Banco de autotransformadores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Banco de autotransformadores"

Transcripción

1 Bo de uorformdore E ee doumeo e lizrá o l rereeió e.u. e be rifái de u bo de uorformdore, omdo omo do lo reuldo de lo eyo de l uidde moofái Pre 1: Trformdore o u imedi referid l ldo de l eió El iguiee rformdor e uilizrá e od e eió Do: : olje omil del rimrio : olje omil del eudrio : Relió de vuel Z : medi erie del rformdor vi dede el rimrio om om Reordemo que l relió de vuel relio l eioe del rformdor idel (derá de l imedi) del ldo rimrio o el ldo eudrio: ) Coexió Y-d e iee el iguiee equem rifilr:

2 Clulemo l orriee que or l rg Z. Lo álulo e reliz e uidde fíi Nomelur: E i : Teió del rformdor idel de l fe i e el ldo rimrio e i Teió del rformdor idel de l fe i e el ldo eudrio i : Corriee e l fe i e el ldo rimrio i : Corriee e l fe i e el ldo eudrio : Corriee or l rg de l fe i i, ero P i i 1, luego ( ) ( ) ( ) A A A L relió ere l eió e el eudrio y l orriee de rg e obiee de l iguiee mer: ( ) ( ) b e Z Z Z Z Z 0 b Y uilizdo l exreió r l orriee e Z P A luld revimee: Ahor, eribiedo LK e el rimrio y oiderdo que E A e Z + E Z + e Z + Z P om A A A A A A, y deejdo l orriee del rimrio: + + Z P P om om A Z Podemo her lgu o má: Lo erior e uede exrer e érmio de l eió fe fe del ldo rimrio:

3 A ff + Z Filmee, oiderdo que: A A e edrá: ff + Z [ A] Ahor que eemo u exreió r l orriee e l rg (lo que imli mbié eer l exreió r l eió), derrollemo u equivlee moofáio e.u., de l mer de llegr l mimo reuldo: e rooe lo iguiee: Exie do zo, or eo lo ubídie 1 y. Noemo que l imedi del rformdor eá dividid or l imedi be de l zo 1, y que el do de imedi o lo diero referido l ldo de l. Ademá, ree u oefiiee lf r dr ue de lgu oible diviió (or u re o u ríz de re). Por hor o lo bemo, ero lo dejmo hí r deermirlo l fil. L imedi be o: Z b, Zb b φ b φ Reordemo que emo rbjdo o be rifái. Por lo o, lo volje be o fe fe. U vez elegido el volje be de l zo uo, el volje be de l zo do e obiee rvé de l relió de vuel del rfo, oiderdo el io de oexió. Luego:

4 b b, E e l relió ere lo volje be fe fe Luego: Z b b b φ Ahor, hiedo LK e el equivlee e.u. ff Z + αz Z b [ u..] i queremo deermir l orriee e l rg e [A], e debe mulilir or l orriee be de l zo : ff Z + αz Z b omφ b 1 ff Z omφ + Z α om φ om φ ff Z + Z α [ A] i omrmo l exreió obeid hor o lo derrolldo revimee e el equem rifilr, vemo que r el o udo l imedi del rformdor eá referid l ldo e dode exie u oexió e erell, lf debe er igul 1, or lo que o hy que dividir or d.

5 Pre : Trformdore o u imedi referid l ldo de bj eió El iguiee rformdor e uilizrá e od e eió Do: om om : olje omil del rimrio : olje omil del eudrio : Relió de vuel Z : medi erie del rformdor vi dede el eudrio Reordemo que l relió de vuel relio l eioe del rformdor idel (derá de l imedi) del ldo rimrio o el ldo eudrio: ) Coexió Y-d e iee el iguiee equem rifilr: Clulemo l orriee que or l rg Z. Lo álulo e reliz e uidde fíi

6 Nomelur: E i : Teió del rformdor idel de l fe i e el ldo rimrio e i Teió del rformdor idel de l fe i e el ldo eudrio b : Diferei de eió ere l fe y b del eudrio del rformdor i : Corriee e l fe i e el ldo rimrio i : Corriee e l fe i e el ldo eudrio i : Corriee or l rg de l fe i De l re 1, deudo l uev oió e iee que: P Z (omrr o e de l re 1) b A Ademá, i e oider que Z b A P i i 1 : E e re mbié e iee que: A 150 A 150, luego: Z b 150 Por úlimo, e iee u relió r el volje e l del: Z + e e b guldo l do úlim exreioe r b : Z e e e ( + Z) + Z

7 L relió de vuel r l eioe e ee o e: ff EA ff e e e Luego: ff Z + Z [ A] L relió ere Z yz e, luego: ff ff + Z + Z lo que oiide o lo heho e l re 1 El reuldo erior e oiee: ideediee de ómo refier l imedi del rformdor, o u mérmero iemre e medirá lo mimo e l rg. Ahor que eemo u exreió r l orriee e l rg (lo que imli mbié eer l exreió r l eió), derrollemo u equivlee moofáio e.u., de l mer de llegr l mimo reuldo: e rooe lo iguiee: Exie do zo, or eo lo ubídie 1 y. Noemo que l imedi del rformdor eá dividid or l imedi be de l zo, y que el do de imedi o lo diero referido l ldo de bj. Ademá, ree u oefiiee lf r dr ue de lgu oible diviió (or u re o u ríz de re). Tmoo lo bemo hor, ero lo dejmo hí r deermirlo l fil. L imedi be o: Z b, Zb b φ b φ

8 U vez elegido el volje be de l zo uo, el volje be de l zo do e obiee rvé de l relió de vuel del rfo, oiderdo el io de oexió. Luego: b b, luego Z b b φ Ahor, hiedo LK e el equivlee e.u. ff Z + αz Z b b [ u..] i queremo deermir l orriee e l rg e [A], e debe mulilir or l orriee be de l zo : ff b 1 1 Z + Z Zb α omφ b 1 ff omφ Z + α omφ ff Z + Z α [ A] i omrmo l exreió obeid hor o lo derrolldo revimee e el equem rifilr, vemo que r el o udo l imedi del rformdor eá referid l ldo e dode exie u oexió e erell, lf debe er igul re. Coluioe Pr efeo ráio del álulo e or uidd, e iee lo iguiee: - i l imedi del rformdor eá referid l ldo e dode e relizrá l oexió erell, e ólo e debe r [.u.] dividiedo or l imedi be de ee ldo - i l imedi del rformdor eá referid l ldo e dode e relizrá l oexió del, e e debe r [.u.] dividiedo or l imedi be de ee ldo y demá dividiedo or re

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

Supertriangular Subtriangular Diagonal Unidad

Supertriangular Subtriangular Diagonal Unidad MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Aroxiió de deiles Itervlos. Ríes y oteis Notió ietífi. Oerioes Rdiió. Proieddes de ls oteis de exoete riol Rdiles equivletes Silifir rdiles Extrió

Más detalles

IES Mediterráneo de Málaga Reserva1.- 2012 Juan Carlos Alonso Gianonatti. Propuesta A

IES Mediterráneo de Málaga Reserva1.- 2012 Juan Carlos Alonso Gianonatti. Propuesta A ES Medieáeo Málg Reev.- Ju lo loo Gioi Popue.- ) Eui el eoe vlo edio Lgge d u iepeió geoéi ( puo) ) lul u puo l ievlo [ ] e que l e gee l gái l uió e plel l ued (o egeo) que ue lo puo () e ( puo) ) Teoe

Más detalles

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- MATRICES. 1. Dada la matriz, qué relación deben guardar a y b para que se verifique la.

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- MATRICES. 1. Dada la matriz, qué relación deben guardar a y b para que se verifique la. º DE CHLLERTO MTRCES Y DETERMNNTES Soluioe -- MTRCES. D l mi, qué elió ee gu p que e veifique l igul? po lo que. Si eolvemo iepeieemee l pime l úlim euió, eul: o o l uo omiioe o puee e, pue emá, po lo

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Frió geertriz de u úero deil Reresetió de úeros rioles e l ret rel Aroxiioes Itervlos. Ríes y oteis Proieddes de ls oteis de exoete riol Rdiles

Más detalles

NÚMEROS NATURALES. DIVISIBILIDAD

NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES Los úeros turles so los que sirve pr otr: 1,,, So ifiitos y for u ojuto que se deoi N. Está ordedos, lo que os perite represetrlos sore u ret uyo orige

Más detalles

d e l a L e y 1 8. 3 8 4.

d e l a L e y 1 8. 3 8 4. D I A G N Ó S T I C O D E L A S I T U A C I Ó N E N E L S I S T E M A T E A T R A L E n e l c a m i n o d e p r o f u n d i z al r a c o n s o l i d a c i ó n d e l s e c t o r t e a t rsae l, r e s u

Más detalles

Pruebas de hipótesis para dos muestras.

Pruebas de hipótesis para dos muestras. Prueba de hiótei ara do muetra. Prueba de Hiótei ara do muetra grade, deviacioe etádar de la oblacioe deiguale. La roiedade de la Ditribució Normal o tambié umamete útile cuado queremo ecotrar i do cojuto

Más detalles

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces. POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,

Más detalles

FÍSICA PARA MEDICINA (MA209) Taller de preparación para la PC1

FÍSICA PARA MEDICINA (MA209) Taller de preparación para la PC1 FÍSICA PARA MEDICINA (MA9) Tller de preprión pr l PC. Un bilrin de blle de, kg de eá poyd obre l pun del pie. Cuál e l preión obre el áre del uelo que o, i l pun de u pie iene un áre de,7? F P A, 9, 8

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

Curso de Matemáticas Actuariales del Seguro de Personas II

Curso de Matemáticas Actuariales del Seguro de Personas II uo á u uo o II EERE - of. Joé Fo oo Fo E _fo@o.o ov 55-68 Of 9577 E. of. uo uo Quo. E.uo@.u. IROUIÓ E uo á óo-áo fvo vá ofu o ofo uo o u u oó % o oo o uo. OIEREIOE E uo o u o oo v, bo fou ouo. L bbofí

Más detalles

Circuito equivalente de un transformador con regulación. Equivalent circuit of a regulating transformer

Circuito equivalente de un transformador con regulación. Equivalent circuit of a regulating transformer Igeire. Reis chile de igeierí, ol. 9 Nº, 0, pp. 93-09 Circuio equilee de u rsformdor co regulció Equile circui of regulig rsformer Ju A. Mríez-elsco Frcisco de Leó Reciido 6 de juio de 00, cepdo 3 de oiemre

Más detalles

A C T I N O M IC O S I S Ó r g a n o : M u c o s a b u c a l T é c n i ca : H / E M i c r o s c o p í a: L o s c o r t e s h i s t o l ó g i c oms u e

A C T I N O M IC O S I S Ó r g a n o : M u c o s a b u c a l T é c n i ca : H / E M i c r o s c o p í a: L o s c o r t e s h i s t o l ó g i c oms u e T R A B A J O P R Á C T I C O N º 4 I N F L A M A C I Ó N E S P E C Í F I C A. P A T O L O G Í A R E G I O N A L P r e -r e q u i s i t o s : H i s t o l o g ída e l t e j i d oc o n e c t i v o( c é l

Más detalles

La neutralidad financiera en el Impuesto sobre Sociedades: Microsimulación de las opciones de reforma para España*

La neutralidad financiera en el Impuesto sobre Sociedades: Microsimulación de las opciones de reforma para España* H Pú Eñ / Rw P E, 203-(4/2012): 23-56 2012, I E F L I S: Mó Eñ* LOURDE JEREz ARROO U Ex FIDEL PICO áchez REDE-U V R: A, 2012 A: J, 2012 R E ú é í I, ACE y CIT, h ó. E j q í Eñ ó, é ó AI. L z y, y ó ó x

Más detalles

EPÍLOGO Accidente y mentira Aquí no nos ocupamos de la maldad, a la que la religión y la literatura han intentado pasar cuentas, sino del mal; no del pecado y los grandes v illanos, que se conv irtieron

Más detalles

3.5.1 Trasformada de Laplace de la función escalón unitario

3.5.1 Trasformada de Laplace de la función escalón unitario .5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos.

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos. Meáis (hillero e ieis) Soluioes e los proles propuesos Te wwweisjo José Mrí Mríez Meio TEM Mries Proles Resuelos Operioes o ries Ds, y, hll os úeros y pr que se verifique que Soluió Esriieo l euió exei

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

Buda predicó el S ut ra de la P ro f un da Bo n dad de lo s padres y la D if icult ad en R et rib uirla T r a d u cci ó n a l es p a ñ o l d e l a v er s i ó n ch i n a d e K u m a r a j i v a Plegaria

Más detalles

LÍMITE Y SUS PROPIEDADES

LÍMITE Y SUS PROPIEDADES LÍMITE Y SUS PROPIEDADES INTRODUCCION A LOS LÍMITES L oció de líie es fudel pr l copresió del cálculo. Medie vrios ejeplos se usc que los esudies eg clridd del sigificdo de líie.. El prole de l rec gee.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ Cpíulo Álgebr mricil vers de u mriz Cpíulo ÁLEBRA MARCAL NVERSA DE UNA MARZ Mrices E el cpíulo erior se irodujo el cocepo de mriz, defiiédose u mriz A de mño m x co elemeos e u cuerpo (geerlmee cosiderremos

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto

Más detalles

Tema 4. SISTEMAS DE ECUACIONES LINEALES

Tema 4. SISTEMAS DE ECUACIONES LINEALES Te SISTS D CUCIONS LINLS Sises de res ecucioes co res icógis So de l for: Ls lers i, ij i represe, respecivee, ls icógis, los coeficiees los érios idepediees L solució del sise es el cojuo de vlores de,

Más detalles

ENGRANAJES RECTOS Y HELICOIDALES

ENGRANAJES RECTOS Y HELICOIDALES Problem Máqui Dieño e EAAJE EO Y HEIOIDAE Problem. U iem e b roror er imulo or u moor elério que gir 00 rm. relió e eloie ere lo egre que oe el moor l roror e e :3. El iñó iee o imerl, 8 iee e 0º e lur

Más detalles

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED.

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. CURSO REDES ELECTRICAS I CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. En ee curo, eamo uoniendo que en la red rifáica coniderada, la 3 corriene que circulan or la red forman un iema equilibrado

Más detalles

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES Álgebr Liel Memáics º chillero LOQUE DE ÁLGER TEM : MTRICES U mriz es u cojuo de úmeros reles colocdos recgulrmee ecerrdos ere préesis o corchee o doble brr. Pr or u mriz se uiliz o: u ler myúscul, por

Más detalles

NÚMEROS REALES Clasificación. Acerca de las operaciones

NÚMEROS REALES Clasificación. Acerca de las operaciones NÚMEROS REALES Clsifiió Aer de ls oerioes - Prioridd. Prétesis de detro fuer.. Poteis y ríes.. Multiliioes y divisioes de izquierd dereh. Sums y rets, de izquierd dereh o ositivos or u ldo y egtivos or

Más detalles

POTENCIA DE UN NÚMERO.

POTENCIA DE UN NÚMERO. INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluió Nº de oviere./0 Seretri De Eduió Distritl REGISTRO DANE Nº00-00099 Teléfoo Brrio Bstids St Mrt DEPARTAMENTO DE MATEMATICAS DOCENTE: LIC-ING.

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

I.E.S Padre Juan Ruíz Aritmética Hinojosa del Duque

I.E.S Padre Juan Ruíz Aritmética Hinojosa del Duque I.E.S Pdre Ju Ruíz Aritméti Hiojos del Duque PROPIEDADES DE LA ARITMÉTICA Y ERRORES MÁS COMUNES NÚMEROS ENTEROS Elimir prétesis: Del mismo sigo, sle + De distito sigo, sle + (+) = + ( ) = + + ( ) = (+)

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo.

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo. Inegrles INTEGRAL IMPROPIA Eensión del oneo de inegrl definid L inegrl definid d requiere que: El inervlo [, ] se finio L funión f () esé od en el inervlo [, ] L funión f () se oninu en diho inervlo Cundo:

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Pág.: ÍNDICE:.- FUNCIÓN PRIMITIVA..- INTEGRAL INDEFINIDA..- INTEGRALES INMEDIATAS...- INTEGRACIÓN INMEDIATA DE ALGUNAS FUNCIONES. 4.- PROPIEDADES DE LA INTEGRAL INDEFINIDA. 5.- MÉTODOS

Más detalles

PRESCINDIBLE CARA, INSEGURA SIN FUTURO. l en acción

PRESCINDIBLE CARA, INSEGURA SIN FUTURO. l en acción ENERG Í N U C CR, L E INSEGU R: L R Y PR ESCIND IBLE R C, í v y í L bf f INSEGUR á, í h, y b í hb z z SIN FUTURO PRESCINDIBLE L í, á, R y ñ í yí í y f y á D N E N E V N E I C N E R HE ó í L L f h, v T

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes. ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60

Más detalles

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA.

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA. APÍTULO UTOS EN EL DOMNO DE LA FEUENA... SSTEMAS LNEALES NAANTES. roducció. U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x ( Siema lieal

Más detalles

Resumen: Límites de funciones. Asíntotas

Resumen: Límites de funciones. Asíntotas Resue: Líites de ucioes. Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. Ejeplos: *?

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

,,, z z Y,, é Y E Y é ; Y ; Y á T; x Y ; Y;,, Y, ó,, E, L Y ú Nz, E j Aí, ó,,,, ó z? Y é P Y? é P é, x? zó Y N j í, á Y, á, x, x ú Y E ó zó,, ó, E, Y,

,,, z z Y,, é Y E Y é ; Y ; Y á T; x Y ; Y;,, Y, ó,, E, L Y ú Nz, E j Aí, ó,,,, ó z? Y é P Y? é P é, x? zó Y N j í, á Y, á, x, x ú Y E ó zó,, ó, E, Y, O TRE ENDERO DE PERFECCION L ROLOGO P Tó, I ó Có x C é, N G ó z, ú í x, K, á k, J, G, á A C é, M ñ, ; x ñ já L; á NNIE EANT A O TRE ENDERO L ARMA MARGA K ó, z Ví L, L á,, é, A á x, A ú, Y E - í, M -, K

Más detalles

$%# ! "#$% &' *& & -& **. *+ #$/0$% % &' &)* (*& &*& ()& +&', . & # *+ &(* & //$ % & 1 &*+ % * & & &* & *2&, +& *3& (* & *& &

$%# ! #$% &' *& & -& **. *+ #$/0$% % &' &)* (*& &*& ()& +&', . & # *+ &(* & //$ % & 1 &*+ % * & & &* & *2&, +& *3& (* & *& & !"#! "#$% &' &( )*'*+&,&(*+&& *& & -& **. *+ #$/0$% % &' &)* (*& &*& ()& +&',. *+#$$% '&)*(*&&*& #. & # *+ &(* & * )&(&*&0, %" //$ % & 1 &*+ % * & & &* # % &'&( )*'&)* & *2&, +& *3& (* & *& & -&4 )&(*&&*&

Más detalles

$/Kg. Vivo por Clasificación Diciembre 2015

$/Kg. Vivo por Clasificación Diciembre 2015 S ST EMA NFORMAT VODE PREC OSPORC NOS P RE C OSP ORC NOS D N o d M u yf D C E MBRE2015 CONT ROLAGROPECUAR O M N S T E R ODEAGRO NDUS T R A DEL ANAC ÓN: Co R dobu y S dag u u G d yp : g Ag R dong D N o

Más detalles

Cuaderno Estadístico Municipal de La Paz, Baja California Sur. edición 2005

Cuaderno Estadístico Municipal de La Paz, Baja California Sur. edición 2005 Cuaderno Estadístico unicipal de La Paz, Baja California Sur. edición 2005 apas 0. División Geoestadística unicipal 1. Infraestructura para el ransporte 2. Orografía 3. Fisiografía 4. Geología 5. Sitios

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES. TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio

Más detalles

Unidad-4: Radicales (*)

Unidad-4: Radicales (*) Uiversidd de Coepió Fultd de Cieis Veteriri Nivelió de Competeis e Mtemáti (0 Uidd-: Rdiles (* Rdil. Es u epresió de l form: que represet l ríz eésim priipl de. El etero positivo es el ídie u orde del

Más detalles

SAMPLE. Salmo 99: Nosotros Somos Su Pueblo/We Are God s People, cont. (2) Mi m Em. Re/Fa D/F. Sol G. Do C. sir van al Se. men. ñor, oh tie rra en.

SAMPLE. Salmo 99: Nosotros Somos Su Pueblo/We Are God s People, cont. (2) Mi m Em. Re/Fa D/F. Sol G. Do C. sir van al Se. men. ñor, oh tie rra en. Smo 99: Nosotros Somos Su Pueblo/ We Are od s People RESPUESTA: ( = ca. 92) 1a vez: antor, Todos repiten; dpués: Todos are No 2-4 antor so od s a las Estrofas El or tros sus4 sus4 peo The A Se the ple.

Más detalles

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios. Programa COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.cl Programa XVI Conferencia Internacional de Bibliotecología Buenas

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

GUIA DE PADRES Unidad 1 (Agosto 22-Septiembre 30)

GUIA DE PADRES Unidad 1 (Agosto 22-Septiembre 30) Unidad 1 (Agosto 22-Septiembre 30) CICLO 2016-2017 Lección 1: Enunciados declarativos e interrogativos. Lección 2: Enunciados imperativos y exclamativos. Lección 3: Sujeto en el enunciado. Lección 4: Predicado

Más detalles

Mayo SIMPOSIO INTERNACIONAL PEDAGOGÍA. Cultura y Sociedad. +57 4 250 8328 ext. 119 +57 320 653 8489 simposio.pcs@unac.edu.co www.unac.edu.

Mayo SIMPOSIO INTERNACIONAL PEDAGOGÍA. Cultura y Sociedad. +57 4 250 8328 ext. 119 +57 320 653 8489 simposio.pcs@unac.edu.co www.unac.edu. My 9 7 7-2 INTERNAIONAL y Si ORPORAIÓN +7 4 4 269 UNIVERSITARIA ADVENTISTA +7 4 2 32 x 9 +7 32 63 49 ii@ www INTERNAIONAL y Si ORPORAIÓN UNIVERSITARIA ADVENTISTA OBJETIVOS Pii i éi ibi b, q ii b y flxió

Más detalles

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA APÍTULO UTOS EN EL DOMNO DE LA FEUENA.. SSTEMAS LNEALES NAANTES roducció U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x () Siema lieal

Más detalles

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr . OPERIONES ON MRIES.. Sum de mtrices Pr oder sumr dos mtrices ésts debe teer l mism dimesió. Etoces se sum térmio térmio: b b m m m Proieddes de l sum de mtrices: socitiv: omuttiv: Elemeto eutro: L mtriz

Más detalles

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ).

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ). Tem 3 mortcó e prétmo Defcó y mgtue fumetle opercó e mortcó e prétmo e u opercó fcer e l ue u pero pretmt o creeor cocert etregr otr pero prettro o euor u eterm cutí e u mometo coro y el euor e compromete

Más detalles

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES.

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES. Uiveridad Lo Ágele de Chimbote LECTURA 05: ITERVALOS DE COFIAZA PARA LA PROPORCIÓ POBLACIOAL. ITERVALOS DE COFIAZA PARA LA DIFERECIA ETRE DOS PROPORCIOES POBLACIOES. TEMA : ITERVALOS DE COFIAZA PARA LA

Más detalles

PARALELISMO RECTA RECTA

PARALELISMO RECTA RECTA ARALELISMO RECTA RECTA Do ect lel en el ecio on tmbien lel en oyeccione. Si do ect on lel en el ecio u oyeccione eticle tmbien lo ón, í como u oyeccione oizontle o tece oyeccione. Tmbién eán lel l el btid

Más detalles

Pepe en Inglaterra - La llegada y el autor Gordon Reece. También puedes consultar nuestra página web www.librosde.com

Pepe en Inglaterra - La llegada y el autor Gordon Reece. También puedes consultar nuestra página web www.librosde.com GÉNRO: AVNTURA Y HUMOR Áe: ngé, engu, CONOCIMINTO D MDIO, eduón í. TMAS/oe: onomeno de o uu, mduón. de.om o b encen o du oyb b o YAho T mb enp u e InoduÓn Fndd de bo: - u úd en un onexo de bngümo. - Inoduón

Más detalles

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s.

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s. ACTO DE SALUD EN VILADECA N S, 4 DE MARZO DE 2010. B u e n a s tar d e s : E s t a m o s aq u í p a r a h a b l a r de sal u d y d e at e n c i ó n sa n i t a r i a pú b l i c a en el B a i x Ll o b r

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real. RADICALES Etre los úeros reles se euetr los rdiles, ue se uede exresr oo ríz de u ídie de u úero rel. Ríz eési de u úero rel. Si R y Ν, o, direos ue l ríz eési de es u úero rel r y lo otreos sí: r, si

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II UED FUTD DE. EOÓIS Y ERESRIES TEÁTI DE S OERIOES FIIERS II URSO / l uevo Eme e JUIO Dí // l ho TERI UXIIR: lulo fe DURIÓ: ho. El bo X oee u pétmo hpoteo l S. Y. utí el ptl peto e el % el peo e tó el po

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

Efectos de la contrarreforma fiscal en la recaudación de Gipuzkoa 2014/01/14

Efectos de la contrarreforma fiscal en la recaudación de Gipuzkoa 2014/01/14 Efectos de la contrarreforma fiscal en la recaudación de Gipuzkoa 2014/01/14 Impuesto de Sucesiones y Donaciones 1. Modificación Aumento de la cantidad de reducción exenta entre familiares directos de

Más detalles

TEMA 10 OPERACIONES DE AMORTIZACION O PRESTAMO (I)

TEMA 10 OPERACIONES DE AMORTIZACION O PRESTAMO (I) Fcultd de.ee. Dpto. de Ecoomí Ficier I Dipoitiv Mtemátic Ficier TEM OPERIONES DE MORTIZION O PRESTMO (I). Pltemieto geerl 2. Método prticulre de mortizció - Prétmo merico - Prétmo frcé - Prétmo co cuot

Más detalles

Tema 13 Modelos de crecimiento exógeno básicos

Tema 13 Modelos de crecimiento exógeno básicos Tema 13 Modelo de crecimieno exógeno báico 13.1 Reolución del modelo con la función genérica de roducción. 13.2 Lo modelo de Harrod-Domar y de Kaldor. 13.3 El modelo de Solo. Bibliografía: Sala i Marin

Más detalles

glosario de BBVA GLOSARIO -Bolsa-

glosario de BBVA GLOSARIO -Bolsa- BBVA GLOSARIO -B- A : Aó: C ó 100 í. V í ó. E. A A : E ó í. S ó í á ó ó. Aó : Aó, ú ó, ó. Aó : S ó. Aó : Aó. S : ) ) ó. Aó : Aó ó. Aó : Tí ó B, ó. Aó : Té,,,, ó. S ó, ó. Aó : (G ):E. C,. E é é ; á. Aó

Más detalles

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos) Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)

Más detalles

EXAMEN PSICOTÉCNICOS GUARDIA CIVIL

EXAMEN PSICOTÉCNICOS GUARDIA CIVIL EXAMEN PSICOTÉCNICOS GUARDIA CIVIL Este exmen onst e DOS prtes esrits: L primer es un prue e ortogrfí, l segun es un psioténio. Pr un e ests prtes existe un tiempo que se le inirá en seión. Est prte (ortogrfí)

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

ENTE REGULADOR DE LOS SERVICIOS PÚBLICOS. Resolución Nº: JD-1852 Panamá 15 de Febrero de 2000.

ENTE REGULADOR DE LOS SERVICIOS PÚBLICOS. Resolución Nº: JD-1852 Panamá 15 de Febrero de 2000. ENTE REGULADOR DE LOS SERVICIOS PÚBLICOS Ró Nº: JD-1852 Pá 15 Fb 2000. POR MEDIO DE LA CUAL SE ORDENA A CABLE & WIRELESS PANAMA, S.A., COMO OPERADORA EXCLUSIVA DE LA RED PUBLICA, QUE SUSPENDA DE MANERA

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

MODELOS DE GESTIÓN DE INVENTARIOS (Stocks)

MODELOS DE GESTIÓN DE INVENTARIOS (Stocks) MODELO DE GEIÓ DE IVEARIO (ok) ok iemo OCK 1 Coeido Ioduió io de ok Modelo deemiia Modelo i uua Modelo o uua Modelo aleaoio ok de eguidad Políia de geió Modelo de demada ooida Modelo de u úio edido Refeeia:

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

Resumen: Límites, Continuidad y Asíntotas

Resumen: Límites, Continuidad y Asíntotas Resue: Líites, Cotiuidd y Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. : *? ** *

Más detalles

CICLO 2014-2015 2nd Grade

CICLO 2014-2015 2nd Grade CICLO 2014-2015 2nd Grade GUIA DE PADRES Unidad 1 (Agosto 18 -Septiembre 26) GRAMMAR Lección 1: Enunciados declarativos e interrogativos. Lección 2: Enunciados imperativos y exclamativos. Lección 3: Sujeto

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

MIL-DTL-38999 SERIE III. conectores SCP TV. Conectores circulares de alto rendimiento. www.scp-sa.es

MIL-DTL-38999 SERIE III. conectores SCP TV. Conectores circulares de alto rendimiento. www.scp-sa.es -- oo oo il lo iio.-. -- oo Í -- Í........................................................................................ Í É.........................................................................................

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

Solución: Solución: Longitud recorrida por la rueda exterior en una vuelta completa: Longitud recorrida por la rueda interior en una vuelta completa:

Solución: Solución: Longitud recorrida por la rueda exterior en una vuelta completa: Longitud recorrida por la rueda interior en una vuelta completa: .- Si un vehíulo on m. de anho de vía toma una uva de adio m., alula la evoluione o minuto de ada lanetaio del difeenial abiendo que la oona gia a 600..m. Longitud eoida o la ueda exteio en una vuelta

Más detalles

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER.

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER. EJERCICIOS DE FORMAS DE ONDA DESARROLLOS EN SERIE DE FOURIER. EJERCICIO. Hallar el valor eficaz,, e las foras e oa repreaas e la figura. RESOLUCIÓN: Los valores eficaces e las res foras e oa so iguales.

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

( ) ( ) ( ) ( cos a)

( ) ( ) ( ) ( cos a) Foruls de Agulo Múliple Julio Csiñeir Merio jsie@bojieedes A l eori de is pdres: Julio Ágeles Ese rbjo epli lgus de ls propieddes de ls fóruls de águlo úliple E prier lugr epresreos de for ois ls fóruls

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión: PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro

Más detalles

LOCALIZACIÓN Y PLANOS DEL HOTEL VILLA XIMENA

LOCALIZACIÓN Y PLANOS DEL HOTEL VILLA XIMENA LOCALIZACIÓN Y LANOS DEL HOTEL VILLA XIMENA Nuestro hotel se locliz en Jimen, un pueblo de 500 hbites situdo en provinci de Jén. Jimen se encuer empzd en Sierr Mágin unos 5 km to de Jén como de Úbed, por

Más detalles

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Oió Ejiio.- S s ué. Clul d od lido ls oidds duds l lo d los siguits dtits: B B IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Ejiio..- Hll l uió dl

Más detalles