriente axiales con simetría de revolución. Electc Mgnetsmo 1/11 Mgnetostátc Defncón. El potencl vecto mgnétco. Meos nefnos. Popees. Le e ot vt. Le e Ampèe. mpo en puntos lejos. Momento mgnétco. ompotmento en el nfnto. oentes lgs. Enegí Mgnétc.

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

POTENCIAL ELECTROSTÁTICO

POTENCIAL ELECTROSTÁTICO letos Físc p Cencs e Ingeneí 4.1 4.1 Potencl electostátco Al estud el cmpo electostátco, se demostó que se tt de un cmpo consevtvo, y, po tnto, l ccón de ls uezs electostátcs se puede susttu, cundo conveng,

Más detalles