Condensación de un gas ideal de bosones

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Condensación de un gas ideal de bosones"

Transcripción

1 Clase 13 Condensación de un gas ideal de bosones Para un gas de bosones, el número promedio de partículas está dado por la expresión, N = i e βɛ i(v ) 1 e βɛ i(v ) (13.1) Es a través de la fugacidad, denotada con la letra = e βµ, que podemos condensar el gas a una temperatura distinta de cero. Suponemos la energía del estado base ɛ 0 = 0, el estado de mínima energía. Por lo tanto, N = e βɛ i e }{{} βɛ i i }{{} estados con energía cero contribución de los estados excitados donde la suma se extiende a los estados cuánticos con energía ɛ(v ) diferente de cero. (13.2) Cuando la temperatura es cercana a cero, sólo sobrevive el primer término del lado derecho en la ecuación Sin embargo, cuando la temperatura aumenta, algunas partículas empiean a poblar los estados excitados. Tomando en cuenta que ɛ(v ) V 2/3 cuando el volumen es muy grande (límite termodinámico) la suma puede reemplaarse por una integral, N πV ( ) 3/2 2m ɛ 1/2 e βɛ dɛ (13.3) h 2 1 e βɛ donde el límite inferior se ha hecho cero debido a que ɛ 1 V 2/3. Recordemos que µ < 0 para que converja la suma geométrica en el calculo de la estadística de ose, entonces < 1, es decir, e βɛ 1 e = q e βɛq (13.4) βɛ Denotando la longitud de onda térmica de deroglie como Λ = [h 2 /(2πmk T )] 1/2, obtenemos, 1 q=1

2 2 CLASE 13. CONDENSACIÓN DE UN GAS IDEAL DE OSONES donde, N = 1 + V Λ 3 q=1 q q 3/2 = 1 + V Λ 3 g 3/2(). (13.5) g l () = i=1 q q l. (13.6) Cuando la temperatura es alta, o la densidad baja, 1, que es el límite clásico. Cuando se aumenta la fugacidad (se baja la temperatura), ambas funciones de en la ecuación 13.5 crecen, pero en el límite termodinámico tenemos, ( ) N V = V [1 ] Entonces la densidad de partículas queda como, = 0 1. (13.7) ρ = N V = 1 Λ 3 g 3/2() < 1. (13.8) por lo tanto, la densidad de partículas tiene que ver con las partículas que no se encuentran en el estado base. Si se sigue aumentando manteniendo la densidad ρ constante, T baja y la función g 3/2 crece, aunque tiene un límite superior, dado por la función eta de Riemann. ζ(l) = q=0 1 q l. (13.9) Por lo tanto, se espera que el gas se enfríe hasta un valor crítico de la temperatura T c (ρ) definido por la ecuación, y ademas, ρλ 3 c ζ(3/2) donde ζ(3/2) = , Λ c (ρ) = h 2πmkTc (ρ). (13.10) Si bajamos la temperatura aún más, por debajo de la crítica, esta aproximación ya no es válida. Habrá una fración λ de partículas en el estado base, donde 0 < λ < 1, entonces, λ N = 1 (13.11) = En el límite termodinámico, la ecuación 13.5 se escribe, λ N 1 + λ N = (13.12) λ N

3 3 { 1 ρ = LT V } Λ ζ(3/2) = ρ ζ(3/2); ( 1). (13.13) Λ3 donde ρ 0 es la densidad media de partículas en el estado base y la fugacidad es aproximadamente 1. La densidad de partículas es, { 1 g ρ = Λ 3 3/2 () T > T c ρ ζ( 3) T < T Λ 3 2 c Es decir, tenemos una transición de fase, donde el parámetro de orden es la densidad N 0 /N, con N 0 el número de partículas en el estado base, N 0 N = ρ 0 ρ = 1 ζ(3/2) = 1 Λ3 c(ρ) ρλ 3 Λ 3 ( ) 3/2 T = 1, (13.14) T c (ρ) que se anula en la temperatura crítica y aumenta a uno en el cero absoluto, como se muestra en la figura 13.1, Figura 13.1: Fracción condensada N 0 /N en función de la temperatura para un gas ideal de ose uniforme. La fracción condensada es diferente desde cero, por debajo de T c donde el sistema exhibe una condensación de ose-einstein. Observe que hemos aplicado el límite termodinámico es esta derivación. Si el sistema es finito, siempre existirá una fracción de partículas en el estado base, lo que quiere decir que T c (ρ) =. Para observar la condensación de ose, se requiere llevar un sistema macroscópico a una temperatura crítica de nano Kelvin y evitar que el gas se lícue o cristalice, lo cual se logra por técnicas ópticas y de evaporación. Para evitar que los átomos se adhieran a la superficie se usan campos magnéticos oscilantes. En presencia de un campo externo se

4 4 CLASE 13. CONDENSACIÓN DE UN GAS IDEAL DE OSONES modifica el comportamiento crítico del gas y el parámetro de orden en un potencial armónico de frecuencia ω 0 es, donde la temperatura crítica T 0 (N) está dada por, ( ) 3 N 0 T N = 1, (13.15) T 0 (N) ( ) 1/3 N kt 0 (N) = ω 0 (13.16) ζ(3) La observación del gas se hace con pulsos de lu del orden de µs. El experimento con 2000 átomos de rubidio se muestra en la figura 13.2 Condensación de ose-einstein: gases atómicos ultra-fríos ( 87 Rb) 37 electrones + 87 nucleones = 124 fermiones oson 2000 átomos de Rb en una trampa T c = 170 nk Distribución de velocidades T < T c T > T c T T c Ocupación macroscópica de un estado con p = 0 Figura 13.2: Condensación de ose-einstein Demostración de que existe una discontinuidad: Transición de fase Debido a que N no es una variable independiente en el macrocanónico, cuando existe una transición de fase algunas variables termodinámicas no son analíticas en algún valor crítico crit a medida que el volumen tiende a infinito. Partiendo de la gran función de particion, Q = N=0 N {n i } e βɛ in i (13.17) que es una suma de funciones analíticas exponenciales. Si N es finita, hay un numero finito de sumandos, donde cada sumando es analítico y la Q es analítica. Sin embargo, no existe un teorema que diga que la suma infinita de sumandos analíticos es también analítica, por

5 lo tanto, para que ocurra una transición de fase, se requiere que el sistema sea infinito. Un fenómeno crítico existe si existe una crit 1 cuando N. En el límite de volumen infinito se tiene, ln Q = ln(1 ) 2πV ( ) 3/2 2m dɛ ɛ 1/2 ln(1 e βɛ ) (13.18) h 2 Introduciendo el desarrollo en serie del logarítmo ln(1 x) = x q q=1 e integrando con q respecto a ɛ se obtiene, 0 5 e E N ln Q = ln(1 ) + V Λ 3 g 5/2() (13.19) = 1 β Entonces, para ( < 1) y ( 1) tenemos, ( e = 3 2 k T ( ln Q β = 3 2 kt 1 ρλ 3 g 5/2() (13.20) ) 3/2 T g5/2 () T c(ρ) T T c(ρ) T > T ζ( 5 2 ) c ) 3/2 (13.21) ζ(5/2) T T ζ(3/2) c donde ζ(5/2) = y se ha tenido en cuenta que ρ = ζ(3/2)/λ 3 c(ρ) y por lo tanto la energía por partícula es una función continua en la temperatura crítica T c. Por otro lado, el calor específico por debajo de T c se obtiene de la segunda de las ecuaciones 13.21, c V ( ) = 15 ( ) 3/2 T 4 k ζ(5/2) T c ζ(3/2) Cuando T > T c la fugacidad depende de la temperatura y por lo tanto, T < T c (13.22) c V (+) = 15 ( ) 3/2 T 4 k g 5/2 () T c ζ(3/2) + 3 ( ) 3/2 T 2 k 1 g 5/2 () T c ζ(3/2) T > T c (13.23) Podemos escribir, g 5/2 () = g 5/2 = g 3/2() = 3 1 2T ρλ3 g 1/2 () Sustituyendo en la ecuación 13.23, llegamos a, c V (+) = 15 ( ) 3/2 T 4 k ζ(5/2) T c ζ(3/2) 9 4 cuando 1, g 1/2 () diverge y obtenemos, k ζ(3/2) ( T T c ) 3/2 g 3/2 () g 1/2 () (13.24)

6 6 CLASE 13. CONDENSACIÓN DE UN GAS IDEAL DE OSONES c V ( ) = c V (+), (13.25) por lo tanto, el calor específico es continuo en T c, es decir la condensación de ose es una transición de fase de segundo orden, véase la figura No diverge c V sino la susceptibilidad que es la segunda derivada de la energía, c V, c V ( ) = c V (+) ζ(3/2)3 2 k T c (ρ) lím 1 { } g3/2 ()g 1/2 () g1/2 3 (). (13.26) El límite se puede calcular y es ζ(3/2)/2π, por lo que la discontinuidad es c V ( ) c V (+) = 27 3 k 16π [ζ(3/2)]2 2 T c (ρ) (13.27) Figura 13.3: Calor específico de una gas de ose ideal uniforme, en función de la temperatura. Para T grande la curva se aproxima al valor clásico 3/2. La curva exhibe un pico en T = T c.

7 Referencias [1] Equilibrium Statistical Physics, Phases of matter and Phase Transitions Marc aus and Carlos F. Tejero Springer 2008 [2] Statistical Mechanics R. K. Pathria and Paul D. eale Ed. Elsevier [3] Donald A. McQuarrie Statistical Mechanics Ed. University Science ooks [4] R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman, and E. A. Cornell, ose-einstein Condensation in a Dilute Gas: Measurement of Energy and Ground-State Occupation, Phys. Rev. Lett. 77, 4984 (1996). 7

mecánica estadística Principios Fundamentales Capítulo 1

mecánica estadística Principios Fundamentales Capítulo 1 mecánica estadística Principios Fundamentales Capítulo 1 2013 Objetivo de la mecánica estadística Predecir el comportamiento macroscópico de un sistema, en base de las propiedades microscópicas de las

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Tema 2 TRANSICIONES DE FASE Y FENÓMENOS CRÍTICOS Transiciones de fase de primer orden. Transiciones de fase de orden superior y fenómenos críticos.

Tema 2 TRANSICIONES DE FASE Y FENÓMENOS CRÍTICOS Transiciones de fase de primer orden. Transiciones de fase de orden superior y fenómenos críticos. ema RANSICIONES DE FASE Y FENÓMENOS CRÍICOS ransiciones de fase de primer orden. ransiciones de fase de orden superior y fenómenos críticos. eoría de Landau y parámetro de orden. Exponentes críticos y

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3) 4. (4)

A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3) 4. (4) POTENCIAL QUÍMICO Y CAMBIO DE FASES I. Potencial químico: gas ideal y su estado patrón. A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3)

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II

Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Dinámica de electrones Bloch y Propiedades de Transporte Física del Estado Sólido II Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso 2010-2011 Índice

Más detalles

Física Teórica 3 1er. cuatrimestre de 2012 Algunos problemas resueltos de la Guía 6

Física Teórica 3 1er. cuatrimestre de 2012 Algunos problemas resueltos de la Guía 6 ísica Teórica 3 1er cuatrimestre de 1 Algunos problemas resueltos de la Guía 6 Problema 1 1 Problema 3 El paso de sumas a integrales 7 Problema 4 9 Problema 1 Considere un sistema formado por dos partículas

Más detalles

El modelo semiclásico de las propiedades de transporte: Objetivo

El modelo semiclásico de las propiedades de transporte: Objetivo El modelo semiclásico de las propiedades de transporte: Objetivo En el estudio de las propiedades de transporte se usa una aproximación que se basa en los principios usado para el estudio de los electrones

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

5.3 Estructura térmica de la litósfera oceánica

5.3 Estructura térmica de la litósfera oceánica 513314 Geofísica de la Tierra Sólida 165 5.3 Estructura térmica de la litósfera oceánica 5.3.1 Introducción La estructura térmica de la litósfera oceánica esta restringida por las observaciones de: 1.

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Gases ideales de Bose-Einstein

Gases ideales de Bose-Einstein Capítulo 8 Gases ideales de Bose-Einstein La función gran partición 7.33 para el gas ideal de Bose-Einstein puede escribirse como Z BE T,, µ = k e βn kε k µ n k = = k e βε k µ donde hemos usado que n=

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Capítulo 24. Emisión y absorción de la luz. Láser

Capítulo 24. Emisión y absorción de la luz. Láser Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E

Más detalles

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III

Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3)

ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3) ATOMO DE HIDROGENO I. Atomo de hidrógeno A. Descripción del sistema: Dos partículas que interaccionan por atracción de carga eléctrica y culómbica. 1. Ley de coulomb: a. En el sistema cgs en unidades de

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 1 - LA TEMPERATURA Y OTROS CONCEPTOS BÁSICOS DE LA TERMODINÁMICA Introducción: características generales y objetivos de la termodinámica. Comparación de los criterios

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Maestría en Ciencia y Tecnología Ambiental

Maestría en Ciencia y Tecnología Ambiental Maestría en Ciencia y Tecnología Ambiental Temario: Química Propósito general: Proporcionar y estandarizar el conocimiento básico de química a los candidatos para ingresar al programa de Maestría en Ciencia

Más detalles

Derivación por Equilibrio de Complejo Activado

Derivación por Equilibrio de Complejo Activado 1/3/14 Energía Libre de Gibbs reactivos G Estado de transición Productos Coordenada de reacción Reacción: HO + CH 3 r [HO --- CH 3 --- r] + CH 3 OH + r http://upload.wikimedia.org/wikipedia/commons/thumb/9/99/rxn_coordinate_diagram_5.pg/4px-rxn_coordinate_diagram_5.pg

Más detalles

Horacio S. Wio Beitelmajer (a)

Horacio S. Wio Beitelmajer (a) FISICA ESTADISTICA ESTRELLAS: ENANAS BLANCAS Horacio S. Wio Beitelmajer (a) (a) Electronic address: wio@ifca.unican.es http://www.ifca.unican.es/users/wio/ Enanas Blancas No corresponde al estudio de ni

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

Tema 9: Gases ideales Cuánticos

Tema 9: Gases ideales Cuánticos Tema 9: Gases ideales Cuánticos Indistinguibilidad cuántica: Conexión Espín-Estadística. Sistema ideal de bosones y fermiones. Función de partición canónica y macrocanónica Introducción Hemos visto que

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

La Ecuación de Schrödinger

La Ecuación de Schrödinger La Ecuación de Schrödinger Dr. Héctor René VEGA CARRILLO Notas del curso de Física Moderna Unidad Académica de Ingeniería Eléctrica Universidad Autónoma de Zacatecas Buzón electrónico: fermineutron@yahoo.com

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

Más sobre las series geométricas. 1. Derivación de series geométricas elementales

Más sobre las series geométricas. 1. Derivación de series geométricas elementales Semana - Clase 2 4/0/0 Tema : Series Más sobre las series geométricas Las series infinitas se encuentran entre las más poderosas herramientas que se introducen en un curso de cálculo elemental. Son un

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. U de Talca Sesión 7 Regla de L Hopital Temas Regla de L Hopital. Aplicaciones de la Regla de L Hopital a otras formas indeterminadas. 7. Introducción Johann Bernoulli Suizo. (667-748) Capacidades Conocer y comprender

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelos ARMA Definición: Ruido blanco. Se dice que el proceso {ɛ t } es ruido blanco ( white noise ) si: E(ɛ t ) = 0 Var(ɛ t ) = E(ɛ 2 t ) = σ 2 Para todo

Más detalles

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS ESTRUCTURA DE LA MATERIA Grupo D CURSO 20011 2012 EL NÚCLEO ATÓMICO DE QUÉ ESTÁN HECHAS LAS COSAS? MATERIA ~ 10-9 m Átomo FÍSICA MATERIALES ÁTOMO ~ 10-10 m NÚCLEO ~ 10-14 mnucleón < 10-15 m Electrón Protón

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su auténtica importancia. Sin límites el cálculo sencillamente

Más detalles

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional.

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Análisis dimensional Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Se consideran siete cantidades

Más detalles

Equilibrio físico. Prof. Jesús Hernández Trujillo. Facultad de Química, UNAM. Equilibrio físico/j. Hdez. T p.

Equilibrio físico. Prof. Jesús Hernández Trujillo. Facultad de Química, UNAM. Equilibrio físico/j. Hdez. T p. Equilibrio físico/j. Hdez. T p. 1/34 Equilibrio físico Prof. Jesús Hernández Trujillo jesus.hernandezt@gmail.com Facultad de Química, UNAM Equilibrio físico/j. Hdez. T p. 2/34 Interacciones intermoleculares

Más detalles

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha:

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha: Sector: Naturaleza Nivel: 8 Básico Nombre Profesora: Nancy Erazo Rosa Unidad V : Leyes de los gases GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso:

Más detalles

Tema 5: Interacción Radiación-Materia

Tema 5: Interacción Radiación-Materia Tema 5: Interacción Radiación-Materia 1. Interacción de partículas cargadas pesadas con la materia Partículas cargadas: excitación o ionización de los átomos del medio. Partículas pesadas (respecto al

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Superfluidez en gases atómicos ultrafríos, bosones y fermiones ( alcalinos Na, Rb, Li)

Superfluidez en gases atómicos ultrafríos, bosones y fermiones ( alcalinos Na, Rb, Li) Superfluidez en gases atómicos ultrafríos, bosones y fermiones ( alcalinos Na, Rb, Li) Víctor Romero Rochín Instituto de Física, UNAM, México Nadia Sandoval, Luis Olivares, Rosario Paredes IF-UNAM México

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

1. Construcción de la Integral

1. Construcción de la Integral 1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones

Más detalles

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional.

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional. Índice Introducción Capítulo 1: físicas, unidades y análisis dimensional. Introducción Capítulo 1:. Índice Leyes Físicas y cantidades físicas. Sistemas de unidades Análisis dimensional. La medida física.

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese

Más detalles

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 15-16 Problema 1 Calcule la probabilidad de que un electrón 1s del H se encuentre entre r r. La probabilidad

Más detalles

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r P1. Anemometría sónica. Hoy en día, los Centros Meteorológicos disponen de aparatos muy sofisticados para medir la velocidad del viento que, además y simultáneamente, miden la temperatura del aire. El

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

11. Integrales impropias

11. Integrales impropias 11. Integrales impropias 11.1. Definición de Integrales Impropias Las denominadas integrales impropias son una clase especial de integrales definidas (integrales de Riemann) en las que el intervalo de

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2 Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................

Más detalles

Energía Interna (E): Expresa la energía total de un sistema. Es la capacidad que tiene un sistema de desarrollar algún tipo de trabajo.

Energía Interna (E): Expresa la energía total de un sistema. Es la capacidad que tiene un sistema de desarrollar algún tipo de trabajo. Bioenergética Estudia el flujo de energía en los procesos biológicos, fisiológicos y bioquímicos. Se le conoce como la termodinámica aplicada a los sistemas biológicos. Conceptos básicos Energía Interna

Más detalles

Contenido. 1. Superconductividad. 1 / Omar De la Peña-Seaman IFUAP Estado Sólido Avanzado Doctorado (Ciencia de Materiales) 1/54 54

Contenido. 1. Superconductividad. 1 / Omar De la Peña-Seaman IFUAP Estado Sólido Avanzado Doctorado (Ciencia de Materiales) 1/54 54 Contenido 1. Superconductividad 1 / Omar De la Peña-Seaman IFUAP Estado Sólido Avanzado Doctorado (Ciencia de Materiales) 1/54 54 Contenido: Tema 06 1. Superconductividad 1.1 Propiedades fundamentales

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Introducción a las Ondas de Choque

Introducción a las Ondas de Choque Introducción a las Luis Moraga Centro de Física Experimental, Facultad de Ciencias, Universidad de Chile Curso de Pre- y Postgrado ONDAS DE CHOQUE, 2008 Asunto: Introducción La naturaleza de las ondas

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

FISICOQUIMICA. La energía total de un sistema puede ser: externa, interna o de tránsito. CLASIFICACION TIPOS DETERMINACION Energía Potencial:

FISICOQUIMICA. La energía total de un sistema puede ser: externa, interna o de tránsito. CLASIFICACION TIPOS DETERMINACION Energía Potencial: FISICOQUIMICA ENERGIA: No puede definirse de forma precisa y general, sin embargo, puede decirse que es la capacidad para realizar trabajo. No se puede determinar de manera absoluta, solo evaluar los cambios.

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

Resonancia Magnética Nuclear

Resonancia Magnética Nuclear Víctor Moreno de la Cita Jesús J. Fernández Romero 25 de mayo de 2010 1 Base teórica 2 Medicina Química y análisis no destructivo Computación cuántica 3 4 Notación que emplea Kittel: µ = Momento magnético

Más detalles

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la

Más detalles

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA 1. SUSTANCIAS PURAS Y MEZCLAS 2. LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS 2.1. LEY DE CONSERVACIÓN DE LA MATERIA Enunciada en 1783 por Lavoisier: La materia ni se crea ni se destruye, únicamente

Más detalles

Función de onda hidrogenoide: nueva fórmula para una vieja integral

Función de onda hidrogenoide: nueva fórmula para una vieja integral ENSEÑANZA REVISTA MEXICANA DE FÍSICA 48 (4) 36 365 AGOSTO Función de onda hidrogenoide: nueva fórmula para una vieja integral Antonio Ortiz Castro Departamento de Física, CINVESTAV, IPN Apdo. Post. 14-74,

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles