FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo"

Transcripción

1 FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

2 Tema 5: Fundamentos de electrotecnia

3 PUNTOS OBJETO DE ESTUDIO 3 Circuitos magnéticos Ferromagnetismo Equivalencia entre circuito eléctrico y magnético Precisión Pérdidas energéticas

4 Analogía entre el circuito eléctrico y el circuito magnético 4 A 2 B 2 f 1 =B 1 A 1 f 2 =B 2 A 2 A 2 j 2 i 1 =j 1 A 1 i 2 =j 2 A 2 A 1 B 1 f 3 =B 3 A 3 A 1 j 1 i 3 =j 3 A 3 f 1 = f 2 + f 3 (consecuencia de B = 0) A 3 B 3 i 1 = i 2 + i 3 (Kirchhoff) A 3 j 3

5 El campo magnético 5 Sean q y Q cargas eléctricas Carga estática Carga en movimiento Q crea un campo eléctrico q dentro de E experimenta una fuerza eléctrica Q moviéndose crea un campo magnético B q moviéndose en B experimenta una fuerza magnética Ley de Biot y Savart E k Q e V /m F r 2 e k Q ( ) 2 r m q E B v r T F q ( v B) m F qvb sin( ) m vb Fuerzade Lorentz F total F e r F m q (E r v r B )

6 El campo magnético 6 Si alguna de las cargas no se mueve no hay fuerza magnética El campo y la fuerza magnética dependen de la dirección (Si V B; F m =0) Cuál es mayor? B kv v E k c m 1 B 2 e E Conductor con I En un conductor hay cargas +/- por lo tanto E=0 y sólo queda B

7 Magnitudes físicas (I) 7 Flujo magnético: flujo a través de una superficie A Unidades: SI: Weber: Tesla*m 2 CGS: Maxwell: Gauss*cm 2 Líneas de campo magnético: df B cos da La dirección del campo magnético en un punto es paralela a la dirección de la línea en ese punto. Cada línea une puntos con igual módulo de B. Las líneas de campo magnético son cerradas

8 Magnitudes físicas (II) 8 B: Campo magnético de inducción o densidad de flujo H: Intensidad del campo magnético o campo magnético aplicado En todos los campos de la física hay que distinguir la causa del efecto. Esto mismo ocurre en un material magnético. Por tanto se hace preciso diferenciar la causa (el campo magnético aplicado, H) del efecto (la inducción, B). Ambas magnitudes son magnitudes vectoriales. La relación entre B y H es B ; r 0 H 7

9 Magnitudes físicas (III) 9 Campo magnético es creado por un conductor por el que circula una intensidad I en el vacío I = muchas cargas moviéndose => Campo magnético (I) = ΣB(cada carga) Conductor recto Solenoide Espira circular

10 Ley de Faraday 10 Ley de Faraday: Cada espira crea una fuerza electromotriz inducida (f.e.m.) igual a la variación del flujo magnético encerrado por esa espira. Ley de Lenz: la f.e.m. inducida por el cambio de flujo se va a oponer al cambio Combinando ambas: fem d dt m 2 d AN di di fem L ; dt l dt dt Vs L coef. autoinducción [ Henrios] A

11 Ley de Faraday (II) 11 Si se incrementa la corriente, se crea un voltaje que se opone a ese cambio por el campo magnético de la espira Autoinducción Cambios en Fm a través de un conductor debidos al propio conductor Inducción mutua 2 d AN di di fem L ; dt l dt dt Vs L coef. autoinducción [ Henrios] A Cambios en Fm a través de un conductor debidos a variaciones de I en otro conductor

12 Campo magnético creado por un solenoide 12 B es proporcional a N=nº de vueltas y a I=Intensidad en la bobina. B está totalmente confinado dentro de la bobina. Fuera no hay campo magnético. B dentro del solenoide depende de r (B proporcional 1/r) Si la longitud es grande comparada con el espesor entonces B cte Curva1 B 0 Curva 2 B N I 0 2 r Curva 3 B 0

13 Circuito magnético (I) 13 Cuando un campo magnético variable en el tiempo generado por un lazo penetra en un segundo lazo, se induce una tensión entre los extremo de este último. Un circuito magnético es una estructura ferromagnética acompañada de fuerzas magnetomotrices (=bobinas) con la finalidad de canalizar líneas de fuerza magnética.

14 Circuito magnético (II) 14 B está encerrado dentro de la estructura Ej: Solenoide toroidal con vacío. Cómo calculamos B? Ley de Ampere Por qué ponemos el hierro? Para igual Intensidad de corriente: B(con hierro) >> B(con aire) Los materiales ferromagnéticos encierran B N I 0 N I 0 r B( vacío) B( Hierro; r ) 2 r 2 r Campos magnéticos confinados en trayectorias definidas Podemos construir circuitos magnéticos con formas distintas, sin necesidad de estructuras toroidales.

15 Ley de Ampere 15 Producción del campo magnético mediante una corriente H dl I T B dl I T ( 0 r ) Aplicado a un circuito magnético SIMPLE: B dl B l c I T 0 r NI B N I l c Integramos en el recorrido medio indicado (lc) HIPOTESIS: - (A=cte ; =cte) B(cada punto de lc) cte - CM Todo el campo B permanece dentro del CM (recordar B A) N I A l c

16 Definiciones y leyes básicas Ley de Ampere = producción del campo magnético mediante una corriente I T Aplicado a un circuito magnético SIMPLE: Integramos en el recorrido medio indicado (l c ) H dl I T B dl I T ( 0 r ) HIPOTESIS: (A = cte ; μ = cte) B(cada punto de l c ) cte CM Todo el campo B permanece dentro del CM B dl B l c I T 0 r NI B N I (recordar B A) N I A l c l c Válido para cualquier forma del CM

17 Fuerza magnetomotriz 17 Ampere(CM) N I l "circula" en el CM c A N I "crea" el campo magnético,a,l c " propiedadesdel Fe" F mm ni f ( ) Fe g f x Reluctancia en el material F mm x ni f A x lx 0 rx x Fe g l A 0 Reluctancia del entrehierro g A 0 r

18 C. eléctrico Analogía entre el circuito eléctrico y el circuito magnético (I) 18 R 1 R 2 i EE C. magnético V E E LEY DE OHM e: f.e.m. r: resistencia i: corriente e = r i LEY DE HOPKINSON F: f.m.m. R: reluctancia f: flujo magnético F = R f

19 Analogía entre el circuito eléctrico y el circuito magnético (II) 19 B I A 2 B 2 f 1 =B 1 A 1 f 2 =B 2 A 2 A 2 j 2 i 1 =j 1 A 1 i 2 =j 2 A 2 A 1 B 1 f 3 =B 3 A 3 A 1 j 1 i 3 =j 3 A 3 f 1 = f 2 + f 3 (consecuencia de B = 0) A 3 B 3 i 1 = i 2 + i 3 (Kirchhoff) A 3 j 3

20 Analogía entre el circuito eléctrico y el circuito magnético (III) 20 i f f R Camino N g: entrehierro N i R g N: número de vueltas i N f 1 f 2 N i f R 1 1 f 2 R 2 R 3 La diferencia no es demasiado grande. Esto da lugar a que parte del flujo magnético puede circular por el aire en vez de por el camino magnético

21 Equivalencia en circuitos de varias ramas (I) 21 l c /2 R c l lat l c /2 g l lat R lat R g R lat A lat A c lat c A lat c llat 0 lc A 0 rfe rfe R lat R c g g Ac 0 R g

22 Equivalencia en circuitos de varias ramas (II) 22 f 1 i 1 i 3 c 2 lat g lat R la R c i 2 R la in c 2 t V E E R g t Equivalencia de cálculo f ni 1 lat( c g ) lat lat c g i 1 R lat VEE R (R R lat lat c R c R g R ) g

23 Equivalencia en circuitos de varias ramas (III) 23 2 lat i n c g lat R l at R c + R g V E E R l at in g c 2 lat V EE R c +R lat /2+R g

24 Diferencia entre el campo magnético y el eléctrico 24 Eléctrico Conductividad del cobre: = 5, La conductividad del aire es prácticamente nula Magnético En los materiales magnéticos, típicamente, = Como mucho, = Permeabilidad del aire: 0 = dl 1 R elect A dl A R.

25 Precisión de los c. m. (I) 25 Los cálculos de flujo en el núcleo utilizando los conceptos de circuitos magnéticos, siempre son aproximados; a lo sumo tienen una precisión cercana a un 5% de la respuesta real. Hay una serie de razones para esta inexactitud inherente: El concepto de circuito magnético supone que todo el flujo esta confinado dentro del núcleo magnético, pero una pequeña fracción del flujo escapa hacia el poco permeable aire circundante. Este flujo fuera del núcleo se llama flujo de dispersión y cumple un papel importante en el diseño de la maquina eléctrica.

26 Precisión de los c. m. (II) 26 El calculo de la reluctancia supone cierta longitud de trayecto medio y un área de la sección transversal del núcleo. Estos supuestos no son totalmente acertados, especialmente en las esquinas. En los materiales ferromagnéticos, la permeabilidad varia con la cantidad del flujo ya contenido en el material, introduciendo variaciones en la reluctancia. Si hay entrehierros de aire en el recorrido del flujo en el núcleo, el área efectiva del corte transversal del entrehierro de airé será mayor que el área del corte transversal del núcleo de hierro en ambos lados. Efecto de borde de un campo magnético en un entrehierro. Nótese el incremento del área efectiva en el entrehierro, comparada con el área de la sección transversal del metal.

27 Materiales ferromagnéticos 27 Respuesta a B aplicados Magnetización Diamagnéticos Todos los materiales Se opone al campo aplicado Débil; ( o ) Paramagnéticos Magnetización en la dirección del campo y proporcional a ella. Ferromagnéticos B B M o ;B es elcampo en elinterior El más intenso Persiste en el tiempo: histéresis Desaparece al aumentar T hasta Tc (temperatura de Curie)

28 Histéresis 28 Magnetismo remanente: estado del material en ausencia del campo magnético Bm B Campo coercitivo: el necesario para anular B R Hc BR H -Hm Hm CICLO DE HISTÉRESIS -Bm

29 Pérdidas por histéresis (I) 29 La curva B-H real tiene histéresis. El funcionamiento del componente describe un área en la curva B-H que define las pérdidas por histéresis B Fe H Fe

30 Pérdidas por histéresis (II) 30 U t = R i t + N dφ dt U t i t dt = R i t i t dt + N dφ dt i t dt 0 T U t i t dt = 0 T R i t i t dt + 0 T N i t dφ N i t = H t l dφ(t) = s db(t) l S = V 0 T N i t dφ=h t l dφ = H t l s db t = V H t db t U t i t dt = 0 T R i t i t dt + V 0 T H t db t

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 6: Inducción magnética PUNTOS OBJETO DE ESTUDIO 3

Más detalles

Electromagnetismo (Todos. Selectividad Andalucía )

Electromagnetismo (Todos. Selectividad Andalucía ) Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Tema 3. Circuitos magnéticos

Tema 3. Circuitos magnéticos Tema 3. Circuitos magnéticos Ya sabemos de temas anteriores la importancia del campo magnético dentro de la electricidad. Hemos estudiado y aprendido la importancia del campo magnético, su inducción, el

Más detalles

El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales

El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales 13.2 - El circuito magnético principal de las máquinas lineales 13.2.1 - Líneas de fuerza principales de las máquinas lineales El flujo inductor que atraviesa el entrehierro y que constituye el flujo activo

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

Problemas de Circuitos Magnéticos

Problemas de Circuitos Magnéticos Problemas Circuitos Magnéticos Página 1 de 6 Problemas de Circuitos Magnéticos 1-1. Determinar la intensidad en corriente continua que debe circular por la bobina de la Fig. 1-35 para que en la rama central

Más detalles

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 11 TEMA EXCITACIÓN, SUSCEPTIBILIDAD Y PERMEABILIDAD MAGNÉTICA.

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 11 TEMA EXCITACIÓN, SUSCEPTIBILIDAD Y PERMEABILIDAD MAGNÉTICA. TEMA 11 FERROMAGNETISMO 11.1. EXCITACIÓN, SUSCEPTIBILIDAD Y PERMEABILIDAD MAGNÉTICA. Se define excitación magnética o intensidad del campo magnético H, el campo debido a la corriente magnetizante más el

Más detalles

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable. www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD NACIONAL DE TRES DE FEBRERO ELECTRICIDAD Y MAGNETISMO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO Titular: Ing. Alejandro Di Fonzo Jefe de Trabajos Prácticos:

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

Capítulo 3. Magnetismo

Capítulo 3. Magnetismo Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este

Más detalles

Fundamentos de los Motores Eléctricos

Fundamentos de los Motores Eléctricos 1 B = Φ A 2 Fuerza sobre un conductor eléctrico. Fuerza proporcional a: Densidad de flujo magnético. Corriente eléctrica que circula por el conductor. Seno del ángulo que forman los campos B e I. Fuerza

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A)

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A) Flujo magnético Φ El campo magnético se representa a través de las líneas de fuerza. La cantidad de estas líneas se le denomina flujo magnético. Se representa por la letra griega Φ; sus unidades son weber

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 7 1/10

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 7 1/10 1º E.U.I.T.I.Z. Curso 2006-2007. Electricidad y Electrometría. Problemas resueltos tema 7 1/10 2.- La carcasa semiesférica de la figura, de radio interior R = 1 m y espesor despreciable, se encuentra en

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

Capítulo II. Ecuaciones de los circuitos magnéticos

Capítulo II. Ecuaciones de los circuitos magnéticos Capítulo II. Ecuaciones de los circuitos magnéticos 2.1. Intensidad de Campo magnético Los campos magnéticos son el mecanismo fundamental para convertir energía eléctrica de corriente alterna de un nivel

Más detalles

a) Ley de Ampere: Es la ley básica que rige la producción de campo magnético por medio de una corriente y su

a) Ley de Ampere: Es la ley básica que rige la producción de campo magnético por medio de una corriente y su Tema: Circuitos Magnéticos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría E. I. OBJETIVOS. - Verificar las magnitudes electromagnéticas básicas, sus unidades, y la validez de sus relaciones

Más detalles

CIRCUITOS SIMPLES Y RESISTENCIAS EN SERIE

CIRCUITOS SIMPLES Y RESISTENCIAS EN SERIE CIRCUITOS SIMPLES Y RESISTENCIAS EN SERIE Un circuito eléctrico consiste en cierto número de ramas unidas entre sí, de modo que al menos una de ellas cierre la trayectoria que se proporciona a la corriente.

Más detalles

Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: ELECTROMAGNETISMO CON LABORATORIO Clave: 003880 Academia a la que pertenece: Electromagnetismo Requisitos: Ninguno Horas Clase:

Más detalles

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

Faraday tenía razón!! María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Faraday tenía razón!! María Paula Coluccio y Patricia Picardo aboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En el presente trabajo repetimos la experiencia que

Más detalles

MAQUINAS ELÉCTRICAS EL TRANSFORMADOR

MAQUINAS ELÉCTRICAS EL TRANSFORMADOR MAQUINAS ELÉCTRICAS EL TRANSFORMADOR 1 Introducción El transformador esta basado en los fenómenos de inducción electromagnética. Consta de un núcleo de chapas magnéticas, al que rodean dos devanados, denominados

Más detalles

Tema Fuerza electromotriz inducida

Tema Fuerza electromotriz inducida Tema 21.11 Fuerza electromotriz inducida 1 Orígenes de la Fuerza electromotriz inducida Hemos visto que cuando circula una corriente eléctrica por un conductor se genera un campo magnético (solenoide,

Más detalles

Propiedades magnéticas

Propiedades magnéticas Propiedades magnéticas Fuerzas magnéticas Las fuerzas magnéticas se generan mediante el movimiento de partículas cargadas Eléctricamente; existen junto a las fuerzas electrostáticas. Distribuciones del

Más detalles

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL.

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. Fuerza sobre el conductor. r r r df = IΛ B dl F = I. B.L Tensión inducida en el conductor. dφ dφ e =, pero dados los sentidos normales se cumple que :

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INGENIERÍA EN COMPUTACIÓN

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INGENIERÍA EN COMPUTACIÓN ASIGNATURA: Electricidad y Magnetismo (L) CARÁCTER: Obligatoria TIPO MODALIDAD: UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO ASIGNATURA(S) INDICATIVA(S) PRECEDENTE(S): ASIGNATURA(S) INDICATIVA(S) SUBSECUENTE(S):

Más detalles

Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.

Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Electricidad y Magnetismo - FIS1533 Interrogación 3 Martes 19 de Junio de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Reyes - Instrucciones -Tiene dos horas para resolver los

Más detalles

Módulo 7: Fuentes del campo magnético

Módulo 7: Fuentes del campo magnético 7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Transformadores y Máquinas Síncronas (1131074)

Más detalles

Campo Magnético creado por un Solenoide

Campo Magnético creado por un Solenoide Campo Magnético creado por un Solenoide Ejercicio resuelto nº 1 Un solenoide se forma con un alambre de 50 cm de longitud y se embobina con 400 vueltas sobre un núcleo metálico cuya permeabilidad magnética

Más detalles

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica 1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u

Más detalles

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

Tema 2: Campo magnético

Tema 2: Campo magnético Tema 2: Campo magnético A. Fuentes del campo magnético A1. Magnetismo e imanes Magnetismo. Imán: características. Acción a distancia. Campo magnético. Líneas de campo. La Tierra: gran imán. Campo magnético

Más detalles

SESION 2: EL CIRCUITO MAGNETICO 1. INTRODUCCION

SESION 2: EL CIRCUITO MAGNETICO 1. INTRODUCCION SESION 2: EL CIRCUITO MAGNETICO 1. INTRODUCCION EJEMPLO 1. La siguiente figura muestra un circuito magnético, consistente en una bobina de magnetización con un núcleo sencillo ferromagnético. Calcular

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

Tema 8. Inducción electromagnética

Tema 8. Inducción electromagnética Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas. EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de

Más detalles

Nombre de la asignatura Física Clásica II Departamento Ingenierías Academia Física

Nombre de la asignatura Física Clásica II Departamento Ingenierías Academia Física Nombre de la asignatura Física Clásica II Departamento Ingenierías Academia Física Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I5436 48 48 32 128 9 Nivel Carrera Tipo Prerrequisitos

Más detalles

CIRCUITO RL EN CORRIENTE CONTINUA

CIRCUITO RL EN CORRIENTE CONTINUA Autoinducción CIRCUITO RL EN CORRIENTE CONTINUA En un circuito existe una corriente que produce un campo magnético ligado al propio circuito y que varía cuando lo hace la intensidad. Por tanto, cualquier

Más detalles

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO "Contenido adscrito a la Licéncia "Creative Commons" CC ES en las opciones "Reconocimiento -No Comercial- Compartir Igual". Autor: Ángel Mahiques Benavent ÍNDICE

Más detalles

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función

Más detalles

CAMPO MAGNÉTICO. El origen del magnetismo.

CAMPO MAGNÉTICO. El origen del magnetismo. CAMPO MAGNÉTICO. El origen del magnetismo. Los imanes atraen fuertemente a metales como el hierro, esto es debido a que son materiales que tienen un campo magnético propio. Vamos a tener en los imanes

Más detalles

SOLUCIONARIO GUÍAS ELECTIVO

SOLUCIONARIO GUÍAS ELECTIVO SOLUCIONARIO GUÍAS ELECTIVO Electricidad IV: campo magnético, fuerza magnética SGUICEL013FS11-A16V1 Solucionario guía Electricidad IV: campo magnético, fuerza magnética Ítem Alternativa Habilidad 1 E Aplicación

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

I.E.S. FRANCISCO GARCIA PAVÓN. CURSO DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA 2º BACHILLER CONTROL 7 29/03/2012 SOLUCIONADO

I.E.S. FRANCISCO GARCIA PAVÓN. CURSO DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA 2º BACHILLER CONTROL 7 29/03/2012 SOLUCIONADO NOME SOLUCIONADO CUSO: CT TEMA 7. CAMPO MAGNÉTICO TEMA 8. INDUCCIÓN ELECTOMAGNÉTICA NOMAS GENEALES - Escriba a bolígrafo. - No utilice ni típex ni lápiz. - Si se equivoca tache. - Si no tiene espacio suficiente

Más detalles

Corriente continua (Repaso)

Corriente continua (Repaso) Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley

Más detalles

CUESTIONARIO 2 DE FISICA 2

CUESTIONARIO 2 DE FISICA 2 CUESTIONARIO 2 DE FISICA 2 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener

Más detalles

Práctica de Inducción electromagnética.

Práctica de Inducción electromagnética. Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX

Más detalles

CAPITULO 1. CIRCUITOS Y MATERIALES MAGNÉTICOS. LEYES BÁSICAS.

CAPITULO 1. CIRCUITOS Y MATERIALES MAGNÉTICOS. LEYES BÁSICAS. CAPITULO. CIRCUITOS Y MATERIALES MAGNÉTICOS. LEYES BÁSICAS. Si considero ahora una espira normal al plano las líneas de campo serán Considero ahora un toroide, de material M, homogeneo,bobinado uniforme

Más detalles

Tema 4: Campos magnéticos.

Tema 4: Campos magnéticos. Física. 2º Bachillerato. Tema 4: Campos magnéticos. 4.1. Campo magnético. Fuerza de Lorentz El magnetismo se conoce desde la antigüedad debido a la existencia de los imanes naturales, especialmente la

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO. UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA ALICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO Andrés González OBJETIVOS Comprobar experimentalmente la influencia de

Más detalles

Figura 8.1 Generación de un campo magnético, debido a la corriente circulando en un conductor

Figura 8.1 Generación de un campo magnético, debido a la corriente circulando en un conductor CRCUTO MAGÉTCO CRCUTO MAGÉTCO 8.1 Generalidades Una corriente circulando por un conductor de gran longitud, genera alrededor del mismo un campo magnético, cuyas líneas de fuerza describen círculos concéntricos

Más detalles

CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA

CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA Laboratorio de Física General Primer Curso (Electromagnetismo) CAMPO MAGNÉTICO DE UNA CORRIENTE RECTILÍNEA Fecha: 07/02/05 1. Objetivo de la práctica Estudio del campo magnético creado por una corriente

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

UNICA Facultad de Ingeniería Mecánica

UNICA Facultad de Ingeniería Mecánica UNICA Facultad de Ingeniería Mecánica y Eléctrica CURSO Dibujo Electrónico Alumno Porras Dávalos Alexander Darwin Paginas de estudio porrasdavalosa1.wikispaces.com porrasdavalosa.wordpress.com porrasdavalosa.blogger.com

Más detalles

Definimos así a la región del espacio donde se manifiestan acciones magnéticas.

Definimos así a la región del espacio donde se manifiestan acciones magnéticas. Unidad N 1 - TRANSFORMACION DE LA ENERGIA CAMPO MAGNETICO: Definimos así a la región del espacio donde se manifiestan acciones magnéticas. ELECTROMAGNETISMO Ley de Biot Savart En todo conductor recorrido

Más detalles

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156 nductancia Auto-nductancia, Circuitos R X X XX X X XXXX X X XX a b R a b e 1 e1 /R B e ( d / dt) 0.0183156 1 0 1 2 3 4 Vx f( ) 0.5 0 t A NERCA Y A NDUCTANCA a oposición que presentan los cuerpos al intentar

Más detalles

FÍSICA DE 2º DE BACHILLERATO EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN

FÍSICA DE 2º DE BACHILLERATO EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN TEMA : EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN Desde siglos antes de Cristo se conocía que algunos minerales de hierro, como la magnetita (Fe 3 O 4 ), atraían pequeños trozos de hierro. Esta propiedad se llamó

Más detalles

Electricidad y Magnetismo

Electricidad y Magnetismo UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: Electricidad y Magnetismo IDENTIFICACIÓN

Más detalles

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo 2 PUNTOS OBJETO DE ESTUDIO Introducción Transformador ideal Transformador real Ensayos de

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo Nombre: Campo magnético Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 14 Magnetismo Fecha: Un imán genera en su entorno un campo magnético que es el espacio perturbado por

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

INTERACCIONES Y MATERIALES MAGNÉTICOS

INTERACCIONES Y MATERIALES MAGNÉTICOS INTERACCIONES Y MATERIALES MAGNÉTICOS G U T I É R R E Z N Ú Ñ E Z D E B O R A H V A L E R I A I S L A S B A U T I S T A J O S É A L F R E D O L O E R A R U B A L C A V A J E S S I C A R I V E R O T R E

Más detalles

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

PROGRAMA INSTRUCCIONAL MAQUINAS ELECTRICAS I

PROGRAMA INSTRUCCIONAL MAQUINAS ELECTRICAS I UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA ELECTRICA PROGRAMA AL MAQUINAS ELECTRICAS I CÓDIGO ASIGNADO SEMESTRE U.C DENSIDAD HORARIA H.T H.P/H.L H.A H.V

Más detalles

Slide 1 / 48. Inducción electromagnética y la Ley de Faraday

Slide 1 / 48. Inducción electromagnética y la Ley de Faraday Slide 1 / 48 Inducción electromagnética y la Ley de Faraday Slide 2 / 48 Inducción electromagnética y la Ley de Faraday FEM inducida Ley de inducción de Faraday Ley de Lenz FEM inducida en un conductor

Más detalles

4.- Interacción entre campos magnéticos y corrientes eléctricas. Campos magnéticos creados por corrientes.

4.- Interacción entre campos magnéticos y corrientes eléctricas. Campos magnéticos creados por corrientes. 4.- Interacción entre campos magnéticos y corrientes eléctricas. Campos magnéticos creados por corrientes. 4.1.- Excitación magnética Oersted descubrió experimentalmente que una corriente eléctrica crea

Más detalles

MAGNETISMO. Martín Carrera Rubín 2ª

MAGNETISMO. Martín Carrera Rubín 2ª MAGNETISMO Martín Carrera Rubín 2ª 1. Introducción 2. Hipótesis 3. Materiales 4. Procedimientos 5. Análisis de los resultados 6. Conclusión Esta práctica de magnetismo podemos distinguir varios puntos

Más detalles

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INGENIERÍA ELÉCTRICA UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Circuitos Magnéticos y Transformadores Prácticas de Laboratorio PRÁCTICA 1 LA BOBINA REAL CON NÚCLEO DE

Más detalles

Documento No Controlado, Sin Valor

Documento No Controlado, Sin Valor TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas

Más detalles

1. Fenómenos de inducción electromagnética.

1. Fenómenos de inducción electromagnética. 1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide

Más detalles

PROGRAMA DE ASIGNATURA ELECTRICIDAD Y MAGNETISMO CAMPO Y POTENCIAL ELECTRICOS CAPACITANCIA Y DIELECTRICOS. CIRCUITOS ELECTRICOS MAGNETOSTATICA

PROGRAMA DE ASIGNATURA ELECTRICIDAD Y MAGNETISMO CAMPO Y POTENCIAL ELECTRICOS CAPACITANCIA Y DIELECTRICOS. CIRCUITOS ELECTRICOS MAGNETOSTATICA PROGRAMA DE ASIGNATURA ELECTRICIDAD Y MAGNETISMO I II III IV V VI CAMPO Y POTENCIAL ELECTRICOS CAPACITANCIA Y DIELECTRICOS CIRCUITOS ELECTRICOS MAGNETOSTATICA INDUCCION ELECTROMAGNETICA PROPIEDADES MAGNETICAS

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS

ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS TEORÍA ELECTROMAGNÉTICA 1 UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad, Ingeniería

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La

Más detalles

UNIDAD 1 Máquinas eléctricas

UNIDAD 1 Máquinas eléctricas Página1 UNIDAD 1 Máquinas eléctricas 1.1 Introducción MÁQUINA Una máquina es un conjunto de elementos móviles y fijos cuyo funcionamiento posibilita aprovechar, dirigir, regular o transformar energía o

Más detalles

Webpage:

Webpage: Magnetismo y Óptica Dr. Roberto Pedro Duarte Zamorano E-mail: roberto.duarte@didactica.fisica.uson.mx Webpage: http://rpduarte.fisica.uson.mx 2016 Departamento de Física Universidad de Sonora A. Magnetismo

Más detalles

DISEÑO CURRICULAR FÍSICA II

DISEÑO CURRICULAR FÍSICA II DISEÑO CURRICULAR FÍSICA II FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE PRE-REQUISITO 123343 02 02 03 III FÍSICA I ELABORADO

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

Universidad Nacional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas

Universidad Nacional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas Universidad acional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas IDUCTACIA LOGO Inductancia Magnética. Interacción entre campos

Más detalles

INTERACCIÓN MAGNÉTICA

INTERACCIÓN MAGNÉTICA INTERACCIÓN MAGNÉTICA 1. Magnetismo. 2. El magnetismo natural. 3. Campo magnético. 4. Electromagnetismo. 5. El campo magnético frente la electricidad. 6. Campos magnéticos originados por cargas en movimiento.

Más detalles

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios. PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas con base en los principios

Más detalles

Interacciones magnéticas

Interacciones magnéticas Interacciones magnéticas ibliografía consultada Sears- Zemasnky -Tomo II Fisica para Ciencia de la Ingeniería, Mckelvey Serway- Jewett --Tomo II 1 INTERACCIÓN MAGNÉTICA Según diferentes investigadores,

Más detalles

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 (93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 Desde ApuntesITBA nos hemos tomado el trabajo de escanear y recopilar este material, con el afán de brindarles a los futuros ingenieros del ITBA

Más detalles

CONSEJERÍA DE EDUCACIÓN

CONSEJERÍA DE EDUCACIÓN ANEXO VII (continuación) CONTENIDOS DE LA PARTE ESPECÍFICA DE LA PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR PARTE ESPECÍFICA OPCIÓN B EJERCICIO DE TECNOLOGÍA INDUSTRIAL 1. RECURSOS ENERGÉTICOS.

Más detalles

CIRCUITOS MAGNÉTICOS

CIRCUITOS MAGNÉTICOS 1.1 ELEMENTOS FUNDAMENTALES CIRCUITOS MAGNÉTICOS fig. 1 Enviando una corriente continua a una bobina como se ve en la figura 1, en el interior de la misma se produce un campo magnético, cuyas líneas de

Más detalles